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Chapter 1 Definition and introduction 

1.1 Definition 

The SAFURE Framework is a collection of architectural concepts, functional building blocks, 
modeling approaches, analysis methods and tools, as well as assurance and certification 
methods aligned to develop and validate mixed-critical systems. 

 

1.2 Introduction to the SAFURE framework 

The SAFURE framework is at the heart of Common Criteria (ISO 15-508), legacy system 
engineering and model driven methodologies. Thus, the according methodology must 
encompass two important topics: 

 Describing appropriately the mixed criticality set of properties on the complex 

systems envisioned in the SAFURE project, either by exhibiting the said properties or 

by setting them as an environment hypothesis 

 Preserving mixed criticality properties consistency along the envisioned systems 

(thus describing some important properties shared between those systems) and 

internally inside its system (for example achieving both safety and security policies 

enforcement) 

1.2.1 System engineering aspects 

In the following parts we will adopt the unified presentation of mixed criticality properties as 
Jean-Claude Laprie described in Dependability of Computer Systems: from Concepts to 
Limits. 

 

Figure 1: dependability capability tree 
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It is not the purpose of this chapter to describe exactly these attributes, means and 
impairments. 

The SAFURE objectives heavily relies on the satisfaction of all attributes also described as 
set of security properties in the Common Criteria as two sub-sets of attributes can be refined: 

 Safety attributes: maintainability, reliability and safety 

 Security (as  of IT security) attributes : availability, confidentiality and integrity 

One could note not that availability could be part of both subsets but usually in IT security 
terms, availability is envisioned as a qualitative property while in pure dependability while in 
safety attributes it is a quantitative concept part of the reliability attributes. 

The SAFURE framework will heavily rely on pre-existing environments which are very 
different from one partner to another. Thus, all suitable works performed in SAFURE shall 
exhibit the following properties: 

 Correct from a mixed-criticality point of view 

 Consistent inside and between each system environment 

But it cannot be extensively defined, meaning that a complete system definition is not under 
the scope of this methodology, and that only an inductive partial definition shall be required, 
notably through the definition of properties over parts of the systems which are outside of the 
technical scope of the SAFURE project. For example, the availability of an internet 
connection shall be explicitly either required or either tolerated through the definition of the 
appropriate architecture. 

 

1.3 Interoperability 

The nice thing about standards is that you have so many to choose from 

Andrew S. Tanenbaum 

 

1.3.1 Status at start of project  

Interoperability within and between critical systems is a crucial objective at the heart of the 
SAFURE project. Anyway, since the SAFURE projects gets its root from critical systems 
requirements such as automotive, avionics or medical systems, it is important to note that 
interoperability in its common acceptation is deemed less critical than the safety and security 
properties which must exhibited by the said system. This is at the opposite of usual COTS 
products strategy, which are ready to sacrifice critical properties interoperability in order to 
impact positively services and products diffusion. Furthermore, in the SAFURE framework 
two interoperability aspects must be considered: 

 The usual functional interoperability whom management is crucial for the product 
versatility and therefore for its commercial success. This also includes the choice of 
interoperable components during the design easing product and system development 
and integration. This interoperability is at the heart of a successful time-to-market 
strategy. 

 But critical properties interoperability is also crucial since it is also subdivided in two 
main concerns: 
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o Critical properties interoperability which are at the heart of the SAFURE 
project. Managing consistently all the safety and security properties is an 
important concern since sometimes, satisfying all these properties can be 
deemed impossible at equipment level. Thus, only at system level, one can 
decide which property is more important than another.  

o Products or equipment interoperability at integration level which raise the case 
of preserving products critical properties at system level by the mean of 
appropriate architectures. This aspect is outside of SAFURE framework. 

Finally, hardware issues are not considered here since they are outside of the SAFURE 
framework project. 

 

1.3.1.1 What is needed and required 

Requirements of the SAFURE projects can be studied at 3 levels: equipment level, system 
level and system of systems level. The projections of the impact of the main building blocks 
are described in the following table: 

 Equipment System 
System of 
Systems 

Hardware Security Module X   

Separation Kernel X   

Secure Software Update X X  

Secure Boot X   

Secure Communication X X X 

Secure GUI X   

Secure Element X X  

Multi stakes owners trusted foundations X X X 

Table 1: impact of main building blocks 

This separation includes both building blocks technologies studied in Chapter 3 but also 
some underlying technologies which encompass those three layers e.g. all the Internet 
Protocol related technologies defined in the informal or formal interest groups such as RFC, 
IEEE, IETF.  

This table also shows that the most prevalent building blocks around the SAFURE framework 
are secure communication and multi-stakes trusted foundations whose impact is seen on the 
three layers: equipment, system and system of systems.  

Multi stakes owners trusted foundations is important not only as a functional building block in 
itself but because it is a key trigger of trust between organizations and therefore to the 
establishment of communications between heterogeneous systems of systems. And as a 
way to support this statement, IP (Internet Protocol) communication technologies are at the 
heart of the SAFURE framework since they are a principal of the secure communication sub-
framework.  

This three layers visions is consistent with the actual trends of actual IT security concerns 
and three couples appears as an obvious association between the equipment level and 
internet of things (IoT), system level and SCADA security and finally between the systems of 
systems layer and service oriented architectures. And we are seeing a convergence between 
Information Technology (IT) and Operational Technologies which are often long-lasting 
legacy technologies. 



D1.3 SAFURE Framework Specifications  

SAFURE D1.3 Page 9 

Thus two kinds of candidates for adoption are envisioned: 

 Equipment : IoT standards such as AllJoyn, OIC, Google’s Brillo or even Apple’s 
HomeKit  

 Systems or Systems of systems which are in fact complex systems. SCADA and OT 
standards are prevalent here and we will for example study the OPC Unified 
Architecture impacts. 

Nevertheless, it is important to note that the later will be examined at the impact level on the 
equipment as a set of requirements since delivering a secure and safe equipment is the main 
focus of the SAFURE project. Thus, since the use of IP communication between the OT and 
equipments cannot be deemed as reliable. Real-time safety concerns and their impact will be 
analyzed only at the equipment level while security concerns shall be addressed at all levels. 

The other relevant standards will be analyzed during the SAFURE project. 

 

1.3.2 Status at end of project 

While section 1.3.1 describes the current status and how we target to improve within the 
SAFURE project, this section will be updated by the end of the project. It will create the 
relation how the SAFURE outcomes influenced the critical interoperability and how the set of 
standards could be refined. 
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Chapter 2 Architectural Concepts 

The SAFURE project adapts the architectural concept developed in the EURO-MILS project 
[9] to cover the safety and security aspects.  

The typical MILS system is composed of  

1. A set of partitions holding the functionalities (e.g. applications and middleware) 

2. A platform, composed of 

a. A core including: a separation kernel, HW and its configuration (e.g. CPU, 
MMU, IOMMU, memory bus), and optional critical HW devices along with 
their own software. 

b. Other blocks such as device virtualization software, security and audit 
generation, chain of trust. 

While in a MILS system there is a strong focus on independence and security (although the 
S could also mean safety, as showed in the IMA section of the MILS white paper), in 
SAFURE the focus is on integration of safety and security properties, as depicted in Chapter 
1 of the present document. In this respect, the SAFURE architecture could be named as 
Modular Integration Layout for Dependable Systems (MILDS). Explanation: 

1. The primary target is modularity, not multiplicity, since compositional construction and 
proof are mandatory to achieve complex/evolutive systems validation. MILS can be 
used in complement to bring multiplicity through independence. 

2. Integration is also mandatory since in many systems security and safety properties 
are neither strictly separable nor independent, and thus have to be handled 
coherently and consistently. This does not imply however that some degree of 
separation cannot be pursued for the sake of validation efficiency but that joint-
dependencies of security and safety properties have also to be addressed in the 
design process. 

3. Layout is proposed as an extension of the terms Levels, as a way to focus on 
components, with their properties and their interactions. 

4. Dependable Systems is a reference to the dependability explained in Chapter 1 that 
encompasses security and safety properties. 

 

The SAFURE architecture includes: 

1. Building blocks (BB) able to be used in a cross-domain approach and implementing 
dependability (security and/or safety) properties. 

2. A communication infrastructure able to provide interactions between building blocks 
in a dependable way, e.g. by filtering or limiting the access to some shared resources 
or between some functions. 
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2.1 Timing 

A number of on-chip hardware shared resources exist in COTS multicores. Among those we 
identify on-chip interconnects, shared cache memories and memory controllers. Uncontrolled 
sharing of those resources allows tasks running in some cores clogging the system by 
accessing those shared resources frequently, thus causing starvation in other tasks running 
in other cores, which may have higher criticality. This fact is particularly challenging when 
performance decreases drastically for real-time tasks. 

The other place where timing plays a role is timing covered channels. A separation kernel 
allows separate partitions by limitation of direct access to the hardware resources where the 
target software is running but there could be some indirect ways to exchange the data 
between partitions. For example a cache is protected from direct attacks against the 
confidentiality of content with the help of Memory Management Unit but observing the timing 
behavior can reveal the information about how other applications have used the cache. This 
timing behavior can be leveraged to form a covert information flow channel between the 
partitions. An information flow channel is called a timing covert channel when the basis of 
information transfer is not by direct copying of data but rather by modulating and observing 
the availability or behavior of a physical or logical resource. 

2.2 Temperature and Energy 

Due to rapid and increasing rise in power densities of modern processing platforms, power 
and thermal constraints are becoming increasing critical. Furthermore, for battery powered 
mobile computing platforms, energy consumption is also a critical consideration. These 
(relatively) new mediums have several safety and security implications. In the remaining 
section, we will explore these aspects: 

2.2.1 Denial of Service Attacks 

Modern processing platform employ Dynamic Thermal Management (DTM) to keep system 
temperature below a safe operating threshold. These DTM approaches reduce system 
temperature by throttling down frequency/voltage; in turn reducing the system power 
consumption and allowing the platform to cool. However, reducing frequency also causes 
system performance to degrade. This side-effect of DTM makes denial of service attacks 
possible [5]. 

One can imagine an application over exercising the platform and causing DTM to kick-in. In-
turn this application will cause other applications to get reduced service due to degraded 
system performance. This effect is even more adverse in a mixed-criticality scenario. An 
application of low criticality may raise processor temperature; causing other, potentially 
higher criticality applications, to get reduced service. 

In battery-powered mobile platforms, a denial of service attack based on energy can also be 
conceived [6]. An application may excessively drain the battery by spawning operations that 
have high power consumption and/or not allowing the platform to stay in sleep state. Such an 
over utilization of battery may cause other, potentially higher criticality applications, to get 
reduced/no service due to lack sufficient energy. 

2.2.2 Thermal/power covert channels: 

Thermal sensors are widely present in modern computing platforms to enable DTM. 
However, they represent a security breach in privilege-separated or sandboxed systems. 
Thermal sensors can be used to implement a covert channel that allows applications to leak 
data [3]. For instance, consider the dual-core system depicted in Figure 2. A source (src) app 
runs on core 0 and has access to sensitive data that is only stored locally, but it does not 
have network access. A sink (snk) app runs on core 1 and can freely communicate over the 
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network, but has no rights to access the sensitive data. In theory, privilege-separation should 
disallow communication between the two applications and keep the sensitive data secured. 
However, if the sink app can read the on-chip temperature sensors, communication is 
possible. Source application can modulate system temperature by its activity and transfer 
sensitive data through the thermal covert channel, regardless of privilege separation. This 
poses as a security risk. Covert channels can also be conceived in the power domain. 
Applications may communicate by altering the system power consumption and reading 
power sensors.   

 

Figure 2: Thermal covert channel example
1
. 

 

2.3 Security Architecture 

 

As depicted in the Figure 3, we defined 4 architectures suitable for mixed-criticality 
applications, all of them are using a separation kernel to compartmentalize critical (or 
sensitive) and non-critical (or non-sensitive) environment. 

At the lowest (but definitely acceptable for most applications) security level, applications and 
possibly user operating system are running on top of the separation kernel which assigns 
resources to partitions and implement communication between partitions. The security is 
stateful, meaning that all data and configurations are maintained in the device. Confidentiality 
and integrity of this information shall be ensured by an appropriate local protection 
implementing a set of countermeasures, in particular in case of physical access by an 
attacker. In this level, all code and data are processed by the main microprocessor and the 
root key is stored in clear (potentially hidden or obfuscated) in the memory. No secure 
element is used. 

To improve the security level of mobile devices running mixed critical applications, there is 
two, non-exclusive, solutions. The first one consists in using a secure element to protect data 
or even to execute part of the critical environment. The second uses virtualization and 
centralization of the critical environment in a data center, we call it stateless security since 
data and configurations are not maintained in the device. 

When combining stateless security, secure element, and possibly other security functions, 
we obtain a high-grade security device. This security level, along with its constraints, is 
devoted to governmental application, for example to deal confidential EU information. 
Therefore it is not in the scope of the SAFURE project. 

 

                                                
1
 The source app (src) has access to restricted data but no network access; the sink app (snk) has no 

access to the restricted data but has network access. A compromised source app can leak sensitive 
data to the sink app through the thermal covert channel 
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Figure 3: Security Architecture using a Separation kernel 

 

2.3.1 Stateless Security 

Instead of running critical applications in a dedicated environment of the device, it might be 
advantageous to move the entire environment to a data center. Then, the user device will 
simply access services securely in the data center, just from a virtualization client or even 
just a browser. As discussed in [10], by having corporate applications and data moved to the 
data center, the separation of business and personal services is achieve 

While this solution is suitable for Professional vs. Personal application (Use case 2), it is not 
for appropriate for a device controlling an IMD for obvious availability reasons. 

o A client is installed on a dedicated partition and all data are stored and 
processed in a server architecture that requires a connection from the access 
terminal to the infrastructure (data center). 

 Hosted shared Desktop 

 Hosted virtual desktop 

 Central hosted desktop 

 Local Virtual Desktop 
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Chapter 3 Functional Building Blocks 

This section describes the main functional building blocks that have been identified in 
contributing to fulfillment of mixed criticality requirements 

Note: If relevant, this list will be updated during the SAFURE project.  

3.1 Hardware Security Modules (HSMs) 

Note: although, the following building blocks (or BB in this document) are defined as 
hardware security modules BB in this chapter, one has to keep in mind that the following 
HSM can also be emulated or implemented partially or completely in software. For example, 
software only versions of the TPM BB which is described in the next chapter can be 
implemented and bound to a similar hardware service. 

HSM usage is prevalent in all security fields as a way to usually offer at least one of the 
following kinds of services: 

 Cryptographic operations offering integrity (which encompass both fidelity and 
authenticity properties) and confidentiality (secret-key and public-key ciphering) 

 Secure storage of highly critical information through cryptographic safe services 

Since the scope of this study is closely related to the embedded systems, we do not 
encompass large HSMs such as those designed by Thales for banks, EMC/Visa Cards 
services, or large web services providers. Their use can be made mandatory in order to 
design the infrastructure and notably the internet infrastructure dedicated to the devices 
developed in the context of the SAFURE framework. Nevertheless, this kind of HSM does 
not represent a new kind of technical or scientific challenge and are not studied here. 

 

3.1.1 Trusted Platform Module (TPM) 

The TPM is a small versatile solution whom specifications are standardized by the TCG 
(Trusted Computing Group) which defines both the hardware interfaces and mechanisms of 
the chip itself and the associated software stack (the Trusted Secure Stack TSS) and the 
business oriented solutions defined in the corresponding workgroups hosted by the TCG 
such as TNC (Trusted Network Connect) for network related uses. 

Note: Thales, member of the SAFURE project, is also a member of the TCG and follows 
some of the different workgroups. 

Although the TPM was initially designed at the beginning of this century with DRM issues in 
mind, its goals are now quite different and are aiming at platform integrity (which is by the 
way necessary in order to offer resilient DRMs). This unfortunately seriously slowed the 
adoption of the TSS and therefore made the presence of the TPM almost useless. Today, 
thanks to the cloud computing and to privacy concerns amongst PC users, the TPM 
adoptions gains traction. 

In order to offer a pervasive solution worldwide, the TPM only offers essentially 
integrity services as follows: 

 Platform integrity is implemented through the use of hashing functions over integrity 
seeds using a Merkle tree as data structure 
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 Cryptographic secrets storage is bound to the integrity references and only reveal 
cryptographic secrets if platform integrity is verified. 

It is important to see that the TPM does not perform confidentiality operations such as 
ciphering due to two issues: 

 the TPM is usually located on a low bandwidth bus which prevents it  from performing 
efficient data ciphering 

 Such behavior would have prevented US companies from exporting their products 
worldwide 

TPM are supported by Windows (it is a key aspect of Microsoft’s BitLocker software 
ciphering solution), by Linux (the TrouSerS library) and by PikeOS. 

 

3.1.2 Secure Element 

Secure elements (SEs) are usually found in mobility solutions performing full computations 
and key storage and hosting security-related applications. They are very similar to credit 
cards and usually belong to one of the following sets: Universal Integrated Circuit Card 
(UICC): typically the SIM card used in GSM (also called USIM for UMTS) mobile devices.  

 embedded SE: they are usually soldered on the board and are either controlled by 
the manufacturer, the distributor or the end-user organisation. 

 microSD: security devices integrated inserted into smartphones and only relevant to 
organisation owning the device. 

Each set is designed for specific use. UICCs usually are the trusted link between the mobile 
device and the telephony operator provider. In case of litigation, between a mobile user they 
host the relevant technical proof. Embedded SEs are used on embedded dedicated devices. 
Either the embedded SE is designed to be totally managed by the organization which owns 
or manage the assets on the device, either the embedded SE acts as a trusted party in a 
multi-owners assets management. Embedded SE can be solutions can be the result of 
specialized IP present on the main SOC of the device and applications separated by the 
trusted zone offered by ARM processors. TPMs can be seen as a subset of SE Elements. 
MicroSDs are usually exclusively managed by the end-user organization which allows a 
separated and thus, easier control of the security of the device. They can be used in order to 
store large amounts of data, performs cryptographic operations such as VPM access, etc. 
Their additional cost is usually considered as a good trade-off between versatility and 
efficiency. 

Although the difference between these three sets can be somehow artificial in terms of 
technologies, only UICC and microSD are removable and offer both versatility and 
adaptability through the use of hosted applications and multi-assets seclusion. 

 

3.1.3 Secure Hardware Extension (SHE) 

The Secure Hardware Extension (SHE) is a specification for an on-chip extension to any 
given microcontroller. It is intended to move the control over cryptographic keys from the 
software domain into the hardware domain and therefore protect those keys from software 
attacks. However, it is not meant to replace highly secure solutions like TPM chips or smart 
cards, i.e. no tamper resistance is required by the specification. 
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The main goals for the design at hand are: 

 Protect cryptographic keys from software attacks. 

 Provide an authentic software environment. 

 Let the security only depend on the strength of the underlying algorithm and the 
confidentiality of the keys. 

 Allow for distributed key ownerships. 

 Keep the flexibility high and the costs low. 

 

Basically SHE consists of three building blocks, a storage area to keep the cryptographic 
keys and additional corresponding information, a implementation of a block cipher (AES) and 
a control logic connecting the parts to the CPU of the microcontroller, see Figure 1 for a 
simplified block diagram. 

SHE can be implemented in several ways, e.g. a finite state machine or a small, dedicated 
CPU core. 

 

Figure 4: Simplified logical structure of SHE 

HSM and CSE are an implementation of SHE device, and they are present in both the 
candidate microcontroller families selected for SAFURE Automotive Scenario. 

 

Automotive SHE Implementation: HSM  

The Hardware Security Module (HSM) is an optional peripheral module used in some 
powertrain microcontrollers, and its main applications are: 

 Secure boot 

 Tuning protection (e.g. integrity of calibration data) 

 Secure sensor communication (authentication and integrity of sensor data) 

 Authentication 

 Secure flash load 

 Immobilizer (theft protection) 

 Secure log and 

 Secure debug authentication 
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The HSM contains all necessary elements to allow software to implement the Secure 
Hardware Extension (SHE) version 1.1. 
 

Automotive SHE Implementation: CSE  

 
The Cryptographic Services Engine (CSE) is a peripheral module that implements the 
security functions described in the Secure Hardware Extension (SHE) Functional 
Specification Version 1.1.  
 
The CSE design includes a host interface with a set of memory mapped registers that are 
used by the CPU to issue commands and a system bus interface that allows the CSE to 
directly access system memory.  
 
Two dedicated blocks of system Flash memory are used by the CSE for secure key storage. 
 
The CSE has the following features: 

 Secure storage for cryptographic keys 

 AES-128 encryption and decryption 

 AES-128 CMAC authentication 

 True random number generation 

 Secure boot mode 

 System bus master interface 
 
Unlike HSM, CSE doesn’t have a programmable microcontroller.  

 

3.2 Separation Kernel 

The Separation Kernel is a component that enforces the separation between partitions and 
information flow between partitions based on the security policy. The allocation and 
management of system resources are also implemented by the Separation Kernel. It is also 
one of the components of the MILS Trusted OS2. 

3.2.1 Functionality 

The Separation Kernel guarantees separation and controlled information flow by enforcing 
the following security policies: 

 Resource allocation policy: This policy defines how the system resources such as 
CPU time and main memory are allocated to the partitions. If some resources are 
shared between partitions, this policy defines how the resource sharing shall be done 
such that the separation between partitions is enforced. For example the Separation 
Kernel enforces spatial separation by allocating disjoint memory areas to the 
partitions and by controlling the memory accesses from the partitions. Similarly 
temporal separation between partitions is enforced by executing partitions in 
separate, non-overlapping time windows. 

 Access control policy: An access control policy specifies the access rights of objects 
under the control of the Separation Kernel. The implicit information flow between 
partitions is defined by this policy. For example an access control policy might assign 

                                                
2
 The MILS architecture template defined in Section 3.1 of MILS Architecture (EURO-MILS Report) is 

adopted to create the concrete MILS architecture of Trusted OS. 
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communication object C as writable to partition A and readable to partition B, thereby 
creating an implicit information flow from A to B. 

 Information flow policy: The information flow policy defines how the partitions shall 
exchange information. This includes rules based on the sender/receiver of a message 
and the message content. The Separation Kernel enforces the information flow policy 
explicitly using the communication rights of partitions and implicitly by the access rights 
of objects. 

 

3.2.2 Modules/Subcomponents  

In a typical microkernel based separation kernel, the security functionality is split between a 
kernel and a user space component. The kernel component provides the mechanisms and 
the user space component implements the security policy making use of those mechanisms. 

 Microkernel: The microkernel abstracts the CPU time, addresses space, exceptions 
and external interrupts. It provides the low level communication primitives (IPC) for 
the partitions to communicate with each other. The microkernel also provides the 
synchronization primitives. 

 User space System Software: The user space system software makes use of the 
services/mechanisms provided by the microkernel to implement the security policy. It 
retrieves the security policy from the configuration provided by the system integrator 
and establishes the system configuration. This module is responsible for loading, 
starting, stopping and resource allocation of user partitions. It also provides 
sophisticated communication channels with controlled information flow built using the 
low level IPC and mapping primitives provided by the microkernel. 

 

3.2.3 Provided Interfaces 

 Synchronization API: For the user space synchronization, Trusted OS provides 
services like one time initializers, mutexes, condition variables, reader-writer locks, 
thread synchronization barriers, semaphores and spinlocks. 

 Communication API: Trusted OS provides communication mechanisms to allow 
threads to exchange data. It also implements communication rights for the partitions 
to control the information flow between threads belonging to different partitions. 

 User space interrupt handling API: Using this service, the handling of interrupts can 
be entirely managed from user space. A task’s ability to handle an interrupt is also 
controlled by Trusted OS. 

 Task and Thread APIs: Trusted OS provides abstraction of address spaces in the 
form of tasks and provides a set of schedulable entities bounded to a task called 
threads. The task APIs allow operations such as task creation, starting and 
terminating the task, retrieving and changing the attributes of a task. Thread APIs 
allow thread operations like creation and deletion of threads, retrieving and changing 
the state, CPU affinity and priority of threads. 

 Exception Handling API: The Exception handling APIs allows certain exceptions like 
illegal memory access or floating point exceptions to be handled in user space. 

 Memory Management API: The trusted OS provides services to modify the virtual 
address mapping of tasks. 
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3.2.4 Dependency 

For implementing the separation between partitions, the Separation Kernel depends on the 
Separation Supporting Hardware which is a MILS core component. The following hardware 
components are used by the Separation Kernel: 

 CPU with different privilege levels 

 MMU 

 IOMMU 

 Hardware Timer 

 Boot loader and initialization routine 

The Separation Supporting Hardware shall control the interactions between the hardware 
components. For example the memory access from CPU is guarded by MMU and similarly 
the memory access from a DMA capable device is guarded by IOMMU. For implementing 
temporal separation between partitions that share the same hardware resource such as the 
CPU, the Separation Kernel depends on hardware timer. The bootloader is responsible for 
loading the Separation Kernel and initializing the hardware to create an environment where 
the Separation Kernel can start execution. 

In a typical operating system, to make the Separation Kernel architecture independent, the 
core hardware components are abstracted using a software layer called the Board Support 
Package (BSP) or Platform Support Package (PSP). The Separation Kernel accesses the 
hardware by making use of the interfaces provided by the BSP. 

The Separation Kernel also depends on the interface provided by the Audit Module for 
logging security events such as violation of communication rights or memory access 
permissions by the user partitions. 

 

3.3 Secure Software Update 

In this section, we will explain a process for secure software updates. Software updates are 
necessary to fix security and safety risks or flaws in the functionality of a device3 after 
delivery. Adversaries might be motivated to manipulate a software update or issue their own 
update of the software. Therefore, a secure process to update devices in field needs to be 
defined. Although an over-the-air (OTA) scenario is presented, distribution via different 
communication paths, e.g. via a diagnostic interface, are possible. The essential steps to 
secure the integrity and authenticity of the software update remain the same. 

The main idea is that the update is wrapped in an update container (cf. Figure 2) that 
contains the software update itself, a signature, and required parameters, e.g. applied 
algorithm, key length, ID of the signing key, etc. With all this information and a public 
verification key the vehicle can validate the correctness of the signature and therefore verify 
the authenticity of the software update. It is important that the public verification key is 
associated with the private signing key and that the public key is known by the device and 
stored in tamper resistance storage. The signature also ensures that no manipulated 
software can be installed on the device. That means even if the attacker obtains a software 
update container he cannot manipulate the software in a way that the device accepts the 
update. 

                                                
3
  In the SAFURE context, a device can either be the ECU of a vehicle, a tablet or a smartphone 

as described in the use cases and scenarios in deliverable D1.1. 
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If, for example due to timing or hardware constraints, symmetric cryptography is preferred, a 
similar approach is possible. A MAC is calculated over the software update and the update 
itself, the MAC and necessary parameters are wrapped in an update container. The 
symmetric key which has been used to generate the MAC needs to be stored on the device 
in a secure way, i.e. in a way that ensures integrity, authenticity and confidentiality of the key 
material. Prior to installation, the device calculates the MAC of the received update and 
compares it to the MAC that has been sent in the update container. 

For secure update processes based on asymmetric cryptography, RSA signatures or ECDSA 
are recommended. In a key size and parameters report published by ENISA in 2014 [1], 
recommendations for near term use (expected to be secure for at least the next ten years) 
and long term use (expected to be secure for thirty to fifty years) are given. For RSA 
signatures, key length of at least 3072 bit or 15360 bit for long term use shall be chosen. 
ECDSA can achieve a comparable level of security with shorter keys, i.e. 256 bits for near 
term use and 512 bit elliptic curves for long term use. For the symmetric approach, CMAC or 
HMAC based on AES-256 shall be chosen. For all algorithms, it is important to monitor 
recent publications of well-known standardization organization, e.g. NIST, ENISA [1], 
ECRYPT [2] or BSI, and keep the long-term security of a device during its expected lifetime 
in mind when choosing key length. 

 

Figure 5: Structure of the Update Container 

An exemplary update process is depicted in Figure 6. In the first step, the software developer 
generates the software update and an authorized employee sends a signature request to 
backend. In order to do this, the employee has to authenticate himself against the backend 
and the backend verifies the authorization of the request. Afterwards the hash value of the 
software update is transferred to the backend and a digital signature over the hash value is 
calculated at the backend using the private signature key. The signature is then sent back to 
the software development PC. In the next step, the software developer generates the update 
container consisting of the update itself, the signature, and other relevant parameters. This 
container is then sent to the OTA distribution system. When a device now initiates one of its 
scheduled secure connects to check for updates, the new update container can be 
downloaded. After successful verification of the signature, the update will be installed on the 
device. 

 

Figure 6: Signature generation and distribution process 
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3.4 Secure Boot 

To detect manipulations of software on the device prior to execution, a secure boot 
mechanism is designed and implemented within the SAFURE framework.  
It is especially important to protect the software which is loaded directly after start-up, i.e. the 
bootloader and the operating system. Otherwise, the security of the runtime environment 
cannot be guaranteed and integrated security mechanisms cannot be trusted.  
 
The secure boot process implements a chain of trust. It needs to start with a trusted 
hardware component, such as a HSM4. The trusted hardware component is necessary to 
prevent manipulations of the security anchor of the chain of trust. If the integrity of this initial 
value cannot be guaranteed, the entire chain becomes unreliable.  The software components 
that are required during the subsequent step of the boot process can be authenticated before 
execution. In the first step the integrity of the bootloader is verified by comparing digital 
signatures, e.g. RSA signatures. The verification process uses a public key that is pre-stored 
in a part of the internal memory which is protected against modification, e.g. in One-Time-
Programmable (OTP) memory or in eFUSEs. If the verification of the signature fails, the 
event is logged and the boot process is aborted, cf. Figure 7. If this verification is successful, 
the operating system shall be verified using signatures. If one of these two steps is not 
successful, the boot process will be aborted. In the next step, the integrity and the 
authenticity of all critical data and executables on the microcontroller will be verified by the 
operating system. If in one of these critical files a manipulation is detected, an error 
messages is logged and the executables are shut down, otherwise the processor continuous 
with the boot process. 
 

 

Figure 7: Secure Boot Process 

The verification of the various data types requires different carefully designed concepts. 
During production, the hash of the bootloader is calculated by using a cryptographic secure 
hash function, e.g. SHA-256. Afterwards, the hash is signed, e.g. using RSA-4096, and a 
private signing key which is only used to sign the bootloader. The bootloader, signature of 
the hash value, and the associated public key will be stored inside the protected area of the 
processor memory. During the verification, the hash of the actual bootloader is calculated 
and the signature is verified using the public key. The result of the verification step is the 
hash value of the original bootloader. If the original and the calculated hash are identical, the 
bootloader has not been manipulated. 
Also, the operating system is signed by a trusted party during production. The public signing 
key shall be included inside the bootloader and the bootloader calls the verification function.  

                                                
4
  Please refer to Section 3.1 for an overview of currently available technologies. 
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To verify the integrity and authenticity of critical data and executables, i.e. software and 
libraries, it is important that file manipulations can be detected but also missing or additional 
files should be identified.  
 

3.5 Secure Communication 

Secure communication is the capability of having communication channels that cannot be 
intercepted by an entity external to the communication endpoints. Usually secure 
communications rely on cryptography to prevent interception. However for co-located, 
internal communications some lighter and more efficient means can also be envisioned. 

 

3.5.1  Internal communication 

Securing internal communication is needed when two or more security domains are used in 
the same equipment. Each domain has to be able to manage its own local communication 
channels in a way that ensures they are not redirected elsewhere and that no rogue 
application in another domain may have access to it. Moreover communication channels 
between security domains have to be handled as well. In the SAFURE framework we 
propose to handle security domains with Virtual Machines and to have the underlying 
Separation Kernel manage VM interconnection. Furthermore we propose to add explicit 
labelling to every inter-VM communication channel in order to be able to audit anytime that 
no communication channel is altered. These features can be added without impacting the 
Separation kernel so as to maintain its isolation properties. 

 

3.5.2 External Communication (e.g. IPSEC) 

Internet Protocol Security (IPSec) is an extension of the Internet Protocol (IP) aimed to set up 
a secure connection like host-to-host (transport mode), network-to-host (tunnel mode), or 
network-to-network (tunnel mode). IPSec uses several cryptography algorithms and provides 
data origin authentication, data integrity, data confidentiality, and replay protection. It 
modifies a real IP packet to hide or protect payload data as well as destination of the IP 
packet. It is a good candidate for integration as a service with the separation kernel. It allows 
to establish a safe and secure connection between virtual machines and external clients. 

This section explains the process of enhancing safety and security in a deterministic network, 
such as TTEthernet, when cryptographic algorithms are used. For safety-critical systems 
SAE AS6802 specifies a fault-tolerant Multi-Master synchronization strategy, in which each 
component is configured either as Synchronization Master (SM), Synchronization Client (SC) 
or as Compression Master (CM), as shown in Figure 8. 

Typically, the end systems would be configured as SM, while the central role of the CM 
suggests its realization in the switch in the computer network, though this is not mandatory. 

All other components in the network are configured as SCs and only react passively to the 
synchronization strategy. The synchronization information is exchanged in Protocol Control 
Frames (PCFs).  
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Figure 8: TTEthernet Network 

In general, entities use a network to exchange the current values of their local clocks. In 
order to allow synchronization at all, the network must provide a time-preserving 
transmission service with known timing error. For example if the local clock values are 
exchanged by using a message-based transmission service, the transmission latency and 
transmission jitter need to be predictable and therefore deterministic. The quality of the 
transmission latency and jitter of the service typically also directly influence the quality of the 
synchronization, i.e., the smaller the latency and jitter the better the local clocks can be 
synchronized to each other. 

TTEthernet can converge real-time controls traffic with regular best effort traffic on one 
Ethernet network. So far, the safety aspects have been covered by a time-scheduled traffic 
that is untangled from any other network traffic and is thus immune to disturbance. This 
means that in a Deterministic Ethernet network, latency of critical scheduled communication 
is guaranteed. 

An existing approach for covering network security aspects has been the development of 
cryptographic algorithms. Different encryption algorithms are available for end-to-end 
security across TTEthernet networks, for instance, the Metadat Scrambler (MDS). 

The Metadat Scrambler alters a binary string with finite length according to rules set by the 
user. It outputs a unique binary string in-situ, which is usually longer than the original 
sequence, and codes individually the Internet packers on the OSI Layer 2. This 
transformation is not invertible and guarantees that the decryption happens only at the End 
System/ Switches that has the key. MDS is a Hardware device and it works in a transparent 
fashion within an Ethernet/TTEthernet network. Below, Figure 9 shows a TTEthernet 
combining encrypted and unencrypted data transmission. 
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Figure 9: TTEthernet Network using METADAT Stream Cypher (MDSC). 

 

3.6 Secure GUI 

Secure GUI (telecom use-case) with following uses-cases: 

 Multiple GUI  seclusion 

 Security dedicated GUI  

Complex Graphical User Interface (GUI) often designed to ease communication among 
application without security protocol are becoming more and more subject to security threat. 
This is clearly manifest for mixed-criticality application when a single Man-Machine Interface 
(MMI) is used by two environment of heterogeneous criticality. Most notably a malicious 
application executed in one environment could be spying on other critical applications 
through unsecure GUI implementation that would unwittingly disclose information due to 
side-channel leak. For example password or other secret information during user 
authentication phase. 

In particular, architecture where applications directly access hardware such as a display 
controller or keyboard controller shall be avoided. Instead, a compartmentalized GUI server 
providing a secure communication channel between the user and critical application can be 
placed between hardware controllers and applications or virtualized environments. However, 
the challenge is to be able to preserve performances and ergonomics while ensuring 
isolation between applications 

 



D1.3 SAFURE Framework Specifications  

SAFURE D1.3 Page 25 

Chapter 4 Modelling Approaches 

This section is dedicated to modelling approaches for safety, security and time and their 
combination in the context of mixed criticality systems. The identification of the modeling 
approach requires the definition of three different levels of requirements. 

4.1 Conceptual modeling  

The first level pertains to the identification of the conceptual needs, that is the concepts and 
elements that need to be expressed by the model. The modeling features should in general 
allow the definition of constraints and metrics that apply to the functional model of the system 
and refer to safety, security and time. 

However, the modeling concepts for constraints and metrics need to be complemented with 
the modeling features that allow to describe the structure of the application functions for what 
pertains to the safety and security features. 

The definition of the modeling for the system functionality is not enough. Modeling 
recommendations should be complemented with two additional layers. 

One layer pertains to the definition of the execution platform, including the hardware 
components that may support or enable the management of safety and security features. 
Hardware implemented modules, such as HSM and CSM for security in automotive systems, 
but also basic fundamental components like watchdogs belong to this category. 

Also, the platform modeling features should be able to identify all the issues that impact the 
time, safety and security properties, such as the placement and access of hardware (shared) 
resources, computation nodes and communication devices, as well as the need for 
expressing (replica) placements. 

Finally, a fundamental part of the platform and functional modeling features is tha availability 
of predefined architecture patterns that can be reused (after adaptation) in system design 
while carrying some of their properties. 

Examples of architecture-level patterns can be found within the platform, at the physical 
level, such as the HSM and CSM, but also at the software level, with the hypervisors, and at 
the functional level with primary-backup and multiple copies plus voter configurations. 

The conceptual model is a needed starting point. It results in metamodeling definitions, 
similar to what has been done in several other EU projects, including SAFE and EVITA. For 
its construction, in WP2, we make use of the metamodeling features of the Eclipse 
environment (Ecore). 

4.2 Modeling Languages and Standards 

The conceptual definition, however, is often not readily usable, because of the limited 
support and availability of tools for a set of custom definitions in Ecore. Also, a requirement 
for the modeling approach is that it is compliant with the main industrial modeling languages 
and standards. 
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Among the languages and standards to be considered in SAFURE, of particular importance 
are: 

 Eclipse and Ecore 

 UML and SysML 

 AUTOSAR and EAST-AADL 

 ISO26262 (standard only) 

The conceptual modeling features identified in the previous step need to be recast or 
expressed in a way that is compliant, to the largest possible extent, with the languages and 
the standard recommendations of the previous set. 

This is not always possible, and the size and time availability of the SAFURE project 
prevents an exhaustive analysis. 

This is why the mapping of the conceptual model onto an actual modeling language is 
restricted to UML and AUTOSAR. 

In addition, UML is easily extensible, at least for its structural part, by means of profiles and 
stereotypes. The semantics will be necessarily specified informally or as part of the textual 
description. 

AUTOSAR is in general not open for extensions, and any formal addition or modification 
should go through the standardization groups, which makes it impractical for the timeframe of 
the project. 

However, in SAFURE, we make use of an AUTOSAR modeling tool that inherits from UML 
and SysML and therefore allows all the extension mechanisms of UML. 

 

4.3 State of the Art 

The state of the art for the modeling of features related to time, safety and security is 
potentially huge, since it includes not only work on the modeling itself, but also on the 
analysis methodologies and the definition of features and constraints. 

As part of the state of the art, we need to consider the academic and professional literature 
on the subject, drawing from multiple domains and conferences. 

Examples of contribution coming from conferences and journals are: for modeling, the 
MODELS conference and the transactions on SW Engineering, for timing, the Real-Time 
System Symposium and the Real-Time and Embedded Application Symposium conferences, 
the ACM transactions on Embedded Systems Journal and the Real-Time Systems Journal, 
for Safety, the International Conference on Computer Safety, Reliability and 
Security(SAFECOMP), the European Dependable Computing Conference (EDCC), the IEEE 
High Assurance Systems Engineering Symposium (HASE), and the IEEE Transactions on 
Dependable and Secure Computing and the International Journal of Critical Computer-based 
Systems. Finally, for Security,  

Next, we need to consider the contribution of international standards. Among those, the 
AUTOSAR automotive standard is considered with its standard modeling features, but 
especially for the extensions that apply to time modeling (AUTOSAR Timing Extensions and 
AUTOSAR_TR_TimingAnalysis), to security (AUTOSAR SWS 
SecureOnboardCommunication) and safety (AUTOSAR_TPS_SafetyExtensions). 

Finally, the last contribution to the state of the art comes from other European, international 
and national project - among those, the EVITA and SAFE projects. 
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4.4 Toolset 

We have identified three toolsets to capture the modeling aspects related to time, safety and 
security and express them in the context of mixed criticality behavior on system and 
components level. They are: 

- IBM Rhapsody, for the AUTOSAR, UML, and SysML modeling of the automotive 
applications in SAFURE. 

- Arcadia, for the modeling of Communications systems 

- Enterprise Architect for the UML modeling 

 

4.4.1 IBM Rhapsody 

IBM Rational Rhapsody is a modeling tool supporting several modeling languages such as 
UML, SysML and enabling C, C++, Java, Ada and C# code generation. 
Rhapsody supports the AUTOSAR modeling as a specialization of UML [3], meaning that 
every AUTOSAR modeling element has been defined as a UML stereotype. Profiles, 
stereotypes and tags are extensibility mechanisms that extend the UML metamodeling 
elements with specific properties and they are often used to describe objects in particular 
domains [4].  
Example automotive systems modeled in AUTOSAR are also available from the partners in 
Rhapsody. These will be used as proof-of-concept for the use of the recommended 
additional modeling features developed in WP2. 
The possibility to define new user defined stereotypes is available in Rhapsody and will be 
leveraged in SAFURE to provide stereotypes and architecture templates/patterns. These will 
formally extend the set of UML modeling elements, but since AUTOSAR meta-classes are 
defined on UML, they will also be used to verify the inclusion of the recommended modeling 
features in AUTOSAR designs.  
 
The AUTOSAR models developed in Rhapsody will be available in a number of formats. 
Besides the typical ARXML output, the models are available in the OMG standard XMI 
format (the modeling extensions will be made available as XMI exports). 

 

4.4.2 Arcadia (e.g. Capella) 

ARCADIA is a system & software architecture engineering method, based on model-driven 
engineering activities. It targets systems whose architecture is largely constrained by issues 
such as performance, safety and security [10]. 

In particular this method adopts a multi-viewpoint approach. A viewpoint defined how to 
represent the whole system from a perspective of related set of concerns. The major 
engineering concerns of projects targeted by the SAFURE framework are Security and 
Safety in a context of mixed-criticality applications. 
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Figure 10: Using view point with Capella 

 

The Capella workbench is Eclipse application providing a domain-specific language 
implementing Arcadia, both as a simplification and a semantic enrichment of the UML and 
SysML [11]. 

During the design phase of the telecom use case prototype, this tool can be used to model 
safety and security constraints using viewpoints.   

Modeling tools, technique and even pattern are part of the SAFURE Framework. For 
example, a generic model for multi-level endpoint in a multi-level system (personal vs. 
medical container/environment in the devices and personal vs. medial server/services in the 
Internet/cloud)… 

Nevertheless, there is one main difference between the mobile platforms identified in this 
project and other equipment present in the consolidated IT systems (pharmacy IT system, 
medical device, hospital, private network, etc.). The mobile platform is the only one which is 
not dedicated to one IT system and must address the whole set of IT system in a secure yet 
interoperable way. Therefore the platform must exhibit the usual properties of multi-level 
systems. This is clearly a challenge since the platform hardware and legacy software are not 
designed to allow such use. 

 

4.4.3 Enterprise Architect 

Enterprise Architect is a visual modelling and design tool based on UML. It supports all types 
of UML diagrams and can thus be used to model a complete hardware/software system, 
including all sub-components, interfaces, activities, and sequences. 

Enterprise Architect does not provide modules supporting the modelling approach chosen in 
SAFURE; however it provides all means to implement those.  
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Chapter 5 Analysis Methods and Tools 

In this section we describe the analysis methods and tools used as an integral part of the 
SAFURE framework. 

 

5.1 Time 

Time is an important factor, both for safety and security analysis. In safety-critical 
applications, timely responses of the system are often a non-functional requirement and part 
of the safety of the system. Regarding security, timing of a system can be affected by e.g. 
denial-of-service attacks (e.g. flooding) and also used as a side-channel for other attacks. 

In this section, model-based timing analysis is described, as offered by the tool SymTA/S. 
With this approach, timing of a system can be understood, verified and optimized. The term 
“system” includes both single- and multi-core processor systems or ECUs, and also networks 
(e.g. CAN, FlexRay, Ethernet) and whole distributed systems (including ECUs and 
networks). 

Analogously, the approach to timing analysis for on-chip shared resources in multicores 
(e.g., on-chip interconnects, shared caches and shared memory controllers) is also 
described in this section. 

 

5.1.1 Timing Model for Model-Based Timing Analysis 

The analysis works on an abstract timing model. The model consists mainly of the following 
entities (using the terminology of the SymTA/S tool, which is mostly aligned with automotive 
terms): 

 Hardware Structure 
o ECUs, Buses, Switch Ports 
o Processing Units (Cores and Memories) 
o Topology 

 Software Structure 
o Software Components 
o Tasks 
o Functions (Runnables) 
o Shared Variables 

 Communication Structure 
o PDUs 
o Frames 

Each component of the system model has key temporal properties/configuration (e.g. 
execution time of tasks and runnables, length of frames, activation patterns of tasks and 
frames, scheduling or arbitration policy of cores and buses, etc.). This information can be 
obtained from configuration (e.g. task or frame periods), measurement (e.g. by tracing the 
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actual implementation), by analysis (e.g. WCET5 analysis of tasks) or by estimations 
(especially in early phases of development). 

Specifically, timing model specifies the topology and architecture of the system, e.g. the 
available cores, tasks, runnables and their respective mapping (runnable-to-task and task-to-
core) and configuration (e.g. task priorities, runnable repetition factors); for networks the 
available busses, switches, links and frames (with their respective mapping). In terms of 
timing, cores (or busses) provide services (i.e. processing/communication time) that are 
consumed by tasks executing on the cores (or frames transmitted over the buses).  

Activation models describe, how often these are ready for execution/transmission, e.g. 
periodically every 10ms. This information can be derived from configuration (for periodic 
tasks), from a behavioural description (for external interrupts) or by the analysis of 
“triggering” tasks (for task chaining, modelled using triggers).  

Furthermore, tasks and runnables specify how much time they require for each execution 
(min. and max. execution time). Also, for each task and/or runnable, access to shared 
variables are specified, i.e. which variables are accessed, how often they are accessed, and 
how (e.g. read/write, but also directly or via the RTE). Likewise, minimum/maximum size of 
frames and signals is specified. 

Note that the input model can be manually created, imported from other models (e.g. 
AUTOSAR), or generated from a scheduling trace of the system (containing task activations, 
terminations etc.). 

 

5.1.2 Model-Based Timing Analysis 

The timing analysis works on the described model to derive the timing of the system 
considering the specific protocols that resolve concurrent resource access. For an ECU 
system, this is the scheduling policy of the operating system. 

In SymTA/S, the scheduling analysis can be performed in two ways: system distribution 
analysis and formal worst-case analysis. 

 The system distribution analysis basically performs a Monte-Carlo timing 
simulation: The system (e.g. the OS scheduler) is simulated, and during the 
simulation, system properties that are not specified to exact values are randomized, 
such as the execution time of tasks or size of frames (between min. and max. 
specified in the model), or the “offset” or phase between unsynchronized events 
(such as periodic timer tick and external interrupt). This is done many times with 
different random seeds, resulting in a distribution of the system behaviour. Results of 
the system distribution analysis include average core/bus loads, histograms of task 
activation distances, task response times and frame latencies. 

 The worst-case analysis uses a mathematical theory [14] (compositional 
performance analysis) to compute lower and upper bounds on the system’s timing 
behaviour, esp. task/frame response times. For this, worst-case (or “critical instant”) 
scenarios are derived for individual tasks/frames by deriving a worst-case occurrence 
and alignment of events that maximizes the interference on a task/frame (e.g. 
blocking and/or pre-emption of higher-priority tasks/frames). This is done locally for 
each task/frame. From this analysis, event models of dependent tasks/frames (e.g. 
due to event triggering) can be derived iteratively to compute the response time 
bounds for the complete system. For each scheduling technology (e.g. static priority 
task scheduling, CAN scheduling, Ethernet AVB scheduling), a mathematical 
formulation of the scheduler is required for the worst-case analysis. 

                                                
5
 WCET = Worst-Case Execution Time 
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To consider multi-core systems, the architectural effects of shared resources (e.g. main 
memory) must be considered during both analysis types. On the abstraction level used for 
SymTA/S, these effects are considered as access time overheads for accessing shared 
memories. During simulation, these additional delays can be considered directly, but the 
worst-case analysis requires more effort. Here, the max. number of accesses to shared 
resources require a dedicated analysis, which is interdependent with the response time 
analysis, because resource access depends on the actual scheduling of the tasks [15]. 

To consider new communication technologies, also both analysis types need to be extended. 
The system-distribution needs to be extended to cover the arbitration protocol of the new 
technology during the simulation. The worst-case analysis requires new formalism to find an 
upper bound on the timing [16]. A key focus of SAFURE will be to research and extend these 
algorithms and make them applicable to real-world scenarios. 

With the timing analysis component of the SAFURE framework, also timing effects on 
security can be researched, such as the potential of a denial-of-service attack on shared 
resources. 

5.1.3 Timing Analysis using Microbenchmarks 

The analysis of on-chip inter-task interferences in multicores will be performed by means of 
architectural-dependent microbenchmarks that will be developed and suited specifically for 
the hardware architecture under analysis. Those microbenchmarks will be either 
programmed in C and compiled in a controlled manner to ensure they behave as expected or 
programmed in assembly. 

The purpose of those microbenchmarks is triggering scenarios with high contention 
(including the worst contention) in on-chip shared resources such as shared interconnects 
and shared memory controllers. By running smartly those microbenchmarks on bare metal 
we will be able to quantify the impact in execution time of contention in shared hardware 
resources, as well as the impact that different applications can suffer when running in the 
particular multicore due to contention in shared resources due to inter-task interferences. 
Later, those microbenchmarks are intended to be ported on top of the real-time operating 
system (RTOS) and/or corresponding hypervisor so that they can be used by end users on 
top of the final platform once it is up and running. 

So far somehow similar microbenchmarks have been developed for other platforms [17]. 
However, benchmarks triggering the specific timing behaviour pursued on top of the specific 
multicore architecture targeted have not been developed yet. Thus, they need to be 
developed from scratch. 

 

5.2 Energy and Temperature 

Temperature is an important factor since it is an important design constraint in modern 
processing platforms. Energy is also of vital importance for battery powered processing 
platforms.  As indicated in Chapter 2, both of these mediums have critical safety and security 
implications. 

5.2.1 Temperature Model 

There are several ways of accurately modelling system temperature. Each of these 
approaches has separate set of tradeoffs. On one end of the spectrum we have so called 
lumped models which approximate the entire processor as a point source of heat. The high 
level of abstraction makes such models computationally fast on one hand, and erroneous on 
the other. The other end of the spectrum consists of fine-grained numerical simulators, such 
as Hotspot. These simulators require lot of details to be known about the processor (e.g., 
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exact floor-plan, power trace for each micro-architectural unit inside the processor, cooling 
model to name a few) and are considered to be accurate. However, numerical simulators are 
computationally intensive, and computing each new temperature data point requires solving 
large number of system equations. A third set includes calibration based thermal models 
which run a series of calibration experiments on a target platform of interest [8]. These 
models have been shown to be accurate and computationally non-intensive. However, a 
given model is specific to a target platform and a set of target applications. 

5.2.2 Temperature analysis 

In multi-core systems, executing a task on one core has effects on the temperature of the 
entire platform (including other cores). These inter-core thermal interactions, and high 
temperature conditions in general, pose safety and security concerns. To counter these risks, 
analysis methods will be developed that quantify the thermal interactions of running activities 
with different safety and security requirements on multi-core platforms. The methods will take 
into account information about the mapping of tasks to resources, the used scheduling 
policies on processing elements and shared resources, the thermal properties of the tasks, 
and the thermal properties of the platform. To aid the analysis methods, a thermal model for 
multi-core platforms will be developed. The analysis methods will help to better understand 
the effects of temperature and temperature controlling mechanisms (e.g. DVS) on the timing 
properties of tasks in safety and security-aware systems. 

 

5.3 Taint analysis 

Taint analysis is a technique to increase security and some aspects of safety of system 
designs. The technique is focused on how a system input (that is often called source and 
often comes from untrusted user) is propagated through system to a specific destination (that 
is often called sink).  

The main idea behind this analysis that input can be provided by an untrusted user and 
processing this input is a security and safety risk. In software the input is represented as 
input variables and how these input variables affect, i.e. taint internal variables, control flow, 
and system state. The typical example where this technique is used is to detect and prevent 
SQL injection when accessing databases.  

Taint analysis can be also applied to any software system, which interacts with a potentially 
malicious user. The canonical use-case is an operating system with a user being an 
application executed on top of the considered operating system.  

The taint analysis can be done manually or with a tool support. The manual analysis is too 
error prone and too expensive, thus, we do not consider it here. For efficient, trustworthy and 
repeatable results a tool support is required. While this topic is not new, there exist just few 
tools with strong limitations on the representation of analyzed object, i.e. description 
language. Another critical topic is user-guidance of the tool, i.e. how much annotation or tool 
specific information a user has to create.  

For the sake of simplicity, every time we say taint analysis, we mean a tool supported taint 
analysis. The object representation for analysis can be split into two categories: abstract 
model and programming code.  

The checking of taint analysis on abstract model has an advantage that the tool can be very 
efficient and needed tool guidance can be added directly to the modeling blocks as 
parameters. The disadvantage is that an abstract information flow is checked that can have 
some side effects and additional interferences when a real implementation (i.e. a refined 
model) is considered. This is a typical problem because security and safety properties do not 
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hold under generic refinement. Thus, while one wins effectiveness, one has losses in 
precision with respect to the real model. 

A taint analysis carried out directly on the source code has an obvious advantage of working 
directly on the implementation and the ability to consider CPU architecture and/or hardware 
specifics. The disadvantage is that the complexity of language semantics, e.g. C language, 
and hardware related code (e.g. assembly) make analysis very hard and sometimes hardly 
feasible. Thus, some sort of pre-processing and code annotations is needed. 

Taint analysis can cover the following security aspects: processing of untrusted user input, 
data and control split between for user data, dependencies of system state on user data, 
internal information flows due to the provided user data. 

Taint analysis can cover the following safety aspects: robustness of system calls, 
dependencies on input for computational paths and worst case time execution. 

The taint analysis can be used to create assurance arguments for requirements from ISO 
26262, DO-178C, and Common Criteria (ADV_ARC). 

 

5.4 Security Analysis 

A security analysis is a structured approach to analyze the security of a system and derive 
security requirements that need to be implemented in order to prevent attacks. 

In the first step, the system model is described, including all entities, components, objects 
and interfaces. This can be done using UML component diagrams (e.g. with Enterprise 
Architect, cf. Section 4.4.3). 

Then, all relevant use cases are described. The description shall include actors, pre- and 
post-conditions, dependencies, default actions, and alternative actions (e.g. in case of an 
error). This can also be modeled using UML sequence diagrams. 

In the next step, the security objectives are derived. For every use case, a high-level 
description of the security assets (e.g., data, functions, and services), potential attackers and 
security threats is given. If available, Common Criteria Protection Profiles can be applied in 
this step. 

Then, the threat analysis is conducted, which includes the security environment (facts, 
measures, and assumptions), the attacker model, and an identification of feasible threats. 
The result is an attack tree for every security objective with every leaf corresponding to a 
threat. Figure 11 shows an example attack tree for an attack on the confidentiality of gateway 
software. It is the attacker’s aim to extract software from the gateway of a vehicle. This aim is 
presented in the root of the tree. On the next level of node, three potential ways to achieve 
this aim are shown: The adversary could extract the software via a physical or logical 
interface or obtain the source code from an insider. For the first two options, sub-steps are 
listed in the leaves of the attack tree. The OR node indicated that either of the child node can 
be executed to achieve the aim stated in the parent node. It is also possible to use AND 
node in an attack tree if several sub-steps are required to achieve the parent node. 



D1.3 SAFURE Framework Specifications  

SAFURE D1.3 Page 34 

 

Figure 11: Example Attack Tree 

 

In the next step, a risk analysis is executed in order to assess the risk for each threat. 
Therefore, the attack potential (AP) and the damage potential (DP) are evaluated. The attack 
potential is an estimation of resources required to successfully mount an attack in terms of 
elapsed time, specialist expertise, target knowledge, access perimeters, and technical 
equipment. A low attack potential means that the attack is easy to conduct and thus has a 
high probability to be chosen by an attacker. Therefore, the probability of an attack is 
reciprocal to the attack potential. Analogously, the damage potential is an estimation of the 
safety, financial and operational damage caused by the attack. The risk can then be 
calculated as follows: 

Risk = Probability of attack x Expected Damage 

The risk assessment matrix shown in Figure 12 helps to classify risks and to identify attacks 
with inacceptable or undesirable risks which need to be considered with a high priority in a 
security concept.  

 

Figure 12: Risk Assessment Matrix based on EN50126  

Finally, security requirements can be derived from the attack paths with the highest risk. For 
each of these, countermeasures are defined in order to prevent the attack. This includes 
functional security requirement, security properties, security policies, and organizational 
security requirements. The result is a set of technical and organizational security 
requirements that can prevent threats with high risks. 
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5.5 Safety analysis in automotive systems 

5.5.1 Overview 

In automotive systems, Safety Analysis is based on the ISO 26262 standard. The standard 
consists of 9 normative parts and a guideline for the ISO 26262 as the 10th part. Here some 
extracts from ISO 26262 are provided, that describe different Safety Analysis area covered 
by ISO-26262, for details please refer to the full ISO 26262 documentation. 

ISO 26262 is intended to be applied to safety-related systems that include one or more E/E 
systems and that are installed in series production passenger cars with a max gross weight 
up to 3,5 t. ISO 26262 does not address unique E/E systems in special purpose vehicles 
such as vehicles designed for drivers with disabilities. Systems developed prior to the 
publication date of ISO 26262 are exempted from the scope. 

ISO 26262 addresses possible hazards caused by malfunctioning behavior of E/E safety-
related systems including interaction of these systems. It does not address hazards as 
electric shock, fire, smoke, heat, radiation, toxicity, flammability, reactivity, corrosion, release 
of energy, and similar hazards unless directly caused by malfunctioning behavior of E/E 
safety-related systems. 

ISO 26262 does not address the nominal performance of E/E systems, even if dedicated 
functional performance standards exist for these systems (for example active and passive 
safety systems, brake systems, ACC). 

Shortly, ISO 26262: 

 Provides an automotive safety lifecycle (management, development, production, 
operation, service, decommissioning) and supports tailoring the necessary activities 
during these lifecycle phases; 

 Provides an automotive specific risk-based approach for determining risk classes 
(Automotive Safety Integrity Levels, ASILs); 

 Uses ASILs for specifying the item's necessary safety requirements for achieving an 
acceptable residual risk; and provides requirements for validation and confirmation 
measures to ensure a sufficient and acceptable level of safety being achieved. 

 

ISO 26262 gives requirements and guidelines for Safety Analysis at: 

- Product Development: System Level 

- Hardware Level  

- Software Level  

 

5.5.2 ASIL Levels 

ASIL is one of four levels used to specify the item's or element's necessary requirements of 
ISO 26262 and safety measures for avoiding an unreasonable residual risk with D 
representing the most stringent and A the least stringent level. 

 

5.5.3 Freedom from interference by software partitioning 

Iso-26262 provides design guidelines to accomplish at SW level “Freedom of Interference”, 
thus allowing to avoid that safety-relevant components and data could be corrupted by non-
ASIL components. 



D1.3 SAFURE Framework Specifications  

SAFURE D1.3 Page 36 

Automotive Scenario related to SAFURE Project will implement protection mechanisms 
aligned to these ISO guidelines. 

The following text is taken from ISO-26262 and is about Freedom of Interference, 
Appendix D of ISO-26262 norm:  

Objectives 

The objective is to prevent propagation of a failure in one software partition to another 
software partition. 

NOTE: Errors in the state of the executing software can occur due to systematic software faults or due to random 
as well as systematic hardware faults. Such errors in one partition could disturb the operation of other software 

partitions either due to shared resources or due to error propagation. 

General 

D.2.1 Software partitioning allows the co-existence of software partitions that use the same resources. 
It allows 

a) software components to be free from interference from other software components; and 
 NOTE: Different software partitions can be assigned different values of ASIL or a value of QM (see ISO  
        26262-9:—, Clause 5). 

b) changes to be made to one software partition without the need to re-verify the unmodified 
software partitions. 

 
Impact on system and software design 
Depending on the system architecture, two approaches can be used: 
c) several software partitions within a single microcontroller (see Figure D.1) with shared 

resources such as CPU time, memory, I/O-devices; and 

Hardware

Operating system

Partition B

Micro controller

Partition A

Task A.n

Task A.1

Task B.n

Task B.1

Task A.2 Task B.2

 

Figure 13: Several software partitions within a single microcontroller 

d) several software partitions within the scope of a micro controller network (see Figures D.2 
and D.3) with shared resources such as I/O-devices, especially internal and external 
data buses. 

Data bus

Micro controller 1 Micro controller 2

 

Figure 14: Several partitions within the scope of a micro controller network 
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NOTE: The micro controller network can consist of several processors in a single electronic control unit 
communicating via an internal data bus (intra processor communication). This is illustrated in figure D.3. 

Internal data bus

Electronic control unit

Micro Controller 1 Micro Controller 2

 

Figure 15: Several partitions within the scope of a multi-processor electronic control unit 

Software components are executed within their respective software partition on their 
respective microcontroller as illustrated in Figures D.2 and D.3. 

Impact on shared resources 

Software partitioning requires adequate support by system resources. 

In order to isolate multiple software partitions in a shared resource environment, the 
hardware has to provide the operating system with the ability to restrict access to shared 
resources for each software partition. 

 

CPU time 

To ensure freedom from interference of software partitions within a single microcontroller, the 
fault effects 

- blocking of partitions due to communication deadlocks; and 
- wrong allocation of processor execution time 

are to be prevented by: 

e) time triggered scheduling; 
NOTE 1: Software partitions are considered coequally in allocating processor execution time and the same 
priority is assigned to all of them. 

NOTE 2: Regarding the allocation of processor time, spare time is allocated in each processing cycle because of 
incoming interrupts. 

NOTE 3: Time triggered scheduling is considered to have effectiveness “high” against protection against the fault 
effect “wrong processor execution time”. 

f) cycling execution scheduling policy; 
NOTE 4: The time triggered scheduling method specifies a scheduling algorithm based on a predetermined fixed 

schedule, repetitive with a fixed periodicity. 
NOTE 5: Using the time triggered scheduling method the allocation of processor execution time takes place 

through a static allocation table. Thus, for each task, a fixed point in time is predetermined for activating the task. 
Usage of time triggered scheduling method precludes priority-based scheduling. 

g) fixed priority based scheduling; 

h) monitoring of processor execution time of software partitions in accordance with the 
allocation; 

NOTE 6: Monitoring of each partition by software checks if all partitions are executed in conformance with the 
predefined static allocation table. 
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i) program sequence monitoring; 
NOTE 7: Program sequence monitoring is based on a hardware device (see ISO 26262-5:—, Table D.10). 

j) arrival rate monitoring. 
NOTE 8: Monitoring of processor execution is an additive method of Program sequence monitoring. If both 

methods are combined the effectiveness is "high" protection against the fault effect “wrong processor execution 
time”. 

Memory 

To ensure freedom from interference of software partitions within a single microcontroller, the 
fault effect memory corruption due to unintended writing to memory of another partition 

is to be prevented by: 

k) memory protection mechanisms; 
NOTE 1: The memory protection mechanisms refer to processors with Memory Management Unit or Memory 
Protection Unit. 

NOTE 2: A Memory Management Unit enables the concept of virtual address space. This prevents a task of one 
partition corrupting the memory space of another task by unintended writing into that memory space, since every 

partition has its own address space. 
NOTE 3: Usage of a Memory Management Unit requires support of the operating system. 

NOTE 4: Provisions are made that the Memory Management Unit cannot be ignored, i.e. tasks are executed in a 
so-called user mode and the real addressing mode is not to be used. 

l) verification of safety-related data; 
NOTE 5: RAM locations containing safety-related data are verified by additional methods. This can be 

accomplished for example by using parity bits, Error Correcting/Correction Code (ECC), Cyclic Redundancy 
Checksum (CRC) or redundant storage. 

NOTE 6: The effectiveness of these methods depends very heavily on the verification quality. 
NOTE 7: Verification of safety-related data is done at run time. 

m) offline analysis of code and data of other partitions; 

n) restricted access to memory; 

o) static analysis; and 
NOTE 8: Static analysis methods defined in Table 10 can be used for reviewing pieces of code that access 
memory locations containing safety-related data. 

p) static allocation. 
NOTE 9: Static allocation means that resources are allocated statically during initialisation. 

I/O-devices (communication) 

To ensure freedom from interference of software partitions in communication 
microcontrollers, the fault effects  

- loss of peer to peer communication; 
- unintended message repetition due to the same message being unintentionally sent 

again; 
- message loss during transmission; 
- insertion of messages due to receiver unintentionally receiving an additional 

message, which is interpreted to have correct source and destination addresses; 
- re-sequencing due to the order of the data being changed during transmission, i.e. 

the data is not received in the same order as in which it was been sent; 
- message corruption due to one or more data bits in the message being changed 

during transmission; 
- message delay due to the message being received correctly, but not in time; 
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- blocking access to data bus due to a faulty node not adhering to the expected 
patterns of use and making excessive demands for service, thereby reducing its 
availability to other nodes, e.g. while wrongly waiting for non existing data; and 

- constant transmission of messages by a faulty node, thereby compromising the 
operation of the entire bus. 

are to be prevented by: 

q) identifier for communication objects; 

r) keep alive messages; 
NOTE 1: Keep alive messages is considered “high” effectiveness for detection of “Failure of communication peer”. 

s) alive counter; 
NOTE 2: Alive counter is considered “high” protection against “Unintended message repetition” and “medium” 

protection against “Message loss”, “Insertion of messages” and “Constant transmission of messages”. 

t) sequence number; 
NOTE 3: Sequence number is considered “high” protection against “Unintended message repetition”, “Message 
loss”, “Insertion of messages”, “Re-sequencing” and “Medium” protection against “Constant transmission of 

messages”. 

u) error detection codes; 
NOTE 4: Cyclic Redundancy Checks are used as error detection codes if the residual error rate of the CRC 

implemented in the bus system is considered not to be sufficient. In this case an additional CRC at the application 
level is recommended. 

NOTE 5: Alive Counter and CRC are transmitted (embedded in the frame for instance) and checked by the 
receiver. 

v) error correction code; 

w) message repetition; 
NOTE 6: Message repetition is considered “high” protection against “Message loss”, “Medium” protection against 
“Re-sequencing”, and “Message corruption”. 

x) loop back; 

y) acknowledge; 
NOTE 7: Acknowledge is considered “high” effectiveness protection against the fault effect “Wrong 
communication peer”. 

z) separated point-to-point unidirectional communication objects; 
NOTE 8: Exactly two uni-directional communication objects are used between two partitions respectively for data 

exchange. 
NOTE 9: Method j) is considered “Medium” effectiveness protection against the fault effect “Wrong 

communication peer”. 

aa) unambiguous bidirectional communication object; 
NOTE 10: Unambiguous bidirectional communication object uses unique numbers for identifying communication 

peers and/or acknowledges receipt of messages by the communication peer. 
NOTE 11: Method k) is considered “medium” effectiveness protection against the fault effect “Wrong 

communication peer”. 

bb) asynchronous data communication; and 
NOTE 12: In using asynchronous data communication there is no waiting state completed by the communication 
itself. 

NOTE 13: Method l) is considered “high” effectiveness protection against the fault effect “Blocking of partitions”. 

cc) synchronous data communication. 
NOTE 14: Access is synchronised between both software partitions using shared memory for communication. 
This can be done e.g. using semaphores. 
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NOTE 15: Communication objects in a) and j) between software partitions are e.g. pipes, message queues, 
shared memory. These communication objects cannot to be used for synchronizing partitions. 

NOTE 16: Blocking read or write access is to be avoided by design when using message queues. 

For bus allocation within a microcontroller network the following methods have to be 
considered: 

dd) time-triggered data bus; 
NOTE 1: Time-triggered data bus is considered “high” protection against “Failure of communication peer”, 
“Insertion of messages”, “Message delay”, and “Medium” protection against “Blocking access to data bus”. 

ee) event-triggered data bus; 

ff) event-triggered data bus with time-triggered access; 

gg) mini-slotting; 
NOTE 2: Mini slotting is considered “high” protection against “Constant transmission of messages” and “Medium” 
protection against “Message delay”. 

NOTE 3: Mini-slotting (see [ARINC 629]) requires each micro controller connected to the bus to wait a certain 
period before it is permitted to access the bus again. 

hh) bus arbitration by priority; 

ii) bus guardian. 
NOTE 4: Bus guardian is considered “high” protection against “Blocking access to data bus”, “Constant 
transmission of messages” and “Medium” protection against “Message corruption”. 
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Chapter 6 Assurance and Certification 

methods 

The SAFURE framework is set of recommendations and practices regarding safety and 
security matters to help system designer for the development of embedded system for mixed 
criticality application in the domain of automotive, avionic, telecommunication and so on.  

The SAFURE framework is composed of a set of security requirement described in the 
SAFURE Protection Profile (SFPP) as well as a consistent design practices for designing 
mixed criticality system such as modeling defined in the SAFURE Methodology. The SFPP is 
generic form of a Security Target providing an implementation independent specification of 
information assurance security requirements. 

 

6.1 CC aspects 

6.1.1 CC Methodology 

Common Criteria or CC normalized as ISO 15508, is a unified set of security criteria defining:  

1. a standardized set of assurance requirements to evaluate security also known as 

SAR (Security Assurance Requirements),  

2. a set of normalized security mechanisms also named known as SFR (security 

Functional Requirements) notably suitable to be normalized inputs of the former 

SARs. 

In order to perform an evaluation, Common Criteria do not recommend or specify a special 
development or design methodology, they only provide indirectly through the Common 
Evaluation Methodology a support for the evaluation and certification bodies involved in the 
security process. 

 

Figure 16 : Common Criteria Evaluation Methodology 
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All the artefacts described in this figure are usually extensively described in the Security 
Target (ST) or in the Protection Profiles (PP). 

In the SAFURE methodology, only assets, threats and owners artefacts will be considered 
while the adopted countermeasures will be essentially technical. Although CC takes into 
account both organisational and technical countermeasures, they are usually very specific to 
one product and are therefore not really relevant to the SAFURE project. Technical 
countermeasures are associated with SFRs and their composition is described in the STs or 
PPs. 

On the other side, SARs are much more precisely defined and are poised to raise the 
assurance in order to satisfy the edges properties defined in the previous figure. The SARs 
are defined as assurance families as follows: 

 Development (notably ADV_ARC) 

o Guidance documents 

o Life-cycle support 

 Security Target evaluation (through the following PP) 

o Tests 

 Vulnerability assessment (AVA_VAN considerations) 

Since the SAFURE project does not involve a CC certification, we will leverage on the bold 
elements of the former list and notably insist on elements related to security-efficiency. 

As much as possible, the SAFURE methodology shall prepare the evaluation of products 
hosting SAFURE’s resulting technologies. Thus the SAFURE methodology will enforce high 
granularity modelling suitable to the forecasted evaluation levels as defined below. 

In the same way since the SAFURE projects proposes to communalize some technologies 
across the different uses cases, the following families of SFRs will be considered : 

1. FIA: IDENTIFICATION AND AUTHENTICATION 

2. FDP: USER DATA PROTECTION 

3. FCO: COMMUNICATION 

4. FAU: SECURITY AUDIT 

5. FPR: PRIVACY 

6. FTP: TRUSTED PATH/CHANNELS 

7. FTA: TOE ACCESS 

 

6.1.2 CC assurance levels 

The CC provisions 7 progressive levels of assurance ranked from EAL-1 to EAL-7. The 
necessary assurance levels are determined from the level of threats and the importance of 
the corresponding assets. 

The CC methodology is directly bounded to the chosen CC assurance levels.  

Within the SAFURE projects, the associated uses cases (medical devices, automobile, etc.) 
associates roughly to an EAL level between 3 and 5. Some special cases could require an 
EAL-6 level but they shall not be managed inside an R&D project since methodologies for 
the upper levels are in fact dependant of the national certification bodies (e.g. ANSSI for 
France, BSI for Germany). As a reminder the following levels are defined in the CC as follow: 
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EAL Objectives 

3 EAL3 permits a conscientious developer to gain maximum assurance from 
positive security engineering at the design stage without substantial alteration 
of existing sound development practises 

EAL3 is applicable in those circumstances where developers or users require 
a moderate level of independently assured security, and require a thorough 
investigation of the TOE and its development without substantial 
reengineering. 

4 EAL4 permits a developer to gain maximum assurance from positive security 
engineering based on good commercial development practises which, though 
rigorous, do not require substantial specialist knowledge, skills, and other 
resources. EAL4 is the highest level at which it is likely to be economically 
feasible to retrofit to an existing product line. 

EAL4 is therefore applicable in those circumstances where developers or 
users require a moderate to high level of independently assured security in 
conventional commodity TOEs and are prepared to incur additional security 
specific engineering costs. 

5 EAL5 permits a developer to gain maximum assurance from security 
engineering based upon rigorous commercial development practices 
supported by moderate application of specialist security engineering 
techniques. Such a TOE will probably be designed and developed with the 
intent of achieving EAL5 assurance. It is likely that the additional costs 
attributable to the EAL5 requirements, relative to rigorous development 
without the application of specialised techniques, will not be large. 

EAL5 is therefore applicable in those circumstances where developers or 
users require a high level of independently assured security in a planned 
development and require a rigorous development approach without incurring 
unreasonable costs attributable to specialist security engineering techniques. 

6 EAL6 permits developers to gain high assurance from application of security 
engineering techniques to a rigorous development environment in order to 
produce a premium TOE for protecting high value assets against significant 
risks. 

 

EAL6 is therefore applicable to the development of security TOEs for 
application in high risk situations where the value of the protected assets 
justifies the additional costs. 

 

6.1.3 Evaluation through composition  

Different options for compositional certification exist. One option is the use of the "ACO" 
classes of the Common Criteria itself, however the drawback is that it only gives medium 
assurance (up to EAL4) and it has rarely been used. Community-based alternatives do exist: 
One of the most successful Common Criteria communities is the smart card industry. In this 
domain, the base platform is the smart card, and an application is running on top of it. As 
applications are easier to change than hardware, a typical use case is that a new product 
consists of a new application with a pre-existing hardware; however there is no limitation to 
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that particular use case. The community developed guidance when "the requirements on the 
application, imposed by the underlying platform, are fulfilled in the composite product". [18]. 

In [19, Section 3] use cases for composite systems are identified.  

In the EURO-MILS project, a MILS architectural template is used [9] for two demonstrators 
based on separation kernels (one in automotive, one in avionics) to identify interfaces for 
compositional certification. 

A MILS system consists of components interacting with each other and three main 
components in a MILS system are identified: 

 MILS core 

 MILS platform 

 Partition 

 

 

Figure 17: MILS architecture template (components in dashed lines are optional). 

In [20], it is pointed out that the use of a MILS platform allows it to first certify the MILS 
platform itself and then certify the system based on the platform in a second step. The 
implementation of one layer may rely on the implementation of another layer. It is established 
a priori that the components of the base layer guarantee non-interference. 
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6.1.4 SAFURE Framework Protection Profile for Mixed Criticality Applications 
(SFPP) 

The SAFURE Framework Protection Profile for mixed-criticality Applications is based on the 
existing Common Criteria Protection Profile “Protection Profile for Mobile Devices 
Fundamentals” developed by the Mobility Technical Community (MDFPP). This Protection 
Profile is a security standard for mobile devices in an enterprise environment and consists in 
about 80 security requirements in area such as key management, and storage, security 
policy enforcement, data encryption and so on. In the context of mixed criticality application, 
the security objectives defined in the MDFPP are not enough. Notably, it is primordial to 
enforce sealing between environments of heterogeneous level, i.e. medical or professional 
vs. personal application, to ensure the confidentiality, integrity and availability of critical 
functionalities.  

The SAFURE Framework is an extended version of the MDFPP oriented toward mixed 
criticality support of mobile devices. It describes essential security services that should be 
provided by mobile device in a context of mixed criticality application (e.g. medical or 
profession vs. personal). 

An instance of such mobile devices will then be developed in WP6 “telecommunication use 
case” in accordance to the previously established Protection profile.  

 

6.2 Safety aspects 

The DO-178 is the most common standard for certification of avionics software systems. The 
DO-178 applies a V-model, focusing on process assurance for the stages planning, software 
requirements, design, implementation, verification (including testing), software configuration 
and liaison with certification authorities6. For instance, planning documents include a 
software quality assurance plan that outlines all the risks. The DO-178 is graded from low 
assurance ("E") to high assurance ("A"), and the DO-178 assurance level determines a set of 
process assurance objectives to be achieved for each stage (for each stage, higher 
assurance levels require a higher set of objectives to be fulfilled). For instance, testing is 
required to contain structural coverage, that is analysis that all code statements are covered 
by tests from level C and higher, and the structural coverage requirement is strengthened to 
decision coverage for level B and modified condition/decision coverage for level A. 

DO-178 supports compositional certification by partitioning of functionality. If such partitioning 
is used, then the technical base of the partitioning (the partitioning system / separation 
kernel) undergoes a partitioning analysis. A partitioning analysis can be done by identifying 
potential threats to partitioning and then explain how these threads are mitigated. 

 

6.3 Timing Aspects 

Timing is an important issue for safety-critical (and also mixed-critical) systems. First, time is 
a key non-functional requirement in many embedded and cyber-physical applications. Timing 
is often impacted by interference between functions (which is resolved using scheduling and 
arbitration mechanisms). This interference must be considered by providing isolation or 
analysis of the interference. 

                                                
6
 See either the DO-178C document itself, provided by RTCA, or [21]. 
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Thus, part of the SAFURE framework is a timing analysis solution that can be used to 
analyse temporal effects on electronic control units (ECUs) and interconnecting networks 
(e.g. CAN, FlexRay, Ethernet). This method is described in Section 5.1.1. 

Software Defined Networking (SDN) offers (logically) centralized network control to 
implement safety-related features in Ethernet. These features include admission control (e.g. 
to avoid congestion in the network or to provide sufficient independence/isolation between 
traffic streams of different criticality) but also reconfiguration (e.g. to mitigate local network 
faults) and monitoring (e.g. to detect and defeat attacks). SDN relies on a network controller 
to manage the network. Management frames from this controller are sent via in-band 
communication, i.e. over Ethernet links, which are shared with all other traffic streams. In 
order to prevent or react to congestion, faults, and attacks, the management frames must be 
delivered in a timely manner, e.g. to contain and isolate faults and attacks on the network. 
Hence, the communication between the SDN controller and the network infrastructure is 
time-critical. A focus of SAFURE will be to provide a formal timing analysis for SDN-
controlled networks and to investigate whether this concept is suitable to address the safety 
requirements of future networks. 

 

6.4 Mixed criticality patterns 

SAFURE’s innovation relies on the mixed-criticality management framework it offers. It is no 
stranger to the reader that security and safety methodologies belong to different processes. 
In Figure 18: Mixed-criticality requirements, as long as developers choose the bottom 
squares, no problems outside normal works should arise.  

Security
Requirements

Safety
Requirements

Mixed-Criticality requirements
(Safure Framework)

 

Figure 18: Mixed-criticality requirements 

 

Nevertheless, if one wants to follow a mixed-critical development; the appropriated 
methodology shall be followed.  

1. Critical services and assets shall be merged in one consistent set of critical assets. 

2. An association between CC Threats and the safety faults shall be enforced and 
merged in a global mixed critical faults set which shall in turn be refined as 3 non-
exclusive subsets7 : 

a. fault handled through fault prevention 

b. fault handled through fault tolerance 

                                                
7  Fault forecasting and fault removal present in the JC Laprie model is not part of the 
SAFURE’s goals. 
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3. The mixed critical faults sets shall be ordered two by two with a criticality order. This 
step essentially is a way to categorize some faults as more critical than others. Three 
main consideration shall occur thereafter: 

a. If the set if fully ordered, then the criticality order is a strong order and the 
according development shall follow exactly such order. For example, if in a 
medical device such as an insulin pump, the failure of the drug delivery is 
considered as more important than the presence of a malicious user, the 
system shall act accordingly by delivering insulin and raising an alert. 

b. If the resulting set is a lattice, then the identification of the missing association 
between faults shall be performed and two sub-processes shall be engaged 
for each association : 

i. If both faults belongs to fault prevention, an explicit association shall 
be established 

ii. If the both fault belongs to fault tolerance, a redesign of the 
architecture shall be performed in order to exhibit a deterministic 
property. In the security field, such architecture shall exhibit defence in 
depth properties. In the safety field fault removal shall be handled 
through serial invocation of mechanisms per faults. For example 
through redundancy. 

iii. If one fault belongs to fault prevention and the other to fault tolerance 
an explicit association shall be established. 

c. Finally if none of the above applies, two sub-processes shall be applied : 

i. A consistency process: the whole consistency of the fault sets shall be 
verified.  

ii. If and only if the former process is conclusive, a deterministic process 
similar to the lattice process shall be engaged : 

1. If both faults belongs to fault prevention, an explicit association 
shall be established 

2. If the both fault belongs to fault tolerance, a redesign of the 
architecture shall be performed in order to exhibit a 
deterministic property. In the security field, such architecture 
shall exhibit defence in depth properties. In the safety field fault 
removal shall be handled through serial invocation of 
mechanisms per faults. For example through redundancy. 

3. If one fault belongs to fault prevention and the other to fault 
tolerance an explicit association shall be established. 
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