
This project has received funding from the European Unions Horizon 2020
research and innovation programme under grant agreement No 644080.

D3.1
Interim Analysis of Integrity Algorithms

Project number: 644080

Project acronym: SAFURE

Project title: SAFety and secURity by dEsign for interconnected mixed-critical
cyber-physical systems

Project Start Date: 1st February, 2015

Duration: 36 months

Programme: H2020-ICT-2014-1

Deliverable Type: Report

Reference Number: ICT-644080-D3.1 / Final 1.00

Work Package: WP 3

Due Date: 30.4.2016

Actual Submission Date: 29.4.2016

Responsible Organisation: ETHZ

Editor: Rehan Ahmed

Dissemination Level: Public

Revision: Final 1.00

Abstract:
This document will overview existing thermal, data and timing in-
tegrity algorithms. Furthermore, it will cover first results regarding
the extension of these methods to safe and secure systems

Keywords: Algorithms, Mixed-Criticality, Temperature, Data integrity, Timing in-
tegrity, Resource sharing integrity

This work is supported (also) by the Swiss State Secretariat for Education, Research and Innovation (SERI)
under contract number 15.0025. The opinions expressed and arguments employed herein do not necessarily
reflect the official views of the Swiss Government.

D3.1 - Interim Analysis of Integrity Algorithms

Editor

Rehan Ahmed (ETHZ)

Contributors (ordered according to beneficiary numbers)

Christina Petschnigg, Martin Deutschmann (TEC)
André Osterhues, Lena Steden (ESCR)
Mikalai Krasikau (SYSG)
Jonas Diemer (SYM)
Sylvain Girbal (TRT)
Daniel Thiele (TUBS)
Gabriel Fernandez, Jaume Abella, Francisco J. Cazorla, Robin Hofmann (BSC)
Marco Di Natale (SSSA)
Rehan Ahmed, Philipp Miedl, Lothar Thiele (ETHZ)

Disclaimer
The information in this document is provided ”as is”, and no guarantee or warranty is given that the
information is fit for any particular purpose. The users thereof use the information at their sole risk
and liability.

SAFURE D3.1 Page I

D3.1 - Interim Analysis of Integrity Algorithms

Executive Summary
There has been a tremendous improvement in performance and efficiency of processing platforms

in the past four decades. System designers have exploited various architecture and device level
techniques to bring about this improvement. While the average case performance of these devices
has improved, the worst-case performance has degraded.
While the average case performance has increased tremendously, . There is a large gap between the
requirements of real-time applications and what architectures of embedded processors offer today.
On the one hand, real-time applications need predictability in order to enable safe operation based
on worst-case execution time analysis. On the other hand, following the end of Dennard scaling,
embedded processors increasingly feature a multicore architecture with shared resources (e.g., last-
level cache, memory controller) in order to keep improving performance and efficiency.

SAFURE D3.1 Page II

D3.1 Interim Analysis of Integrity Algorithms

Contents

Chapter 1 Introduction 2
1.1 Meaning of Integrity in the Context of SAFURE . 2
1.2 Temperature Integrity . 2
1.3 Data Integrity . 3
1.4 Timing and Resource Sharing Integrity . 3
1.5 Cross-Domain Concerns in the Design for Integrity . 3

Chapter 2 Temperature Integrity 4
2.1 Introduction . 4

2.1.1 Emergence of Temperature Constraints . 4
2.1.2 Safety Critical Context . 4
2.1.3 Security Context . 5

2.2 Existing Temperature Integrity Algorithms . 5
2.2.1 High Temperature Mitigation Strategies . 5
2.2.2 Temperature Related Security Risks . 6

2.3 First Results and Research Directions . 7
2.3.1 Temperature Analysis of Mixed-Criticality Systems 7

2.3.1.1 Task Model and Scheduling . 7
2.3.1.2 Maximum Temperature Analysis . 8

2.3.2 Temperature Threats to Platform Security . 9
2.3.2.1 The Covert Channel Threat Model . 9

2.3.2.1.1 Analysis Methodology . 10
2.3.2.1.2 Experimental Setup . 11
2.3.2.1.3 Results . 12

Chapter 3 Data Integrity 15
3.1 Checksums and Error Correcting Codes . 15
3.2 Authentication . 16

3.2.1 Message Authentication Codes . 16
3.2.2 Digital Signatures . 19

3.3 Public Key Infrastructure . 21
Chapter 4 Timing Integrity and Resource Sharing Integrity 22

4.1 Introduction . 22
4.1.1 Safety-Critical and Time-Critical Context . 22
4.1.2 Dealing with Worst-Case Execution Time . 23
4.1.3 Multi-Core & Interferences: An Issue for Time Determinism 23

4.1.3.1 Defining Interferences . 23
4.1.3.2 Timing Covert Channel From Shared L2 Cache 24

4.2 State-of-the-Art on Timing Integrity for Multi-Cores . 25
4.2.1 Control Solutions Avoiding Interferences . 25

4.2.1.1 Deterministic Execution Models . 25
4.2.1.2 Deterministic Adaptive Scheduling . 26
4.2.1.3 Marthy . 26

4.2.2 Regulation Solutions Keeping Interference Below a Harmful Level 27

SAFURE D3.1 Page III

D3.1 - Interim Analysis of Integrity Algorithms

4.2.2.1 Memguard . 27
4.2.2.2 Distributed Runtime WCET . 28
4.2.2.3 Conclusion . 28

4.2.3 Multi-Core Interference-Sensitive WCET Analysis Leveraging Runtime Resource
Capacity Enforcement . 28

4.3 State-of-the-Art on Timing Integrity for Ethernet . 28
4.3.1 Switched Ethernet . 29
4.3.2 ADFX - Avionics Full-Duplex Switched Ethernet 29
4.3.3 Ethernet AVB - Audio Video Bridging . 29
4.3.4 Ethernet TSN - Time-Sensitive Networking . 29
4.3.5 TTEthernet . 29
4.3.6 Analysis Optimizations . 30
4.3.7 Ingress Filtering . 30

4.4 Vulnerability Detection for Multi-Cores . 30
4.4.1 Shared Hardware Resources in the Telecom Use Case Platform 30
4.4.2 On-Chip Resource Sharing . 30

4.4.2.1 Formalization of RUs and RUl . 32
4.4.2.1.1 Resource usage signature (RUs) 32
4.4.2.1.2 Resource usage template (RUl) 33
4.4.2.1.3 RUs and RUl through an example 33

4.4.2.2 RUs & RUl for Measurement-Based Timing Analysis 35
4.4.2.2.1 Methodology . 35
4.4.2.2.2 The case of a SnapDragon-like architecture 36
4.4.2.2.3 Bus . 37
4.4.2.2.4 Multi-resource signatures . 39

4.5 Vulnerability Detection for Networks . 39
4.5.1 Worst-Case Ethernet Analysis in SymTA/S . 39
4.5.2 Scheduling and Resource Management Algorithms 41

4.6 Design for the Joint Consideration of Data and Timing Integrity 43
Chapter 5 Conclusion 45

5.1 Temperature Integrity . 45
5.2 Data Integrity . 45
5.3 Timing and Resource Sharing Integrity . 45

SAFURE D3.1 Page IV

D3.1 Interim Analysis of Integrity Algorithms

List of Figures

2.1 Evolution of processor power densities. Figure taken from ?] 4
2.2 The source app (src) has access to restricted data but no network access; the sink app

(snk) has no access to the restricted data but has network access. A compromised
source app can leak sensitive data to the sink app through the thermal covert channel,
breaking privilege separation. 9

2.3 An input message (a), encoded onto the 1 Hz clock (b), gives the execution trace (c),
which leads to the temperature trace (d) on the same-core channel of Laptop. 12

2.4 Block diagram of our bit-wise decoding scheme. 12
2.5 Upper bounds Cb (left) and Ca (right) on the channel capacity C for the four channels

on Laptop and Smartphone. The y-axis is in logarithmic scale. 13
2.6 Error probability on decoding a 5000 bit random message for the four channels on Lap-

top and Smartphone, for transmission rates up to 150 bps and 80 bps, respectively. . . 13
2.7 Sensitivity of the error probability to using automatic fan speed, not pinning the apps

to cores, no real-time scheduling, or the conservative Linux Dynamic Voltage and Fre-
quency Scaling (DVFS) governor. 14

2.8 Traces from cores 1 and 2 of Smartphone; the source app is not pinned. 14
2.9 Same-core vs. all-cores channel comparison with no pinning on Laptop. 14

3.1 Basic principle of Message Authentication Codes (MACs) 17
3.2 The two cases of Cipher-based Message Authentication Code (MAC) (CMAC) Gener-

ation [?] . 18
3.3 Basic principle of Digital Signatures . 19

4.1 Evolution of code size (in instructions) in Space, Avionic and Automotive safety critical
systems. 22

4.2 Estimation of the Worst-Case Execution Time, and the over-estimation problem 23
4.3 Concurrent accesses to hardware resources in a multi-core system 24
4.4 AER Execution Model . 26
4.5 Deterministic Adaptive Scheduling . 26
4.6 Marthy Deterministic Control Software . 27
4.7 Memguard Reservation and Reclaiming System . 27
4.8 Distributed Run-time WCET Controller . 28
4.9 Shared Hardware resources alongside the memory path on the Telecom use case

hardware platform (Dragonboard 810). As shown each of the two quad-core clusters
includes a shared L2 cache and communication channels towards the DDR memory
controller. 31

4.10 Reference multi-core architecture. 33
4.11 Main steps in the RUs and RUl methodology. 34
4.12 Hypothetical impact (in cycles) from/to the different access types to the bus. l2h, l2m

and st refer to L2 load hits, L2 load misses and stores respectively. 37
4.13 Example of a timing analysis model for a simple network with a single message. . . . 41
4.14 Results for an example system . 42

SAFURE D3.1 Page V

D3.1 Interim Analysis of Integrity Algorithms

List of Tables

3.1 Key Length Recommendations . 16

SAFURE D3.1 Page VI

D3.1 - Interim Analysis of Integrity Algorithms

SAFURE D3.1 Page 1 of 45

D3.1 - Interim Analysis of Integrity Algorithms

Chapter 1 Introduction

The focus of Work Package 3 is to study algorithms for ensuring integrity of Safe and Secure sys-
tems which are the focus of SAFURE project. This document overviews the integrity algorithms and
presents first results on the application of these algorithms and/or development of new algorithms for
preserving system integrity.

1.1 Meaning of Integrity in the Context of SAFURE

Before delving into the different aspects of integrity, it is important to define the integrity of a computer
system. In one of the seminal works titled “Integrity Consideration for computer Systems” [?], K.J.
Biba states that ”We consider a subsystem to have the property of integrity if it can be trusted to
adhere to a well defined code of behavior”. This “code of behaviors” is the specification of a given
system.
Deliverable D1.3 states the SAFURE framework specification in detail. However, important aspects
of this specification are outlined here to motivate the different aspects of system integrity. As stated in
D1.3, SAFURE adopts a unified presentation of properties that make a system dependable. Specifi-
cally, in SAFURE we focus on the following system attributes:

• Safety attributes: maintainability, reliability and safety

• Security (as of IT security) attributes : availability, confidentiality and integrity

For ensuring that a mixed critical system has these attributes, we have identified three separate areas
of system integrity:

• Temperature integrity

• Data integrity

• Timing and resource sharing integrity

We will now briefly overview these integrity aspects. Details on each of these aspects are given in
Chapters 2, 3 and 4.

1.2 Temperature Integrity

Temperature integrity refers to maintaining system temperature below a safe operating threshold. It
mainly affects reliability, safety, availability and confidentiality attributes of a safe and secure system.
This aspect has become important due to rapid increase in power density of modern processing plat-
forms. High temperature conditions adversely affect the reliability/safety of a system. Since reliability
and safety are fundamental requirements of mission-critical real-time systems, adherence to ther-
mal constraints is vital for maintaining system integrity. In SAFURE we study the thermal impact of
executing tasks of multiple criticalities on a multi-core platform.
We also identify that temperature can be used to compromise the security of a system by its use as
a covert communication channel. This compromises the confidentiality attribute. We study analy-
sis/mitigation strategies for countering these threats to system integrity.

SAFURE D3.1 Page 2 of 45

D3.1 - Interim Analysis of Integrity Algorithms

1.3 Data Integrity

Data integrity refers to assuring and maintaining the accuracy of data. Thus it can be said that data
integrity techniques aim at preventing unintentional changes to information. Data integrity mainly
affects reliability, safety, confidentiality and integrity attributes of a safe and secure system.
Problems in that domain comprise unintended changes to data due to storage, retrieval or process-
ing operations. This also includes targeted changes, unexpected hardware failures, human errors
and malicious attackers. Measures to preserve integrity of data are diverse, including application of
checksums, error correcting codes as well as cryptographic message authentication codes (MACs)
and access control techniques, the latter two of which are considered in SAFURE.

1.4 Timing and Resource Sharing Integrity

Timing integrity refers to the property of a (real-time) system to meet its timing requirements, e.g.
deliver a response to an external stimulus in time. Timing integrity mainly effects maintainability,
reliability, safety and availability attributes of a safe and secure system.
There are varying degrees of criticality w.r.t. timing integrity, ranging from ”best effort” (e.g. providing
some service at all) all the way up to safety-critical control loops with short deadlines (e.g. advanced
driver assistance, autonomous driving).
Guaranteeing timing integrity requires that all effects that impact the timing of a certain function are
controlled. Typically, this means controlling interference during the sharing of resources (e.g. pro-
cessor time, memory access, ...). This can be done by providing corresponding hardware/software
mechanisms on the execution platform. Giving a guarantee on timing integrity typically involves per-
forming a formal analysis of the timing properties.

1.5 Cross-Domain Concerns in the Design for Integrity

We will also study several cross-domain integrity concerns as part of SAFURE. For instance, several
methods for reducing system temperature (maintaining temperature integrity) rely on performance
throttling strategies such as DVFS; which may compromise timing integrity of a system.
As another example, many of the existing mechanisms for guaranteeing integrity (of data or safe
operation of systems) rely on redundancy in the computations or the data. The need to send redun-
dant information or to perform additional computations needs to be addressed in the timing analysis,
creating cross dependencies between the data integrity and traditional safety analysis and the time
analysis.
These cross dependencies can be targeted at the time of the analysis, but are better addressed by
a design process that tries to synthesize a solution that addresses time concerns at the same time it
also maintains other integrity aspects.

SAFURE D3.1 Page 3 of 45

D3.1 - Interim Analysis of Integrity Algorithms

Chapter 2 Temperature Integrity

This chapter focuses on temperature integrity measures. It overviews existing approaches for tem-
perature analysis and for mitigating high temperature conditions. This chapter also identifies that
temperature can also pose a security risk; by being used as a covert channel to leak information.

2.1 Introduction

2.1.1 Emergence of Temperature Constraints

Over the past three decades, the power densities of processing platforms have risen rapidly (an in-
crease of 32x since 80386 processor). This thread is primarily due to the breakdown of Dennard
Scaling (?]). The overall trend in processor power densities is given in Figure 2.1. Furthermore, the
localized power densities can be orders of magnitude higher. Due to this effect, switching too many
transistors at a time generates more heat than can be dissipated, possibly damaging the chip due
to exceeding the maximum safe temperature. All modern processing platforms have strict thermal
constraints; which have to be adhered for safe operation. For instance, Intel Sandy Bridge proces-
sors have a thermal constraint of 100◦C ?]. If processor temperature exceeds this, an emergency
shutdown is activated.

Figure 2.1: Evolution of processor power densities. Figure taken from ?]

2.1.2 Safety Critical Context

In the general purpose computing domain, high temperature conditions are handled by various perfor-
mance throttling schemes (DVFS, Dynamic Power Management (DPM) etc). However, such reactive

SAFURE D3.1 Page 4 of 45

D3.1 - Interim Analysis of Integrity Algorithms

schemes cannot be directly applied in safety critical applications. This is because, in safety/time
critical domains, applications have stringent real-time constraints. Not meeting the time constraints
can have catastrophic consequences; including loss of human life. Reactive performance throttling
schemes, may lead to a deadline miss and system failure.

2.1.3 Security Context

Temperature sensors are a valuable asset for thermal management, but they can represent a se-
curity breach in privilege-separated, or sandboxed, systems. Temperature sensors may be used to
implement a covert channel that allows otherwise isolated applications to communicate and possibly
leak sensitive data; compromising system security. These sensors are used in all modern process-
ing platforms to mitigate the performance loss due to high temperature conditions. While hardware
Dynamic Thermal Management (DTM) can avoid damages and ensure integrity, it resorts to tech-
niques (e.g., sharp speed throttling) that severely impair performance. For this reason, temperature
sensors are made accessible via software, to expose data for smarter thermal management policies
that gracefully impact performance and avoid triggering hardware DTM. For example, Intel Core pro-
cessors expose one sensor per core; similarly, the ARM big.LITTLE SoC exposes one sensor per big
core. These sensors are easily accessible on laptops or desktops through simple tools that export
temperature information to userspace processes. On Android-based smartphones and tablets, apps
can access the sensors without requiring any specific permissions. Compromised apps can therefore
module system temperature and encode sensitive information in the temperature medium; posing a
security risk.

2.2 Existing Temperature Integrity Algorithms

2.2.1 High Temperature Mitigation Strategies

The computing community along with the hardware vendors have attempted to mitigate the processor
overheating problem using a combination of hardware and software approaches.
Hardware oriented solutions include capping of clock frequencies and integration of sophisticated
power and temperature management features into the processor. These techniques to prevent pro-
cessor overheating are already available, and some of these solutions are already found in the com-
mercial state-of-the-art processors. One popular technique is to dynamically lower the processor’s
clock speed and/or voltages (DVFS) as the processor gets too hot. This has the effect of slowing down
the processor which also lowers its temperature. However, this approach is usually reactive in nature
resulting in an unforeseen and unplanned loss of performance. If the system operates under tight
timing constraints, any performance degradation may have serious consequences on the overall reli-
ability of the system. In addition, if the system uses a resource-constrained processor, the additional
compute burden imposed by dynamic temperature management solutions may be unacceptable.
Software approaches attempt to control temperature by carefully controlling the workload being ex-
ecuted by the processor, either by shaping the incoming workload (e.g., by buffering some tasks),
or by means of scheduling [?]. Among existing schemes that consider multi-core model, ?] use
integer linear programming to minimize the maximum temperature for a given set of real-time tasks.
They use an equivalent circuit model to estimate the transient core temperatures. ?] use the thermal
characteristics of processing cores to derive preferred speeds for processing elements in a homoge-
neous multi-core system to minimize system temperature. ?] focus on real-time task scheduling for
processing elements without dynamic voltage scaling capability to target maximal power saving in a
heterogeneous multi-core system.
Several approaches also attempt to address the peak temperature problem by bounding peak tem-
perature for scheduling schemes geared towards meeting timing constraints. ?] perform worst case
temperature analysis for real-time tasks running on multi-core systems. They use the concepts of
real-time calculus proposed by ?], to model arrivals and computation demands of real-time tasks.

SAFURE D3.1 Page 5 of 45

D3.1 - Interim Analysis of Integrity Algorithms

The worst case computation methodology is further used in ?] to perform task and frequency as-
signment for real-time tasks executing on multi-core systems. The problem is formulated and solved
as a binary optimization problem. ?] perform worst case delay analysis on a stream of jobs following
arrival and computation patterns based on real-time calculus. ?] consider scheduling of periodic
tasks on a multi-core system under soft thermal constraints. They design a proactive peak tempera-
ture manager which periodically estimates peak processor temperature. It uses machine learning to
predict high temperature on a given core. If a core is predicted to overheat, dynamic power manage-
ment techniques are applied to cool down the core without violating task timing constraints. A more
recent software oriented approach relies on selectively using cores in the given multi- or many-core
processor which have special spatial characteristics, e.g., ensuring that no heat dissipating core (i.e.,
a hot core) has a hot neighbor, in what is known as Dark Silicon Patterning [?]. Yet another method
is to migrate tasks between a set of similar processing elements in order to avoid overheating any
given element [?].

2.2.2 Temperature Related Security Risks

Integrity of data is a well researched topic which has often been addressed in the past. ?] already
analyzed this in 1973, by defining the confinement problem and describing how to exploit restricted
data using covert channels. Here, a differentiation between covert channels and side channels has
to be made. While the covert channel is used to actively transfer data over a channel, which is
not visible to the user - hence covert; in side channels an indirect effect is used to gain knowledge
about some restricted data. Now, with the breakdown of the Dennard scaling, analyzed by ?], and
the introduction of new thermal management technologies in Multi-Processor System-on-Chip (SoC)
(MPSoC), thermal data can be used to build a covert channel or launch a side channel attack and
threaten the integrity, availability, and confidentiality of data.
?] showed that it is possible to extract the private key of an RSA implementation on an AVR mi-
crocontroller. To do so, they operated the chip outside its specified temperature operation range and
measured the temperature of the chip directly on the surface of the silicon. This way the Hamming
weight of the processed data was leaked by the chip and could be used to reconstruct the used pri-
vate key after several runs. Other work presented the possibility of side channel attacks on systems.
?] demonstrated that it is possible to launch Denial-Of-Service (DOS) attacks on systems by creating
hotspots on the silicon. This triggers the DTM which leads to severe loss of performance and results
in the DOS.
In different studies, the implementation of covert channels by using temperature effects has been
proven. Exploiting the local clock skew introduced by temperature variations is a well studied version
of a covert channel based on temperature effects has already been shown by ? ?] and ?]. For
example this technique can be used to exploit services running in a hidden network, for example Tor.
To do so, the attacker induces a load pattern to the server through sending a lot of requests to the
server which causes temperature variations. By simultaneously observing the clock skew of all the
candidate servers, the attacker can then reveal which server is hosting this particular service. ?] also
evaluated the capacity of this covert channel at approximately 20.5 bits per hour. Another side effect
of temperature variations that can be used to compromise data integrity has been studied by ?].
They encoded data in the fan speed and which forced the system to change the fan speed according
to temperature changes that was inferred into the device by load management.
Not only is it possible to use side effects of temperature variations to exploit data, it has also been
shown that active data transmission is possible using temperature. ?] implemented a system which
is capable to transfer data between two air gapped desktop systems only by observing the tempera-
ture. For this only the standard temperature sensors of the desktop systems were used. One desktop
computer launched a load application to generate temperature variations, while the other one con-
currently observes possible temperature variations. With this scheme they were able to send simple
commands from one desktop computer to another one. Other work also explored if it is possible to
send data over temperature within the package. One variant of such a covert channel is studied in

SAFURE D3.1 Page 6 of 45

D3.1 - Interim Analysis of Integrity Algorithms

a Field Programmable Gate Array (FPGA) by ? ?] and ?]. The FPGA was configured with two
isolated components, whereas one part of the logic was configured as the thermal sender and the
other one as the thermal receiver. ?] on the other hand, studied the possibility to transfer data within
a MPSoC from one core to another one. In this basic study they achieved up to 1.33 bits per second
at an error rate of 11 % for the neighboring core. Furthermore they showed that it is possible to ex-
change information over the temperature channel between two applications which are running on the
same core but not at the same time.

2.3 First Results and Research Directions

In SAFURE we will cater to both timing and security threats posed by temperature.

2.3.1 Temperature Analysis of Mixed-Criticality Systems

Temperature constraints in the domain of mixed-criticality scheduling have not been studied. This
correlates to executing tasks of different safety requirements on a shared hardware platform. Re-
quirement for this study is stated in Description of Action (DoA) pg 15. This research thread jointly
considers temperature integrity and timing integrity of a mixed-critical system.

2.3.1.1 Task Model and Scheduling

In this project, we will adopt a standard dual-criticality task model [?]. Given is a set of n sporadic
tasks scheduled on a uniprocessor: τ = {τ1, · · · , τi, · · · , τn}. Each task may issue an infinite number
of jobs. Any task τi is characterized by the minimum inter-arrival time between consecutive jobs Wi,
relative deadline Di, and criticality level χi. We assume constrained deadlines for all tasks: ∀τi ∈
τ,Di ≤ Wi. A task can either have high (HI) criticality or low (LO) criticality: ∀τi ∈ τ, χi ∈ {HI,LO}.
We denote all χ criticality tasks as τχ, i.e. τχ = {τi|χi = χ}.
The Worst Case Execution Time (WCET) of tasks is modeled on both criticality levels with the WCET
on HI criticality being more pessimistic than those on LO criticality [? ? ? ?]. This model of
criticality dependent WCET that is assumed by several papers in the research community has been
challenged [?] [?] as non corresponding to the needs of the current industrial practice. In our
opinion, this model could still be relevant/useful considering that it has been becoming increasingly
difficult to characterize/bound WCET, especially in modern multi-core platforms (Refer to Section
4.1.3 for explanation). In this context, different WCET correspond to different levels of safety margins;
where schedulability of HI criticality tasks is guaranteed with high safety margin.
Different levels of timing assurance are modeled in the system abstraction. We denote the WCETs
of τi on criticality χ as Ci(χ). In addition, we assume that LO criticality tasks are not allowed to
exceed their LO criticality WCETs. Based on the above model, we now introduce the two important
mixed-criticality mechanisms regarding service adaptation and timing safety preparation.
Service adaptation. To improve system resource efficiency, conventional mixed-criticality schedul-
ing techniques [?] provide dynamic guarantees to all tasks, which can be specified by a simple
scheduling mode switch protocol:

• The system starts with LO scheduling mode, where all tasks are guaranteed to meet their
deadlines providing that they do not exceed their LO criticality WCETs.

• If any HI criticality task exceeds its LO criticality WCET, the system transits immediately to HI
scheduling mode, and the services provided to LO criticality tasks are degraded hereafter (or
they are terminated in the extreme case) to protect the timeliness of HI criticality tasks.

For each LO criticality task τi, the degraded service is interpreted as the increased inter-arrival time
Wi and/or deadline Di. For notational convenience, we denote the parameters of task τi in mode χ
as: {Wi(χ), Di(χ), Ci(χ)}.

SAFURE D3.1 Page 7 of 45

D3.1 - Interim Analysis of Integrity Algorithms

Timing safety preparation. Intuitively, for any HI criticality task τi, if jobs of this task finish too “late”
in LO scheduling mode, then there would not be enough time left until their deadlines to host extra
workload when the system switches to HI scheduling mode. In light of this, timing safety preparations
are proposed in the literature [? ?]. The essential idea is to let HI criticality tasks finish earlier
in LO scheduling mode so that enough CPU time is left to handle task overrun. For fixed-priority
scheduled tasks, this can be ensured by guaranteeing shortened LO scheduling mode worst-case
response times (WCRTs) for HI criticality tasks [?] (i.e. by increasing their assigned priorities). For
Earliest Deadline First (EDF) scheduled tasks, the equivalence is to artificially shorten deadlines of
HI criticality tasks in LO scheduling mode so that they are forced to finish earlier [?]. In both cases,
we use Di(LO) to uniformly denote the timing safety preparation, i.e. Di(LO) denotes the WCRT of
τi or its shortened deadline, both in LO scheduling mode.
Based on our model and assumptions, we have:

∀τi ∈ τHI : Wi(HI) = Wi(LO) = Wi,

Di(LO) < Di(HI) = Di, Ci(HI) ≥ Ci(LO),
(2.1)

∀τi ∈ τLO : Wi(HI) ≥Wi(LO) = Wi,

Di(HI) ≥ Di(LO) = Di, Ci(HI) = Ci(LO).
(2.2)

Notice that if LO criticality tasks are terminated in HI scheduling mode, then:

Wi(HI) = +∞, Di(HI) = +∞, ∀τi ∈ τLO. (2.3)

2.3.1.2 Maximum Temperature Analysis

We assume a processor with two processor states (active and idle). Whenever the processor is
processing jobs, it is in the active state. Otherwise it is automatically switched to the idle state. Due to
increased leakage power consumption in the sub-nm era, we adopt a common linear approximation
of the processor power consumption P as φT + ψ, where the leakage power depends on the system
temperature T and φ and ψ are constants. Since the processor power consumptions are different for
different processor states, we distinguish between power parameters in active state (φact, ψact) and
those in idle state (φidl, ψidl).
We approximate the heat flow in the system by Fourier’s Law. This yields a standard thermal model
expressed in a first order differential equation:

Ω
dT

dt
= −G(T − Tamb) + P, (2.4)

where Ω, P , G and Tamb denote thermal capacity, power consumption, thermal conductance and
ambient temperature, respectively. This leads to the closed-form solution to the above differential
equation [?]:

T (t) = T∞ + (T (t0)− T∞) · e−a·(t−t0), (2.5)

where T∞ = GTamb+ψ
G−φ , a = G−φ

Ω and the system is in one processor state in [t0, t). Due to the different
power consumptions in active and idle states, the complete system thermal model is characterized
by two pairs (T∞act, aact) and (T∞idl, aidl).
Based on the above thermal model, we base our analysis on the techniques proposed in [?], where
a constructive approach is proposed to identify a temperature-critical execution trace given bounded
jobs arrivals and demands. In particular, it has been shown in [?] that, given the arrived demand
bound function (adb(·)) of all tasks on a fully available processor, the worst-case processed demands
by the processor is bounded by:

γ(∆) = inf
0≤δ≤∆

{adb(δ) + ∆− δ}. (2.6)

SAFURE D3.1 Page 8 of 45

D3.1 - Interim Analysis of Integrity Algorithms

Furthermore, for any time instant t∗, the temperature-critical concrete execution trace of processed
demands (γ∗(0,∆), denoting the received executions in [0,∆)), which leads to the highest tempera-
ture at t∗, is linked to γ(·) as follows:

γ∗(0,∆) = γ(t∗)− γ(t∗ −∆), ∀0 ≤ ∆ ≤ t∗. (2.7)

[?] provides further results on bounding the maximum checked time instant t∗ for finding the peak
system temperature. We refer the interested readers to [?] for more details. To summarize, we base
our analysis on the following work flow:

adb(∆)
(2.6)−−−→ γ(∆)

(2.7)−−−→γ∗(0,∆)

T0

}
(2.5)−−−→ Tpeak. (2.8)

Notice that for the last step, we need the initial temperature of the system T0, and the temperature-
critical execution trace is simulated according to (2.5) to derive the worst-case temperature.
In SAFURE we will perform the analysis of the peak system temperature under common mixed-
criticality scheduling techniques based on Fixed Priority (FP) or EDF. Since the system may switch
scheduling mode during runtime, it is natural to perform peak temperature analyses separately for
different scheduling modes.

2.3.2 Temperature Threats to Platform Security

In this research thread, we study the use of temperature as a covert communication channel. This
correlates to executing tasks of different security requirements on a shared hardware platform. Re-
quirement for this study is stated in DoA pg 15.

2.3.2.1 The Covert Channel Threat Model

Covert channels can broadly be classified as storage or timing channels. We study storage channels,
where the source app directly or indirectly writes to a shared resource, which the sink app reads [? ?
].
We are interested in the scenario introduced in the example of Figure 2.2. Without loss of generality,
we assume that the sink app just records a temperature trace by reading the sensors and later sends
it to the attacker over the network; message decoding is done offline. Thus, the sink app is mostly
idle and only periodically wakes up to read the sensor.

Figure 2.2: The source app (src) has access to restricted data but no network access; the sink app
(snk) has no access to the restricted data but has network access. A compromised source app can
leak sensitive data to the sink app through the thermal covert channel, breaking privilege separation.

We target devices where the Operating System (OS) puts idle cores to sleep and, when sleeping,
cores consume close to zero power and produce almost zero heat. We note that the mobile devices
that we target are idle or lightly-loaded most of the time (e.g., a smartphone resting in a pocket or a
laptop just running a text editor). Thus, the source and sink app can check when the system load is
low to start using the covert channel, so as to avoid interference.
Finally, we note that modern mobile multi-cores, e.g., Intel Core mobile processors or ARM multi-
cores, generally feature one temperature sensor per core and that these sensors are easily accessible
by userspace processes or apps. For instance, on Linux, lm sensors exports a simple command-

SAFURE D3.1 Page 9 of 45

D3.1 - Interim Analysis of Integrity Algorithms

line interface; on Windows, CoreTemp offers a graphical interface. While setting up these tools might
require administrative rights (e.g., # sensors detect), they are commonly installed on client devices.
On Android devices, the temperature sensors are even easier to access for the apps: we verified
that the CPU-Z app (v. 1.15), available on the Google Play Store, requires no system permissions to
be installed and it reports several temperature measurements on a Nexus 4 running Android 5.0.2.
Moreover, once the sensors are exposed, any app can normally read all sensors, regardless of which
core it is running on.

2.3.2.1.1 Analysis Methodology

Following Shannon’s seminal work [?], researchers extensively studied ways to determine the ca-
pacity of a wide range of channel models [?]. Still, even with this vast theoretical literature available,
estimating the capacity of a physical channel remains very challenging: it requires using an appropri-
ate model and retrieving quantitatively accurate measurements of the channel parameters, despite of
noise and limited precision. We tackle this challenge by leveraging the simple model and determining
its transfer function H(f) through carefully designed experiments based on the experimental setup.
We can search, among all the possible input patterns x(k), the one that has the frequency charac-
teristics that make the most information pass through the channel; in other words, we need to find
the best allocation of the input power Ŝxx(f) across the frequency spectrum. The key aspect in this
method is that we can only allocate as much power as we are able to put into our input signal, i.e., we
have a power cap p0. The general approach to determining Ŝxx(f), and thus C (channel capacity),
subject to a power cap p0 is known as water-filling [? ?] Water-filling is based on the assumption
that the optimal input spectrum is the one that allocates power such that the sum of the noise and
the signal power is constant over the whole channel spectrum; so more power of the signal is in parts
of the spectrum with high Signal to Noise Ratio (SNR). We study two different solutions based on
this technique. First, we consider the classic solution [?], which considers the constraint p0 on the
average input power. Second, we analyze a constrained-input solution [?] that explicitly considers
the additional constraint that the input to our channels is a binary value (active/idle).
Classic water-filling approach The classic water-filling technique allows to compute the capacity
of channels with arbitrary transfer function H(f) and additive gaussian noise q(k), not necessarily
white [? ?]. White noise implies that the noise has a constant power spectrum Sqq = N0 across
the frequency range Aλ. If we can estimate the power spectrum of the channel Shh = |H(f)|2 and of
the noise Sqq then, given a cap p0 on the average input power, we can derive the channel capacity
according to Equation 2.9 [? , Eq. (6.15)].

Cb = max
Sxx

{∫
F

log2

(
1 +

Sxx(f) · Shh(f)

Sqq(f)

)
df

}
[bps] , (2.9)

under the constraint that
∫
F
Sxx(f)df ≤ p0 (2.10)

The capacity Cb is determined by the spectral power allocation Sxx(f), which cannot exceed the
power cap p0, as Equation 2.10 states. We can maximize the expression in Equation 2.9 and deter-
mine the capacity by intelligently shaping the power allocation Sxx so that more power is allocated
at those frequencies with better SNR. This ideal allocation Ŝxx can be determined with a water-filling
procedure [? ?], which we do not describe in details here. As it is shown in ?], we are able to
estimate Shh and Sqq for our channels; thus, we can use the water-filling procedure on Equation 2.9
to estimate the capacity Cb. We expect Cb to be an upper bound on the real capacity C, because
the classic water-filling approach does not consider the more stringent constraint that our input is
required to be a binary value.
Constrained-input water-filling In a 1992 paper, ?] studied the capacity of saturation recording,
i.e., the capacity of storage systems such as tape recorders or optical disks. While this problem has,
in general, little to do with our study, it has the same saturation constraint on the channel input: input
values can only be either 0 or 1. This shared property allows us to leverage their expression for an

SAFURE D3.1 Page 10 of 45

D3.1 - Interim Analysis of Integrity Algorithms

upper bound Ca on the channel capacity C [? , Eq. (11)]. We report this result (with minor notation
changes) in Equation 2.11.

C ≤ Ca = max
λ

{
1

2

∫
Aλ

log2 (λ · Shh(f)) df

}
(2.11)

1

2

∫
Aλ

(
λ− 1

Shh(f)

)
df ≤ p0

N0
(2.12)

The parameter λ must be maximized subject to the constraint of Equation 2.12, which makes sure
that the SNR does not exceed the ratio of the power cap p0 over the noise powerN0. These equations
assume that the noise is white. Since, in our channels, Sqq is not constant, we use this constrained-
input solution only after splitting the channel into sub-bands where Sqq can be assumed constant;
more details on this technique can be found in ?]. Finding the λ that maximizes Equation 2.11
subject to Equation 2.12 follows again a water-filling procedure.

2.3.2.1.2 Experimental Setup

We base our analysis on experimental data collected from two diverse and representative hardware
platforms:

1. a Lenovo ThinkPad T440p laptop, featuring a quad-core Intel Core i7-4710MQ processor clocked
at 2.5 GHz;

2. an Odroid-XU3 board, featuring a Samsung Exynos 5422 SoC including an ARM big.LITTLE
processor with two quad-core clusters of Cortex-A7 and Cortex-A15 cores, respectively. The
big cluster is clocked at 2.1 GHz.

In the rest of this sections, we refer to platform 1 as Laptop and to platform 2 as Smartphone. Laptop
is representative of current business laptops; Smartphone is representative of hand-held devices (it
has the same SoC as the Samsung Galaxy S5 SM-900H smartphone).
System settings. On both Laptop and Smartphone, we install Ubuntu 14.04.2 and we use the
/dev/cpu dma latency interface of the Linux kernel to limit the maximum wakeup latency to 10µs.
On Laptop, the temperature sensors are refreshed every 1 ms [?]. We were not able to find the
sensors refresh period for Smartphone on the SoC documentation. To determine this parameter, we
collected several traces with varying system load, using 1 ms as the sampling period; we noticed that
the temperature never changed more often than every 5 ms, which we take as the sensor refresh
rate for this platform. Based on these characteristics, we set the sampling period to T = 1 ms for
Laptop and T = 5 ms for Smartphone. Therefore, the Nyquist frequency of our discrete system is
0.5/1 ms= 500 Hz for Laptop and 100 Hz for Smartphone.
To favor repeatability, we run all experiments in a controlled, while still realistic, environment. We
set both devices in an air-conditioned server room with an ambient temperature of ≈ 23 C◦ and, for
both, we fix the fan speed to the maximum level and set the clock frequency of active cores to the
maximum. In order to avoid scheduling artifacts, we run the source and sink app with the SCHED FIFO

scheduling class at highest priority by using the pthread setschedparam() interface and we pin the
source app to one core by using the pthread setaffinity np() interface. During all experiments,
the system is idle except for the source and sink apps and the default system services of the Ubuntu
installation. We run the source app on the third core in the array, i.e., on core 4 on Laptop, which has
eight virtual cores with two-way hyper-threading, and on core 6 on Smartphone, where cores 0 to 3
are the LITTLE cores and cores 4 to 7 are the big cores. In the rest of this section, we only count
the four physical (big) cores, starting from 0; thus, for both platforms, we say that we run the source
app on core 2 and we record the temperature traces from cores 0 to 3. On Laptop we exploit hyper-
threading and run the sink app on the odd-numbered virtual cores and on Smartphone on the first
LITTLE core to avoid timing interference. Unless differently specified, we use these settings in all our
experiments.

SAFURE D3.1 Page 11 of 45

D3.1 - Interim Analysis of Integrity Algorithms

(a)1 1 0 0 1
sleep

active
(b)

sleep

active
(c)

 38
 42
 46

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

T
em

p.
 [C

]

Time [s]

(d)

Figure 2.3: An input message (a), encoded
onto the 1 Hz clock (b), gives the execution
trace (c), which leads to the temperature trace
(d) on the same-core channel of Laptop.

Figure 2.4: Block diagram of our bit-wise de-
coding scheme.

Encoding and decoding scheme. A simple way to keep the channel in the dynamic range during
communication is to encode the input message so as to maintain, on average, a constant load. To
do so, we use square waves with a 50% duty cycle as a clock signal onto which we encode the input
message. We use the Manchester encoding scheme [?] to generate the execution trace of the
source app, as Figure 2.3 illustrates for a 5-bit message and a 1 Hz clock.
A one in the message is encoded into an unmodified clock signal in the execution trace; a zero
becomes a 180◦ phase-shifted clock signal in the execution trace. The resulting execution trace leads
to temperature traces oscillating around a roughly constant average, as Figure 2.3 (d) shows for the
same-core channel on Laptop. The transmission rate directly depends on the frequency of the clock
signal, since the trace carries 1 bit of information per period of the clock, i.e., r bps for a rHz clock.
Message decoding happens offline from the temperature traces recorded by the sink app. The first
step of decoding is determining the phase of the clock signal. For simplicity, we synchronize our
experiments so that the beginning of the temperature trace coincides with the beginning of the mes-
sage. In a real attack, where this synchronization would not be possible, the source app could send
a known preamble that can be used to detect the clock phase. Once the clock phase is detected, it
will not change during an experiment, since our source and sink app are designed to not accumulate
clock skew. To proceed with decoding, we look at each clock period, i.e., at each bit, separately. As
Figure 2.4 shows, for each bit, we first get a 0-mean signal by subtracting its mean temperature; in this
way, the decoding is robust against long-term temperature variations due to environmental changes.
We decode the resulting trace with traditional signal-processing techniques [?]. We first multiply the
trace with a 90◦ and a 0◦ phase-shifted clock signals and we integrate over the two resulting signals
(
∫

blocks in Figure 2.4). The two resulting numbers are the real (Re) and imaginary (Im) parts of a
representation of the bit in the complex plane C. To classify each bit as a 1 or a 0 in this signal space,
we use a naı̈ve-Bayes classifier [?] with a kernel smoothing density estimate1, previously trained on
data from the same platform.

2.3.2.1.3 Results

Theoretical capacity bounds. We can compute the two capacity bounds Cb and Ca, with the classic
and constrained-input water-filling methods, respectively. Since we work with discrete spectra, we
accordingly adapt the equations of paragraph 2.3.2.1.1 to use summations instead of integrals and to
consider the discretization intervals along the frequency range. Figure 2.5 shows the capacity bounds
Cb (left) and Ca (right) that we compute with the classic and constrained-input water-filling methods,
respectively. As expected, Cb > Ca and the bound for the same-core channel is the highest for both
platforms and both methods. In general, the trend across the four channels seems consistent on the
two platforms. These results do not exclude that the same-core channel might be a security threat.
Performance evaluation. To evaluate our transmission scheme, we encode several random mes-
sages onto clock signals at different frequencies and we use our source and sink app to transmit and
record these messages on our two platforms, configured according to the reference setup described
in paragraph 2.3.2.1.2. We decode the temperature trace from each channel with our classifier; as

1We use the NaiveBayes object of Matlab R2015a, with default settings.

SAFURE D3.1 Page 12 of 45

D3.1 - Interim Analysis of Integrity Algorithms

100

101

102

103

core 0
2 hops

core 1
1 hop

core 2
same core

core 3
1 hop

core 0
2 hops

core 1
1 hop

core 2
same core

core 3
1 hop

C
ap

ac
ity

 [b
ps

]

Classic water-filling Constrained-input water-filling(Cb) (Ca)
25

70

10
37

20
2

55

37
1 13

81

16
9

12

27

33
4

58

26

10
5 41

4

55

Laptop Smarthpone

Figure 2.5: Upper bounds Cb (left) and Ca
(right) on the channel capacity C for the four
channels on Laptop and Smartphone. The y-
axis is in logarithmic scale.

 0
 10
 20
 30
 40
 50

 0 20 40 60 80 100 120 140E
rr

or
 P

ro
ba

bi
lit

y
[%

]

Bit Rate [bps]

Laptop

 0 10 20 30 40 50 60 70
Bit Rate [bps]

Smartphone

core 0 (2 hops) core 1 (1 hops) core 2 (same core) core 3 (1 hop)

Figure 2.6: Error probability on decoding a
5000 bit random message for the four channels
on Laptop and Smartphone, for transmission
rates up to 150 bps and 80 bps, respectively.

the performance indicator, we use the error probability, as measured through the empirical bit error
rate, i.e., the relative number of misclassified bits. We just report raw transmission rates and error
probabilities and do not evaluate error correction strategies; we leave such study to future work.
Figure 2.6 shows the resulting error probability (measurements and bezier trends) for the four chan-
nels on our two platforms. For both Laptop (left) and Smartphone (right), the same-core channel
shows very few errors (� 1%) up to ≈ 40 bps. Up to this rate, Smartphone performs better than
Laptop, thanks to the much lower noise. Instead, at increased rates, errors increase more slowly on
Laptop, where we achieve ≈ 90 bps at 10% error probability, than on Smartphone, where the rate
is ≈ 60 bps at the same error level. Laptop shows better performance also for the 1-hop and 2-hop
channels, where the error probability remains very close to 0 up to ≈ 10 bps and hits the 10% level
between 30 bps and 40 bps. On Laptop, the 2-hop channel does not perform much worse than the
1-hop channels; instead, on Smartphone the error probability immediately increases steeply and the
performance gaps are more evident, with the 2-hop channel showing several errors already at 1 bps.
These results relate with the stronger quantization effect and the higher attenuation for these two
channels on Smartphone.
Sensitivity to environmental conditions. Finally, we evaluate how variations in the environmental
conditions affect the error probability on our channels. We identify four important parameters that, in
a real attack, would not be fixed as in our initial experimental setup and we evaluate the sensitivity of
our results to variations on these parameters. As a representative case, we show the results of this
study on the same-core channel on Laptop. Figure 2.7 shows how the error probability is affected
when changing these four parameters in the experimental setup:

1. Setting the fan speed to automatic (Fan auto);

2. not pinning the apps to a specific core (No pinning);

3. using the default Linux scheduling policy instead of the high-priority SCHED FIFO (No RT);

4. using the conservative DVFS governor which changes the cores frequencies (DVFS Conserv.).

These four parameters have different impact on our baseline results, represented in Figure 2.7 by
the solid red line. An automatic fan speed highly affects the channel and makes it very chaotic. This
is intuitive as the fan speed control is designed to keep the temperature on a low constant level,
which contradicts the intention to code data in temperature variations. Like an automatic fan speed,
enabling DVFS has a high effect on the communication channel and therefore a communication on
the same-core channel highly unstable. This is because the active frequency of the cores largely
determines the active power consumption, and thus temperature.
Dropping real-time priority significantly affects the error probability only for rates faster than ≈ 15 bps.
When the source and sink apps are not pinned to a specific core, the different channels effectively
move with the source app. As an example, Figure 2.8 shows part of a trace from Smartphone where
the source app, which is transmitting a 1 Hz clock signal, migrates between cores 1 and 2. Initially,
reading the temperature from core 2 corresponds to a same-core channel, while it becomes a 1-hop
channel at time ≈ 1.5 s, when the source app migrates to core 1. As Figure 2.9 shows, if the sink app
always observes the same core (core 2 on Laptop in this case), the error probability without thread

SAFURE D3.1 Page 13 of 45

D3.1 - Interim Analysis of Integrity Algorithms

 0
 10
 20
 30
 40

0 20 40 60 80 100 120 140E
rr

or
 P

ro
ba

bi
lit

y
[%

]

Bit Rate [bps]
0 20 40 60 80 100 120 140

Bit Rate [bps]

Fan auto No pinning Baseline No RT DVFS Conserv.

Figure 2.7: Sensitivity of the error probability
to using automatic fan speed, not pinning the
apps to cores, no real-time scheduling, or the
conservative Linux DVFS governor.

 57

 60

 63

 66

 0 1 2 3 4 5 6 7

T
em

pe
ra

tu
re

 [C
]

Time [s]

core 1 core 2

Figure 2.8: Traces from
cores 1 and 2 of Smart-
phone; the source app
is not pinned.

 0
 10
 20
 30
 40

0 20 40 60 80 100 120 140

E
rr

or
 P

ro
b.

 [%
]

Bit Rate [bps]

Baseline core 2 All-cores

Figure 2.9: Same-core
vs. all-cores channel
comparison with no pin-
ning on Laptop.

pinning will sensibly increase compared to the baseline, since the channel type keeps changing.
However, there is a simple way to work around this issue. Since the sink app can always read
the temperature of all the cores, we can simply look at the all-cores channel, which is the sum of the
temperatures from all cores. As Figure 2.9 shows, the all-cores channel has performance comparable
(or possibly better) than the same-core channel.
We conclude that our communication scheme is robust to disabling thread pinning and, to some ex-
tent, to dropping real-time priorities and having background system load. The most sensitive parame-
ters are varying fan speed and enabling the DVFS governor, which makes communication impossible
with our scheme but might enable a different covert channel when all cores share the same active
frequency.

SAFURE D3.1 Page 14 of 45

D3.1 - Interim Analysis of Integrity Algorithms

Chapter 3 Data Integrity

The following chapter focuses on data integrity measures. It provides an overview of current state-of-
the-art techniques to preserve data integrity and additionally introduces first results of data integrity
algorithms for safe and secure systems in the context of SAFURE.
The amount of data in today’s automobiles is enormous and safe and reliable operation of a car
strongly depends on the integrity of these data. In a classical vehicle, actuators rely on sensor data
and exchange commands via the internal bus system of the car. In nowadays vehicles, additional in-
fotainment data, such as maps, driver’s personal data, and other media data, is stored and processed
in the vehicle. Therefore, strong data integrity measures are a stringent requirement in automotive
use cases. The goal of integrity algorithms is to protect data from unauthorized modifications also
comprising data generation and deletion. Data integrity can be divided into the following major as-
pects [?]:

• unauthorized data modification

• unauthorized data insertion

• unauthorized data replay

• unauthorized data generation

• unauthorized data deletion

Data integrity algorithms clearly enhance security as they allow the detection of unauthorized and
unwanted change to data. Therefore, any critical system where data integrity plays a major role
requires integrity measures.
With electronic systems taking on various safety relevant tasks, enhanced security protection has a
clearly positive impact on safety. However, integrity mechanisms add an additional processing delay
which needs to be considered in the implementation of a time-critical system, e.g. in the automotive,
avionics or healthcare domain.
There are various measures to verify and protect data integrity, the most commonly used ones are
presented in the following sections. In Section 3.1 an overview on non-cryptographic checksums is
given. To detect the intentional manipulation of data, cryptographic integrity protection techniques
are required. These techniques can be separated in symmetric approaches, i.e. MACs, presented in
Section 3.2.1 and asymmetric measures, i.e. digital signatures, discussed in Section 3.2.2. For both
types of cryptographic measures, different example algorithms are presented. Finally, a short intro-
duction to Public Key Infrastructures (PKIs) is given in Section 3.3 as this infrastructure is essential
for an efficient and secure usage of asymmetric cryptography in field.

3.1 Checksums and Error Correcting Codes

Checksums are used by various systems to provide protection against unintentional or accidental er-
rors occurring during transmission over communication channels. The receiver calculates the check-
sum over the received data and verifies this value against the received checksum. There are different
types of checksums varying from simple additions to more complex Cyclic Redundancy Check (CRC)

SAFURE D3.1 Page 15 of 45

D3.1 - Interim Analysis of Integrity Algorithms

algorithms, which can detect more errors but are also computationally more expensive. Furthermore,
error correcting codes cannot only detect errors but are also able to correct some errors by introducing
more redundancy to the transmitted message.
Checksums and error correcting codes are required to fulfill safety requirements such as those listed
in Part 6 of ISO 26262 [?]. However, there is no secret key necessary to calculate a checksum, i.e.
an adversary may not only alter the message but also the corresponding checksum to masquerade
the manipulation. Therefore, a cryptographic approach as described in the subsequent sections is
needed in order to detect targeted attacks.

3.2 Authentication

Integrity protection may be based on symmetric authentication techniques. In that case, the same
secret key is required for generating as well as verifying a Message Authentication Code (MAC),
which is a cryptographic checksum that authenticates a message. In general, hash functions or
symmetric encryption algorithms are used to generate MAC values. However, as the knowledge of
a common secret key is needed in order to generate and verify the value of the MAC, all network
validating components must be equipped with the same key. This can lead to the key distribution
problem: the number of keys required to be distributed through a secure channel grows exponentially
with the number of network components, because each pair of components needs to agree on an
individual key (resulting in a number of keys that is quadratic to the number of components).
Alternatively, asymmetric cryptography (i.e., digital signatures) can be used to protect the integrity
and authenticity of data, avoiding the key distribution problem, because in this setting only the public
key of each component needs to be distributed to all components (resulting in a linear number of
keys). However, asymmetric cryptography algorithms are computationally costly (i.e., about 1000
times slower than MACs). Furthermore, the key sizes for some asymmetric algorithms (e.g. RSA
– with the exception of Elliptic Curve Cryptography (ECC) algorithms like ECDSA) are significantly
larger than their symmetric counterparts. Table 3.1 gives an overview of recent recommendations for
minimum key lengths for different data integrity algorithms that are going to be at the center of this
chapter and work package. It is interesting to observe that a MAC based on the symmetric encryption
algorithm AES requires a 128bit key to achieve the same cryptographic strength as a RSA signature
with a key length of 3072 bit according to [?].

Institution Year RSA DSA ECDSA
ECRYPT II [?] 2012 2048 bit q>=256 bit, p>=3072 bit 256 bit
NSA [?] 2015 3072 bit - 384 bit
NIST [?] 2016 3072 bit q>=256 bit, p>=3072 bit 256-383 bit
BSI [?] 2016 2000 bit q>=250 bit, p>=2000 bit 250 bit

Table 3.1: Key Length Recommendations

3.2.1 Message Authentication Codes

MACs are based on symmetric algorithms that use the same key for generating as well as verify-
ing the integrity value. A MAC value is calculated either using a hash function (Keyed-Hash MAC
(HMAC)) or a symmetric cipher (CMAC). As only the knowledge of the secret key permits the gener-
ation and verification of the MAC, this key must be shared with all possible validators.

The basic principle of MACs is illustrated in Figure 3.1: Bob generates the MAC of the message x

using a the shared symmetric key k. He sends the message x and the MAC y to Alice who can
calculate the MAC y’ of the message she received. If y’ = y, she knows that she has received
exactly the message Bob sent.

SAFURE D3.1 Page 16 of 45

D3.1 - Interim Analysis of Integrity Algorithms

Figure 3.1: Basic principle of Message Authentication Codes (MACs)

Hash-based message authentication codes (HMACs)

HMACs use a cryptographic hash function and a secret key to generate the checksum. Generally,
the setup of an HMAC looks as follows [?]:

HMAC(K, m) = H(K⊕ opad || H(K⊕ ipad || m)),

where:

• H is a cryptographic hash function (e.g. SHA-256)

• K is a secret key

• m is the message

• opad is the outer padding (e.g., the byte 0x5C repeated until block length is reached)

• ipad is the inner padding (e.g., the byte 0x36 repeated until block length is reached)

• ⊕ indicates an exclusive disjunction (XOR) operation

• || indicates the concatenation of two bit strings

The strength of the procedure depends on the strength of the underlying hash function. In [?] and [?
], the application of SHA- and MD5-based HMACs is further described.

Cipher-based message authentication codes (CMACs)

CMACs make use of a block cipher as well as a shared secret key. The most widely used CMAC
are XCBC-based modes which are similar to the CBC-MAC, but with improved security features [?].
Cipher Block Chaining (CBC) refers here to the cipher block chaining mode as mode of operation of
the block cipher.
The extended cipher block chaining modes offer enhanced security measures compared to CBC-
MACs as well as several favorable features related to secrecy and integrity. These include the suit-
ability for real-time message authentication and support of multiple encryption modes. In addition,
they provide security against adaptive chosen-plaintext and message-integrity attacks, see [?].
In general, the setup of a CMAC looks as follows [?]:

SAFURE D3.1 Page 17 of 45

D3.1 - Interim Analysis of Integrity Algorithms

Figure 3.2: The two cases of CMAC Generation [?]

1. Generate the subkeys K1 and K2

2. Separate the message m in n blocks of length b

3. If the last block, mn, is a complete block, let mn = K1 ⊕mn; else, let mn = K2 ⊕ (mn || 10j), where
j = nb−mlength − 1.

4. Let c0 = 0b.

5. For i = 1 to n, let ci = cipherK(ci−1 ⊕ mi).

6. Return MAC = MSBMAClength(cn)

where:

• K is a secret key

• K1 and K2 are secret subkeys derived from K as specified in [?]

• m is the message of bit length mlength

• cipher() is a secure block cipher (e.g. AES in CBC mode) with block length b (e.g. 128 for
AES-128)

• MAC is the output of the algorithm of bit length MAClength

• ⊕ indicates an XOR operation

This general algorithms is illustrated in Figure 3.2.

Poly1305

Poly1305 is a very fast CMAC algorithm based on a polynomial evaluation modulo 2130 − 5. The first
version is based on AES-128 [?], but it can also be used with other ciphers, such as Salsa20 [?]
or ChaCha20 [?]. The major advantage of Poly1305 is that it provides a parallelizable high-speed
algorithm with a low computational overhead per message, i.e. it is also efficient for short messages
and not just optimized for long messages. The security of Poly1305 depends on the security of the
underlying cipher. It has been standardized in RFC 7539 and is used – in combination with ChaCha20
– in the TLS/SSL protocol.

SAFURE D3.1 Page 18 of 45

D3.1 - Interim Analysis of Integrity Algorithms

Figure 3.3: Basic principle of Digital Signatures

3.2.2 Digital Signatures

In addition to verifying data integrity and providing a means of authentication, digital signatures ensure
non-repudiation of a signed message. Digital signatures mainly rely on a PKI which is commonly used
for asymmetric cryptography. Details on advantages, challenges and requirements of PKIs are given
in Section 3.3. In case of asymmetric cryptography, each entity, e.g. a device, person or email
account, has its own key pair consisting of a public and a private key. The secret key is only known
to the device itself whereas the public key is distributed to all other communicating parties.
The basic principle of digital signatures is illustrated in Figure 3.3: Bob calculates the signature y of
the message x using his private key SKB. He sends the message x and the signature y to Alice who
does not know Bob’s private key but his public key PKB. Alice runs the verification algorithms on
the message x and signature y she received and gets a Boolean output. If the verification algorithm
returns true she knows that the message x has not been altered during transmission and that it has
been signed by Bob - or someone who knows Bob’s private key.
Digital signatures depend on the secrecy of the private key in order to prevent its forgery. In the
following paragraphs, examples of digital signature algorithms are presented.

RSA signatures

RSA signatures are part of the RSA crypto system that has been proposed in 1978 [?]. Key gen-
eration and the operations for message signing and verifying are identical to the steps for message
encryption and decryption.
For signature generation and verification, a key pair PKB, SKB is required. To generate the key pair,
two prime numbers p and q are chosen at random and multiplied n = pq. n is the modulus necessary
for all signature and verification operations. Then, Euler’s totient function, ϕ(n) = (p − 1)(q − 1), is
calculated. Formally, this function gives the number of totients of n, i.e. the number of integers i for
which are coprime or relatively prime to n (i.e. gcd(i, n) = 1). Additionally, an integer e which needs
to be coprime to ϕ(n) and its modular multiplicative inverse d = e−1mod ϕ(n) are chosen. The secret
key SKB = (n, d) is used for signature generation. The public key PKB = (n, e) can be distributed and
is required for signature verification. The parameters p, q, ϕ(n) have to be kept secret, too, because
d can be easily calculated if these values become public.
The signature s of a message m is computed as follows, where H is a hash function:

s := H(m)dmodn

SAFURE D3.1 Page 19 of 45

D3.1 - Interim Analysis of Integrity Algorithms

The receiver of (m, s) uses the corresponding public key to verify the signature. He checks if H(m) =
semod n.
In practice, this plain RSA is not used because there are well-known chosen plain- and ciphertext
attacks. Various padding techniques, such as the Probabilistic Signature Scheme (PSS), can be
applied to the input of the RSA signature algorithm to provide additional security. Additionally, imple-
mentations of RSA need to consider side-channel and timing attacks. However, while the generation
of signatures is relatively slow, the signatures can be verified fast and efficiently which is usually
the more frequent operation in practice, for example a digital certificate is signed once but validated
multiple times.

DSA

The Digital Signature Algorithm (DSA) has been proposed by the National Institute of Standards and
Technology (NIST) [?]. Its security is based on the discrete logarithm problem, i.e. the problem that
discrete logarithms cannot be efficiently computed in certain groups.
The signature algorithm uses a hash function H, e.g. SHA-1 or SHA-2. Furthermore, two primes
p and q are chosen in such a way that p − 1 is a multiple of q. The primes are N and L bit long,
respectively. It is recommended [?] to choose N >= 3072 and L >= 256.
Additionally, a parameter g needs to be chosen such that the multiplicative order of gmodp is q. The
parameters p, q, g are shared between all users of the system and each user derives his own key pair
x, y as follows:

• The private key x is a random number with 0 < x < q.

• The public key y := gxmodp is calculated.

The for each new signature (r, s) of a message m a random value k where 0 < k < q is chosen. The
signature is calculated as follows

r := (gkmodp)modq

s := k−1(H(m) + xr)modq

If either r = 0 or s = 0, a different random value k has to be chosen.
To verify the signature, v = (gu1yu2modp)modq with u1 = H(m)wmodq and u2 = rwmodq where
w = s−1modq is calculated. The signature is valid if v = r. Signatures where 0 < r < q or 0 < s < q
are not satisfied can be rejected.

ECDSA

The Elliptic Curve Digital Signature Algorithm (DSA) (ECDSA) [?] is an ECC variant of the DSA
which has been described in the previous subsection. In contrast to the DSA, calculations are done
on an elliptic curve. The security of the Elliptic Curve DSA (ECDSA) relies on the assumption that
the Ellitpic Curve Discrete Logarithm Problem (ECDLP) is difficult. The choice of the elliptic curve
determines the overall security of the system (since certain types of curves are known to be vulnerable
to specific attacks) as well as the speed of the implementation. The major advantage of the ECDSA
is that the key length necessary to achieve a comparable level of security is significantly shorter than
for the DSA.

EdDSA

The Edwards-curve DSA (EdDSA) [?] is a variant of Schnorr signatures [?] based on Twisted
Edwards curves, a special type of elliptic curves [? ?].
The fact that it is not necessary to create randomness for new Edwards-curve DSA (EdDSA) signa-
tures but only for new session keys helps to prevent attacks comparable to the attack on the Sony
PlayStation 3 security system [?].
The EdDSA can be implemented without conditional branches and array indexing based on secret

SAFURE D3.1 Page 20 of 45

D3.1 - Interim Analysis of Integrity Algorithms

data in order to prevent side-channel attacks. Furthermore, it has been observed [?] that imple-
mentations of the EdDSA are significantly faster than recent implementations of most other signature
schemes such as DSA or ECDSA. According to the publication, only certain RSA-based systems
offer faster verification times but are slower at signing and require longer keys for a comparable level
of security, cf. Table 3.1.
Due to these characteristics, the EdDSA is a promising signature algorithm for systems with high
requirements regarding speed and security.

3.3 Public Key Infrastructure

PKIs are widely used in standard IT environments and in particular in the Internet but have also
proven useful in embedded applications. In a classical PKI, the root Certificate Authority (CA) can
issue and revoke certificates for sub-CAs. More precisely, the sub-CA generates a pair of private and
public keys and sends the public key to the CA, which issues the certificate. The certificate embeds at
least the following information: the identity of the issuing CA, the identity of the sub-CA, the public key
of the sub-CA and a signature of said data generated with the private key of the CA. Consequently,
the sub-CA is able to generate signatures on behalf of the CA: anyone who has the public key of
the CA, the certificate of the sub-CA and a signature generated by the sub-CA is able to verify the
signature:

• First, the certificate of the sub-CA is verified by checking the signature embedded in the cer-
tificate using the public key of the CA. After this step, the public key of the sub-CA, which is
embedded in the certificate, can be trusted.

• Second, the signature generated by the sub-CA can be verified using the public key of the
sub-CA.

The format of certificates has been standardized for different use cases: X.509 is the standard certifi-
cate format which is, for example, used for Transport Layer Security (TLS) certificates [? ?]. It is very
flexible and widely accepted in various industries but is not well-suited when bandwidth and memory
size are limited. Certificates in the X.509 format contain a version and serial number, the identify of
the issuing entity and of the owner. Furthermore, the validity period is specified and as the essential
information, details on the key for which the certificate has been issued, i.e. the key itself and the
algorithm for which the key shall be used, are stated. Additionally, there may be extensions of the
certificate. Each extension consists of an ID, a flag which marks the extension as critical or uncritical
and a value. Extensions can, for example, be used to specify for which application, e.g. signing, the
certificate has been issued or if it belongs to a CA.
Card Verifiable Certificates (CVCs), which have been developed for smartcard applications and are
standardized in [?], are an alternative which provide significant savings in view of the size of cer-
tificates. In contrast to X.509 certificates, CVCs certificates only contain the issuer, the owner, the
public key and the period of validity. In particular, the certificates cannot be extended with additional
information and therefore are of a limited and predictable size which is crucial in limited surroundings,
such as smartcards or other embedded devices.

SAFURE D3.1 Page 21 of 45

D3.1 - Interim Analysis of Integrity Algorithms

Chapter 4 Timing Integrity and Resource Sharing Integrity

This chapter focuses on timing integrity constraints associated with real-time applications, and the
impact of shared resources on real-time constraints.

4.1 Introduction

4.1.1 Safety-Critical and Time-Critical Context

In the safety-critical domain, industries such as avionics, automotive, space, healthcare or robotics
are facing an exponential growth of performance requirements in term of pure efficiency and number
of embedded functionalities [? ? ?]. As a proxy to this exponential growth, Figure 4.1 is showing,
with a logarithmic scale, the increase of embedded code size in the avionic, space and automotive
industries.

1970 1975 1980 1985 1990 1995 2000 2005 2010
104

105

106

107

108

109

A300B

A300FF

A310
A320

A330

A380

Voyager

Galileo

Pathfinder

Cassini

Mars Explorer

co
d
e
si
ze

(i
n
st
ru
ct
io
n
s)

space
avionic
automotive

x

Figure 4.1: Evolution of code size (in instructions) in Space, Avionic and Automotive safety critical
systems.

To cope with such performance requirements while reducing both the non-recurring engineering
costs (NRE) and the Time-To-Market (TTM), these industries are relying on Commercial off-the-shelf
(COTS) architectures rather than in-house solutions [?]. However, COTS providers are mainly target-
ing the consumer electronic market, mostly driven by best-effort performances. The safety-critical
industry has to face more and more runtime variability issues [? ?].
However, safety-critical applications (and especially time-critical applications) are characterized by
stringent real-time constraints and missing a single deadline may have catastrophic consequence on
the user or the environment (such as a plane crash in avionics). Therefore, time predictability and
determinism is a major concern, and the safety-critical industry has to respect dedicated standards
[? ? ?] to ensure that such an unacceptable deadline-miss cannot happen.

SAFURE D3.1 Page 22 of 45

D3.1 - Interim Analysis of Integrity Algorithms

4.1.2 Dealing with Worst-Case Execution Time

A common practice to guarantee the deadlines of a safety-critical application with single-core archi-
tecture is to determine the application Worst Case Execution Time (WCET). This WCET computation
usually relies on analysis tools based on static program analysis tools [? ?], detailed hardware
model, as well as measurement techniques through execution or simulation [?]. However, these
analysis techniques and tools are not currently able to provide an exact computation of the WCET,
only delivering an estimated upper bound, introducing some safety margins as depicted in Figure 4.2.

execution time

di
st
ri
bu

ti
on measured WCET

exact WCET

estimated WCET

safety margin

over margin

Figure 4.2: Estimation of the Worst-Case Execution Time, and the over-estimation problem

Despite all the improvements in the WCET estimation domain [? ?] over the last decades, the
over-estimation remained mostly constant as the predictability of the architecture decreased [?].
This makes the use of WCET analysis tools difficult for real industrial programs running on multi-core
COTS architectures [? ?].
Several studies [? ?] have shown that the order of magnitude on the variation of the maximum
observed execution time while using the 8 cores of a multi-core architecture was larger than the
expected gain from using a multi-core (with up to a 20x on the worst case for 8 cores).
As a consequence, relying on a safety margin as usual is no longer an option, as overmargin will
be far over the expected performance benefits. This leads to a worst-case performance degradation
compared to single-core architectures. It is therefore critical to understand and control the sources of
these variations.

4.1.3 Multi-Core & Interferences: An Issue for Time Determinism

Multi-core architectures are potentially providing more performance than single-core architectures
by allowing the parallel execution of several applications or tasks. To cope with the increase of
performance-demanding functions in safety critical systems, it is becoming critical to exploit such
level of parallelism. At the same time, the spatial isolation and timing isolation properties required
by the safety standards must be ensured, meaning that timing integrity constraints must be met with
some degree of determinism.
However, running tasks in parallel introduces some interferences that may endanger these proper-
ties.

4.1.3.1 Defining Interferences

Multi-core architectures are characterized at hardware-level by the fact that the different cores are
sharing some hardware resources such as some caches or the interconnect of the main memory.

SAFURE D3.1 Page 23 of 45

D3.1 - Interim Analysis of Integrity Algorithms

When several co-running tasks are executed on different cores and are trying to concurrently access
the same shared hardware resource, some arbitration mechanisms are involved at hardware level.
This allows one of the tasks to access the resource, while delaying all the other concurrent accesses,
resulting in some contention as depicted in Figure 4.3.

core

L1
cache

core

L1
cache

core

L1
cache

core

L1
cache

L2 shared cache L2 shared cache

interconnect

Memory I/O

(a) accesses to private hardware resources

core

L1
cache

core

L1
cache

core

L1
cache

core

L1
cache

L2 shared cache L2 shared cache

interconnect

Memory I/O

x x

x

(b) accesses to shared hardware resources ⇒
contentions

Figure 4.3: Concurrent accesses to hardware resources in a multi-core system

The tasks in Figure 4.3a exhibit no particular problems when several cores are concurrently accessing
private hardware resources. However, the tasks in Figure 4.3b exhibit some contentions when several
cores are requiring to access the main memory.
From a functional point of view, this behavior is not an issue: The core that has been denied ac-
cess will try again during the next cycles. However, from the timing integrity point of view of each
delayed task, the extra delay of a memory access, introduced because of the unpredictable behavior
of other cores, are interferences that are breaking the time independence principles required by the
standards.
The challenge is therefore to be able to ensure the timing integrity of real-time systems providing
some degree of determinism to ensure a sufficient level of time independence, while dealing with
time interferences.

4.1.3.2 Timing Covert Channel From Shared L2 Cache

A cache is protected from direct attacks against the confidentiality, integrity and availability of content
with the help of the Memory Management Unit. However, observing the timing behavior can reveal
the information on the use of the cache by other applications. This timing behavior can be leveraged
to form a covert channel between the partitions. A channel is called a timing covert channel when the
basis of information transfer is not by direct copying of data but rather by modulating and observing
the availability or behavior of a physical or logical resource.
Assume two applications that belong to different security domains that are not supposed to exchange
information are integrated in a computing platform. A Separation Kernel (i.e. a special type of opera-
tion system) ensures isolation between applications by providing temporal and spatial partitioning of
system resources. If the L2 cache is shared between the partitions, one application can replace the
cache line belonging to the other application by relying on the replacement policy of the cache. If the
two applications are scheduled in consecutive time windows, an application can modify the state of
cache to encode data and the other can decode the data from the modified cache state. The access
time for reading from the cache is much lower than reading from the main memory. This difference in

SAFURE D3.1 Page 24 of 45

D3.1 - Interim Analysis of Integrity Algorithms

access time, based on whether the memory block is cached or not, can be used to decode the data.
Ristenpart [?] and Xu [?] describe this type of covert channel on a virtualized environment such
as Amazon EC2. The basic algorithm used by Ristenpart [?] works as follows. The application that
transmits the data using the covert channel is named Transmitter (TX) and the one receiving data
is named Receiver (RX). In the preparation phase, the receiver makes the cache hot by bringing a
memory block from its address space to the L2 cache. The L2 cache is divided into two groups based
on the cache line index. The cache lines with even indexes form the even group and the cache lines
with odd indexes form the odd group. To transmit a bit the transmitter evicts all lines from one group
and leaves the other group untouched. I.e. to transmit a one the transmitter evicts the cache lines of
Receiver indexed by odd indices, and to transmit zero, cache lines with even indices are evicted. For
decoding the data the receiver reads the cache lines belonging to the even group and the odd group
separately and the access time is compared. A higher access time on the odd group is decoded as
one and higher access time on the even group is decoded as zero.
Kuzhiyelil et al [?] evaluate the L2 cache based timing covert channel on hardware (PowerPC
based SoC) to identify optimum conditions for achieving maximum information flow through the covert
channel with minimum transmission error. They discuss the countermeasures for timing based covert
channel on the chosen hardware and real-time hypervisor PikeOS and propose a solution to mitigate
and eliminate such attacks based on a proper configuration of both of hardware and OS.

4.2 State-of-the-Art on Timing Integrity for Multi-Cores

In the literature, there are two families of solutions to ensure a deterministic usage of multi-core
architectures: Control solutions aiming at eliminating all interferences and regulation solutions
aiming at keeping the impact of interference below a harmful level [?].
The literature also alternatively proposes to rely on more deterministic architectures [? ? ? ? ?
?]. However, these approaches rely on custom hardware and are very costly. They are beyond
the scope of the SAFURE project that focuses on low-NRE COTS architecture solutions. Also such
purely deterministic architectures suffer from inherent performance issues.
In the following subsections, we will present existing control-based and regulation-based software
solutions to ensure time determinism with some non-deterministic COTS multi-core hardware plat-
forms. Most of these solutions have been presented in [?] as Deterministic Platform Software
(DPS) together with an evaluation for the avionic domain that is very constrained by timing integrity
requirements. DPS are pieces of software that bring no functionality by themselves, but are in charge
of enforcing usage domains over shared resources, effectively providing some determinism by either
controlling the access to the hardware or by reactively regulating the resource usage.

4.2.1 Control Solutions Avoiding Interferences

Control solutions are usually enforcing a usage domain [? ?] that explicitly restricts the way shared
resources can be concurrently used by the cores. These techniques usually rely on specifically
restricted scheduling policies that ensure the absence of interferences.

4.2.1.1 Deterministic Execution Models

The Timing Integrity algorithm of the Deterministic Execution Model approaches [? ? ?] maintains
the processor in a predictable state by sequentializing accesses to shared memory resources prone
to interferences, while still allowing the parallel execution of non-communication sections.
More specifically the AER execution model (named after its phases), described in [?], distinguishes
three phases: acquisition, during which fresh data are copied from central memory into some private
memory; execution performing calculation on the data in isolation within the private memory; and
restitution when results are copied back into central memory.

SAFURE D3.1 Page 25 of 45

D3.1 - Interim Analysis of Integrity Algorithms

time

A E R

A E R

A E R

A E R

A E R

A E R

A E R

A E RCORE4

CORE3

CORE2

CORE1

parallelism

#comm

repetitive pattern

1 2 3 2 1 1 2 3 2 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

Figure 4.4: AER Execution Model

A global scheduling policy is then applied so that only one acquisition or restitution phase occurs at
a given time, while not restricting the schedule of the execution phases, as shown in Figure 4.4.
A drawback of this solution is the requirement to modify the application source code to fit with the
phase decomposition. Such a rewriting of the application can be costly as it requires to re-certify the
application.
A major advantage is that the solution relies on a static scheduling policy, a proven technology that
will make the certification of the DPS software itself straightforward.

4.2.1.2 Deterministic Adaptive Scheduling

Fischer et al. [?] propose the implementation of a multi-core run-time system certified for SIL-4 [?],
particularly focusing on the railway domain.
Their algorithm, ensuring timing integrity, forces the user to define which applications (or partitions)
should not suffer interferences. These applications will be run in isolation in some dedicated time
slots. Non time-critical applications will - on their side - be run in parallel in interference prone time
slots, as shown in Figure 4.5.

time

Critical Task

Critical Task

Non-critical Task

Non-critical Task

non-critical timeslot
(parallelism)

critical timeslot
(no interference)

Figure 4.5: Deterministic Adaptive Scheduling

This solution can easily be applied when running critical and non-critical applications together. How-
ever, in a mixed-critical context that involves several levels of criticality, only the fully non-critical
applications will benefit from parallelism, leading to a performance issue.

4.2.1.3 Marthy

Jean [? ?] proposes Marthy, a solution enabling all the cores to run critical applications, with only
one of them being allowed to access the shared resources (including main memory) at a given time
through a TDMA scheduling of accesses to these resources.
As for AER, sequential resource access eliminates interference, thus providing determinism. As
illustrated by Figure 4.6, when a core tries to access a memory location that is not mapped in the
cache, Marthy catches the associated interrupt and blocks the core execution until its assigned TDMA
slot by performing low-level MMU management and cache locking.
Even though Marthy ensure strict isolation, not requiring legacy applications to be modified, it suffers
two drawbacks: First Marthy is quite complex, performing low-level hardware tuning to ensure the

SAFURE D3.1 Page 26 of 45

D3.1 - Interim Analysis of Integrity Algorithms

Application
Workload

Application
Workload

Application
Workload

Control
Software

Core

Caches

Control
Software

Core

Caches

Control
Software

Core

Caches

Interconnect

I/O Device ControllerMemory Controller

ca
ch

e
lo
ck
in
g

M
M
U

m
a
n
a
g
em

en
t

· · ·

· · ·

Figure 4.6: Marthy Deterministic Control Software

TDMA behavior. As a consequence, the DPS itself will be costly to certify. And second, with Marthy,
the running applications are suffering a significant slowdown.

4.2.2 Regulation Solutions Keeping Interference Below a Harmful Level

While completely avoiding interferences might be necessary for most critical systems such as in
avionics, most of the time making sure that interferences are not harmful is enough for less critical
systems. Regulation software solutions aim at managing interferences so that critical applications
will not miss their deadlines because of these interferences, effectively ensuring a sufficient level of
timing integrity.
Regulation solutions have the opportunity to impact lower critical tasks to make sure that higher critical
tasks are fulfilling their timing integrity requirements. As a consequence, such regulation techniques
are more suited in a mixed-critical context.

4.2.2.1 Memguard

The Memguard time-integrity mechanism [?], introduced in the Single-core Equivalent Virtual Ma-
chines project [?], relies on smartly pre-allocating bandwidth to the memory system, to bound
interferences.
As depicted in Figure 4.7, Memguard relies on performance counters to check the current shared bus
usage versus the generated maximum bandwidth that guarantees an acceptable level of interference.

Multi-core Platform

Operating System
MEMGUARD

CORE

PMC

CORE

PMC

CORE

PMC

CORE

PMC

DRAM Controller

DRAM

0.9GB/s
Regulator

0.1GB/s
Regulator

0.1GB/s
Regulator

0.1GB/s
Regulator

Reclaim Manager

Peak Bandwidth: 6.4GB/s
Guaranteed Bandwidth: 1.2GB/s

Figure 4.7: Memguard Reservation and Reclaiming System

The sum of the observed bandwidths is kept below the memory system sustainable bandwidth. When
the maximum number of accesses is reached, Memguard stops the core execution until the beginning
of the next time slot.

SAFURE D3.1 Page 27 of 45

D3.1 - Interim Analysis of Integrity Algorithms

As a consequence, for each timeslot, the system integrator is responsible for allocating bandwidth to
each core, making sure that the total allocated bandwidth should not exceed the maximum sustain-
able bandwidth.
Memguard also allows to further enhance the system performance by sharing unused bandwidth over
several timeslots, thanks to a reclaim mechanism.

4.2.2.2 Distributed Runtime WCET

A last regulation software solution is proposed in [?] that relies on a distributed run-time WCET
controller. This solution, developed for mixed-critical systems as part of the DREAMS project [?],
enables to smoothly run critical tasks together with non-critical tasks.
To do so, critical tasks regularly check if the interferences due to other tasks can be tolerated. Other-
wise, critical tasks request the WCET controller to temporarily suspend low criticality tasks as shown
in the scenario presented in Figure 4.8.

time

WCET Controller

Critical Task

Critical Task

Non-critical Task

0
iso

l

st
o
p

1

en
d

re
st
ar
t

0

iso
l

st
o
p

1

iso
l

2

en
d

1

en
d

re
st
ar
t

0

Figure 4.8: Distributed Run-time WCET Controller

A drawback of this particular solution is the necessity to modify critical applications to add the inter-
mediate checks while the non-critical software runs unmodified. Unfortunately it means to modify the
applications that are the most costly to certify.

4.2.2.3 Conclusion

Unlike control software solutions, regulation solutions are better suited in a mixed critical context, al-
lowing to exploit the performance of the multi-core, effectively inducing some interference, but reduc-
ing their overall amount. Such regulation techniques often rely on budgeting, therefore requiring some
extra analysis steps to accurately determine these budgets without pessimistic over-provisioning.

4.2.3 Multi-Core Interference-Sensitive WCET Analysis Leveraging Runtime Resource
Capacity Enforcement

In [?] a novel approach of computing an interference-sensitive WCET considering variable access
delays due to the concurrent use of shared resources in multi-core processors, particularly focusing
on shared interconnects and main memory has been proposed. This approach tackles the problem
of temporal partitioning as required by safety-critical applications. The approach employs additional
phases to state-of-the-art timing analysis techniques to analyze an applications resource usage and
compute an interference delay. Authors further complement the offline analysis with a runtime mon-
itoring concept to enforce resource usage guarantees. Results show a significant reduction of the
multi-core WCET, while implementing full transparency to the temporal and functional behavior of
applications, enabling the seamless integration of legacy applications.

4.3 State-of-the-Art on Timing Integrity for Ethernet

The formal verification of Ethernet timing integrity has received a lot of attention in recent years. In
standard Ethernet (IEEE 802.1Q), the arbitration in the output ports of Ethernet switches is event-

SAFURE D3.1 Page 28 of 45

D3.1 - Interim Analysis of Integrity Algorithms

triggered and follows Static Priority Non-Preemptive (SPNP) scheduling. The formal timing analysis
for SPNP is well-understood from Controller Area Network (CAN) bus timing analysis [?]. In contrast
to CAN, however, Ethernet offers only eight traffic classes (priority levels). Hence, different traffic
streams must share priority levels. Ethernet switches typically use First In, First Out (FIFO) scheduling
to arbitrate between different traffic streams with identical priority level.

4.3.1 Switched Ethernet

A timing analysis, which combines SPNP scheduling with FIFO scheduling in the context of IEEE 802.1Q
is presented in [?]. Further analyses for IEEE 802.1Q are presented in [?] and [?].

4.3.2 ADFX - Avionics Full-Duplex Switched Ethernet

Analyses to derive worst-case timing guarantees for Avionics Full Duplex Switched Ethernet (AFDX)
[?], an avionics Ethernet implementation which also uses SPNP scheduling, are presented in [?],
[?], [?], [?], and [?]. Additionally, [?] and [?] present formal methods to derive buffer size bounds
for switches. A holistic timing analysis for AFDX is presented in [?].

4.3.3 Ethernet AVB - Audio Video Bridging

Ethernet Audio Video Bridging (AVB) (IEEE 802.1Qav) [?] introduces standardized credit-based
traffic shaping to IEEE 802.1Q to provide bandwidth-limited link access. Formal timing analyses for
Ethernet AVB are presented in [?], [?], [?], [?], and [?]. The timing analysis in [?] only
provides timing guarantees per traffic class, where the others allow per-stream timing guarantees.
Furthermore, [?] shows that, while Ethernet AVB’s traffic shapers can help to achieve timing integrity
by limiting the impact of shaped traffic classes on lower-priority traffic, the end-to-end latency of
shaped traffic classes suffers heavily from the shaper implementation.

4.3.4 Ethernet TSN - Time-Sensitive Networking

Ethernet Time-Sensitive Networking (TSN) [?] is a set of upcoming Ethernet standards, which,
among other things, introduce new quality-of-service mechanisms to Ethernet. Among these mech-
anisms is the time-aware shaper (IEEE 802.1Qbv) [?], which introduces time-triggered slots for
latency-critical traffic streams. Non- or less-latency-critical traffic streams are scheduled event-triggered
outside these slots. As IEEE 802.1Qbv enforces that non-time-triggered traffic does not overlap with
time-triggered slots and time-triggered traffic remains within its designated slots, it is easy to achieve
timing integrity for time-triggered traffic. Its static nature, however, deems it less efficient for dynamic
(i.e. event-triggered) traffic and network changes typically require a recomputation of the schedule of
the time-triggered slots. Ethernet TSN also proposes two shapers for event-triggered traffic. Cyclic
queueing and forwarding (IEEE 802.1Qch) [?] tries to bound the residence time of frames in Ethernet
switches. It divides time in alternating intervals: even and odd. Frames received in an even interval
are sent in the next odd one and vice versa. The burst-limiting shaper [?] specifies a credit-based
traffic shaper similar to Ethernet AVB’s shaper. However, the burst-limiting shaper allows bursts of
frames up to a certain size to pass without credit replenishment. In [?] formal analyses for all three
Ethernet TSN schedulers are presented. These analyses, however, do not consider certain blocking
effects, e.g. blocking caused by FIFO scheduling among frames of identical priority is not taken into
account. Hence, [?] cannot be used to guarantee timing integrity for Ethernet TSN.

4.3.5 TTEthernet

Similar to Ethernet TSN’s time-aware shaper, TTEthernet [?] also provides time-triggered link access
(and hence timing isolation) for latency-critical traffic streams. Timing analysis of the time-triggered

SAFURE D3.1 Page 29 of 45

D3.1 - Interim Analysis of Integrity Algorithms

frames is, by design, trivial, once a schedule has been constructed. Additionally, TTEthernet supports
event-triggered rate-constrained and best effort traffic streams.

4.3.6 Analysis Optimizations

Most formal timing analyses use certain overapproximations in order to keep their analysis complex-
ity (and, in turn, their run-time) at an acceptable level. Typically, each resource along a chain of
resources, e.g. along a path through an Ethernet network introduces a certain overestimation on the
actual worst-case (timing) bounds. This can lead to overly large worst-case guarantees. In order to
minimize this effect, several optimizations, which exploit different Ethernet properties, have been pro-
posed. The analysis in [?] exploits that Ethernet links implicitly act as traffic shapers (e.g. 100 MBit/s)
and that Ethernet AVB’s traffic shaper’s may further limit the bandwidth of shaped traffic classes. In
[?] and [?] analyses, which exploit the FIFO scheduling in Ethernet are presented.

4.3.7 Ingress Filtering

All presented shapers have in common that they are only able to shape a certain traffic class (priority
level). As already mentioned, traffic classes in Ethernet are shared among different traffic streams.
This implies that these shapers can only be used to prevent or bound the inter traffic class interfer-
ence, i.e. they can only be used to enforce the inter class timing integrity. In order to guarantee intra
class timing integrity, per traffic stream shaping is necessary. In the context of Ethernet TSN, this is
being discussed in the IEEE 802.1Qci [?] standard.

4.4 Vulnerability Detection for Multi-Cores

This section identifies the main hardware shared resources in the Telecom use case platform and how
their sharing can affect execution time of the different tasks running. This challenges the estimation
of execution time bounds, which is a form of vulnerability since safety real-time tasks need reliable
execution time bounds for being properly scheduled. Therefore, a methodology is provided to upper
bound the impact in execution time of contention when accessing hardware shared resources.

4.4.1 Shared Hardware Resources in the Telecom Use Case Platform

The hardware platform selected for the Telecom use case is depicted in Figure 4.9. It is composed
of two quad-core clusters. The first one is a high-performance A57 quad-core cluster, with a 2MB
L2 cache shared between the 4 cores, and private L1 caches. The second one is a low energy A53
quad core cluster sharing a smaller 512KB L2 cache between the cores, also encompassing private
L1 caches (though being smaller than for the other cluster).
The clusters are connected to the main memory through a shared CCI400 AMBA bus and then
through an Application Fabric interconnect, itself connected to a dual port 32-bit DDR controller.
These interconnect shared hardware resources are also shared by other hardware resources, like
some low-level peripherals for the AMBA bus, the multi-media subsystem for the Application Fabric,
as well as the System Bus connecting all the peripherals (PCI-X, UART, SPI, ...).

4.4.2 On-Chip Resource Sharing

The research on timing analysis for multi-core processors is still in its infancy. Especially so for COTS
multi-cores, whose timing analysis is a complex challenge that needs to be solved before their adop-
tion in safety-critical real-time systems industry may become viable. Deriving an Execution Time
Bound (ETB)1 for tasks running on multi-cores is challenged by the contention, also known as inter-
task interference, occurring on access to hardware shared resources. Unless otherwise restrained,

1Due to the lack of definitive Worst-Case Execution Time (WCET) estimation methods for COTS multi-cores, we use the
term ”execution time bound” (ETB) instead of WCET.

SAFURE D3.1 Page 30 of 45

D3.1 - Interim Analysis of Integrity Algorithms

CPU subsystem

ARMv8-A
Cortex A53

IL1 Cache
(32KB)

DL1 Cache
(32KB)

Shared L2 Cache
(512KB)

ARMv8-A
Cortex A57

IL1 Cache
(48KB)

DL1 Cache
(32KB)

Shared L2 Cache
(2048KB)

AMBA5 Coherent Bus (CCI400)

Application Fabric

Dual-channel
DDR controller

Figure 4.9: Shared Hardware resources alongside the memory path on the Telecom use case hard-
ware platform (Dragonboard 810). As shown each of the two quad-core clusters includes a shared
L2 cache and communication channels towards the DDR memory controller.

contention causes the execution time of any one task, hence its ETB, to depend on its co-runners.
This has a severe impact on system design and validation, as it conflicts with the incremental devel-
opment and verification model that industry pursues to contain qualification costs and development
risks. This industrial goal is solved by allowing individual subsystems to be developed in parallel, qual-
ified in isolation, and incrementally integrated, with great reduction in the risk of functional regression
at system level. In the timing domain, incremental integration and qualification postulate compos-
ability in the timing behavior of individual parts, whereby the ETB derived for a task determined in
isolation, should not change on composition with other tasks.
Two main approaches have been followed so far to deal with contention for multi-core on-chip re-
sources, which place at the opposite ends of a conceptual spectrum of solutions. On the one end,
some authors propose computing ETBs so that they upper bound the effect of any possible inter-
task interference a task may suffer on access to hardware shared resources. ETBs computed this
way are fully time composable and enable incremental integration and qualification, but at the cost
of pessimism that may cause untenable over-provisioning, as the timing behavior occurring in oper-
ation may fall much below the level determined considering the worst-case interference possible in
theory [? ? ?]. On the opposite end, other authors [?] propose – currently only for research plat-
forms – to determine ETBs simultaneously for multiple tasks in specific configurations. Those ETBs
are non-time composable, as they only hold valid for the tasks being analyzed and for their specific
configuration. If any such parameter changes, all ETBs become invalid and the entire analysis has to
be repeated.
In this study we tackle resource contention in multi-cores by proposing the new concepts of resource
usage signature (RUs or S) and template (RUl or L). A task τ is exposed to contention in the
access to the hardware shared resources because co-runner tasks can interfere τ ’s execution. The
usage of the hardware shared resources made by co-runner tasks is referred to as u. RUs and
RUl aim at making the ETB derived for τ , time composable with respect to u. The tasks’ ETBs are
derived for a particular set of utilizations U such that the ETB derived for any u ∈ U upper bounds τ ’s
execution time under any workload so long as the co-runners of τ make a resource usage smaller
than u. We explain later what “smaller” means and how this can be determined. This abstraction
allows deriving time-composable ETBs for individual tasks in isolation for each u ∈ U , so that the
system integrator can safely pull those (interfering) tasks together as long as the resource usage
made by their individual set of co-runners is upper-bounded by some u. All that the system integrator
has to care in that regard is to characterize the tasks’ accesses to hardware shared resources (a low-
cost abstraction of the task execution time), ignoring any finer-grained detail of that access behavior.
In this section we present an approach to produce ETBs in that manner, using measurement-based

SAFURE D3.1 Page 31 of 45

D3.1 - Interim Analysis of Integrity Algorithms

timing analysis techniques.
RUs and RUl are devised to be agnostic to the particular timing distribution of the resource access
requests to be considered. Hence, two tasks generating the same number of accesses to a resource,
though with different patterns, have the same signature. The challenge in the proposed method is in
determining an effect on the interfered task that upper bounds the interference caused by contending
accesses, regardless of the time distribution of those accesses as made by the interfered and the
interfering tasks. In this work we make the following main contributions:

1. We develop the novel concepts of RUs and RUl for the timing analysis of COTS multi-cores and
sketch an algebra of operators over RUs/RUl to enable their practical use.

2. We provide exemplary RUs and RUl for the cases when requests accessing shared resources
incur either fixed or variable response latency.

3. We present a strategy to implement RUs and RUl for the SnapDragon processor used in the
Telecommunications case study [?] architecture, focusing on the bus and the memory con-
troller as exemplars of on-chip shared resources.

4.4.2.1 Formalization of RUs and RUl

RUs and RUl allow analyzing, for the most part in isolation, the timing behavior of tasks, by abstracting
the interference that they may suffer due to contention when accessing hardware shared resources
on a multi-core caused by co-runner tasks.

4.4.2.1.1 Resource usage signature (RUs)

Given an interfered task, τA, a RUs abstracts its use of the hardware shared resources. Once com-
puted, it will be used for τA’s multi-core timing analysis instead of τA itself.
We describe the use of a hardware shared resource through a set of features, which correspond to
quantitative values. A RUs for task τA, is a vector SA = (a1, a2, ..., an) that contains the list of relevant
features that characterize all the hardware shared resources, for the evaluation of contention effects.
Since RUs are quantitative, the RUs of distinct tasks are comparable and can also be combined
together to form a joint RUs. How to operate and compare multiple RUs is explained later.
Consider the reference multi-core architecture shown in Figure 4.10, where the bus and the memory
are shared. Further consider two types of accesses to those shared resources, for read and write
operations respectively. In this case, RUs have at most 4 features: bus reads (nbusrd) and writes (nbuswr);
memory reads (nmemrd) and writes (nmemwr). RUs are thus defined as SA = (nbusrd , n

bus
wr , n

mem
rd , nmemwr) =

(a1, a2, a3, a4).
If the bus was the only shared resource, the RUs of a task τA would be abstracted as a RUs with
two features: nbusrd and nbuswr . If both types of requests hold the bus for the same duration, the RUs
would consist of a single feature corresponding to the sum of nbusrd and nbuswr , i.e., SA = (nbusrd +nbuswr) =
(a1 +a2). The addition of SB to SA is given by SA+SB = (a1 +a2 + b1 + b2). For comparison, instead,
we say that SA dominates SB, SA % SB, if the interference by the former is greater than that by the
latter: a1 + a2 ≥ b1 + b2.
This reasoning easily extends to the more realistic scenario in which the bus holding times are asym-
metric; for example, with reads holding the bus longer than writes. In that case, the RUs for τA could
be either single-feature, considering all accesses as “long” accesses (counting writes as reads in
the example), or multi-feature (two, in the example), i.e., SA = (a1, a2) = (nbusrd , n

bus
wr). In the latter

formulation, addition and comparison change as follows: addition is defined as vector addition, i.e.,
SA + SB = (a1 + b1, a2 + b2); for comparison, SA dominates SB, SA % SB if (a1 ≥ b1) ∧ (a2 ≥ b2).
Note that it can be the case that neither SA dominates SB nor SB dominates SA if, for instance,
(a1 > b1) ∧ (a2 < b2). In that case one should resort either to single-feature RUs or to having a new
multi-feature RUs SC = (max(a1, b1),max(a2, b2)) so that SC dominates both SA and SB.

SAFURE D3.1 Page 32 of 45

D3.1 - Interim Analysis of Integrity Algorithms

Figure 4.10: Reference multi-core architecture.

4.4.2.1.2 Resource usage template (RUl)

RUl have the same form as RUs, namely, a vector of features LK = (k1, k2, ...kn), but with a different
use. RUs abstracts tasks according to their use of the shared resources while RUl upper bounds the
use of the shared resources made by co-runner tasks. A RUl is a true upper bound if LK % Si, where
Si is the RUs for any task τi that can be a co-runner of the task under analysis (i.e. Si is dominated
by LK).
Tasks are made time composable against some RUl LK so that the ETB derived for a given task τA
and for that RUl, denoted ETBK

A , upper bounds τA’s execution time inclusive of the interference that
the contenders of τA, whose RUs do not exceed LK , may cause.
Returning to the example in which the bus is the sole shared resource with all accesses to it incurring
the same contention effect: for a LK that captures a given number of accesses to the shared bus,
we want to determine the highest impact by LK on ETBA, so that ETBK

A can be regarded as a
time-composable bound for τA in any workload in which LK %

∑
i Si for all co-runner tasks τi of

interest.
A maximally time-composable template LTC exists, which is an upper bound for all potential work-
loads (i.e. including the worst possible workload). LTC corresponds to the case in which all accesses
from the signature suffer the highest contention from the Nc−1 contending cores2. In that case, every
access from SA contends with Nc − 1 other accesses, i.e., LTC = (Nc − 1) × SA. Any LK % LTC
would produce exactly the same result as LTC , since τA cannot be interfered more than the accesses
in its signature SA.

4.4.2.1.3 RUs and RUl through an example

In this section we return to the case in which the bus is the sole shared resource and all accesses
to it incur the same contention effect. For now we limit our attention to two cores. The task under
analysis, τA, runs in one of the two cores. The contending requests from the two cores are arbitrated
with the round-robin policy.
Figure 4.11 depicts the process we follow when the proposed approach is applied to this case. First,
we obtain the RUs of τA, denoted SA. In the example architecture, the RUs of tasks using the shared
resource is the number of accesses they make, a for τA, hence SA = (a). Our approach treats

2Note that the highest contention for a given access can be upper-bounded in modern embedded processors [? ? ?],
so such highest contention can be computed in general. If, for instance, one core had priority over the others on the access
to hardware shared resources, then the highest contention possible would be infinite and an ETB would not exist. Then
such hardware platform would not allow running any critical task in the low-priority cores and our analysis would be valid
only for the high-priority cores.

SAFURE D3.1 Page 33 of 45

D3.1 - Interim Analysis of Integrity Algorithms

Figure 4.11: Main steps in the RUs and RUl methodology.

contention such that the ETB of τA can be derived by upper bounding τA’s execution time considering
the interfering effect that it incurs when its co-runner task makes up to k contending accesses to the
shared resource. To this end we define a RUl LK , which is the system integration parameter that
defines the inter-task interference to be considered in the determination of τA’s ETB. The abstraction
captured by LK with LK = (k) is a RUl.
Once the SA and LK are defined, we determine ∆K

A , the increment to be applied to the execution
time that τA may incur, to capture the contention effect from LK . This corresponds to step 3 in
Figure 4.11. More precisely, ∆K

A upper bounds the increment that the execution time of a task τA
with at most a accesses to a shared resource may suffer from k contending requests. ETBK

A (i.e
τA’s ETB determined under the RUl LK) is computed as the summation of ET isolA , the execution
time of τA when running in isolation, without contention, and ∆K

A , the increment that upper bounds
the contention effects from any k interfering accesses. This corresponds to step 4 in Figure 4.11.
Overall, ETBK

A is time composable against any co-runner task τB with signature SB = (b), as long
as LK dominates the RUs of the co-runner, which means that τB makes b ≤ k contending accesses.
We denote this as tc(ETBK

A , τB), which holds if b ≤ k.
RUs abstract the distribution of requests over time. Taking into account the exact distribution of re-
quests over time, for instance in the form of requests arrival curves [?], would potentially enable
deriving tighter ETB. However, deriving such distributions is complex, as programs normally have
multiple paths of execution, each with its own access pattern (distribution). And, paradoxically, con-
sidering these particular distributions would decrease timing composability. Instead, our approach
only requires the tasks’ access count for every individual shared resource, as well as ET isoli (execu-
tion time in isolation) for each individual task τi. Notably, both can be obtained with high accuracy by
state-of-the-art technology, e.g., [?]. With our approach, the ability to abstract away from the need
to know the exact points in time at which requests would be made to shared resources releases the
system integrator from the obligation of adopting rigid and inflexible scheduling decisions (which fares
poorly with the development unknowns of novel systems) or from the labour-intensive cost of exact
analysis.
Our approach requires the user to set the RUl to capture the potential co-runner tasks precisely. The
spectrum of this capture has two ends. On one extreme we find the time-composable templates,
LTC , which represent an upper bound for RUl. However, if RUl is close to that template, the ETB of
tasks might be unnecessarily increased. On the opposite extreme, if RUl is too small, it constrains the
choice of tasks that may be allowed to run in parallel. A simple solution consists in deriving for each
task an ETB under different RUl, such that at integration time, the smallest RUl that upper bounds the
signature of the actual co-runner tasks is used. With this, the residual part of the timing verification
at system integration is small and simple. Selecting the proper number of RUl represents a trade-off
between effort and accuracy: the higher the number of RUl the lower the over-estimation of ETB
and the greater the analysis time, and vice-versa. Finding appropriate RUl is a standard optimization
problem that is part of our future work.

SAFURE D3.1 Page 34 of 45

D3.1 - Interim Analysis of Integrity Algorithms

In the example considered in this section we have made several simplifications to facilitate under-
standing: two cores, one single type of access, synchronous accesses (i.e. the core stalls when the
access occurs until served) and a single shared resource. In real processors we have different types
of accesses to the shared resource (synchronous and asynchronous), each with a distinct access
latency. Hence, simply bounding the effect of contention by adding access counts is not enough.

4.4.2.2 RUs & RUl for Measurement-Based Timing Analysis

Next we present one concrete realization of RUs and RUl for use with measurement-based timing
analysis, specifically for a SnapDragon-like processor architecture [?].

4.4.2.2.1 Methodology

Our approach uses micro-benchmarks [? ? ?], a set of single-phase user-level programs with a
single execution behavior designed so that all their operations access a given shared resource, e.g.
the bus. Micro-benchmarks consist of a main loop whose body includes a substantial number (e.g.
256) of instructions designed to generate a steady stress load on target resources. The fact that the
loop body executes repeatedly the same instruction causes the target resource to be continuously
accessed. Moreover, placing a high number of identical instructions in the loop body drastically
reduces the impact of control instructions (down to 2-4%) [?]. For the architecture in Figure 4.10, a
loop body including load instructions that hit in the L2 cache stresses the bus. We consider two types
of micro-benchmarks:
Resource stressing benchmarks, RStB, place a configurable load on a given shared resource, so that
running a task against a RStB may represent contention scenarios of interest.
In theory, one could design a worst-contender benchmark that generates the maximum contention
that a task τi can suffer. However, such benchmark would be specific for the task to be interfered
and for the target processor [?]. Consider for example, a single shared resource arbitrated by a
least-recently-used policy, where the task that accessed the resource last gets the least priority. In
that case, the worst-contender benchmark should generate a request in exactly the same cycle as
the task of interest, so that every request from that task gets delayed by the contender, and for the
next round of arbitration the task has the lowest priority again. The level of control required on the
application behavior and the granularity of intervention are too fine-grained and laborious to be used
in practice [?].
Resource sensitive benchmarks, RSeB, are designed to upper bound the execution time increase
suffered by any other task, with a smaller or equal signature, owing to the interference from a given
template LK . Consider a scenario in which bus accesses hold the bus for a constant duration. Further
assume that we want to determine ∆K

A for τA, i.e its ETB increment due to a template LK with k
accesses. Intuitively, one could get an estimate of it by running τA several times against a RStB that
makes k accesses. However, in order to gain confidence in the ETB obtained, the experiment should
be repeated with different alignments of the RStB, so that the interleaving of accesses varies enough
and the worst case can be observed in a measurement. In practice, this may require excessive
experimentation effort. The need for repeating the experiments with different alignments stems from
the uncertainty on the time distribution of accesses, which is hard, if at all possible, to measure
and control by timing analysis technology. We can therefore conclude that studying the task under
analysis against micro-benchmarks is not viable. Instead, we use micro-benchmarks to model both
the interfered and the (set of) interfering tasks: RStB and RSeB are designed to account for bad
alignments of requests: RSeB is made of instructions that cause accesses to the shared resource
and that continuously contend with RStB requests.
We define ∆RStB

RSeB = ETRStBRSeB −ET isolRSeB, where ETRStBRSeB is the execution time when a given RSeB with
the same signature as task τA runs against a RStB implementing a template LK with k accesses;
and ET isolRSeB the execution time when the RSeB runs in isolation. For task τA, let ∆K

A = ETKA −ET isolA

be the execution time increase τA suffers when it runs against LK . RSeB and RStB are designed
so that ∆RStB

RSeB ≥ ∆K
A holds for any request alignment of τA under LK contention. To that end, we

SAFURE D3.1 Page 35 of 45

D3.1 - Interim Analysis of Integrity Algorithms

run the RSeB in isolation and then against Nc − 1 copies of RStB so that all RSeB’s accesses to the
shared resource suffer high contention, causing a measurable ∆RStB

RSeB to emerge. In the next section
we show how to derive the number of accesses of the RSeB and the RStB, based on the number of
accesses of the template and signature under consideration.
∆RStB
RSeB is used to compute the ETB estimate for τA as follows: ETBK

A = ET isolA + ∆RStB
RSeB. ETBK

A

is composable with any set of interfering tasks against which τA runs in parallel, if their total number
of accesses is lower or equal to k. That is, the addition of the signatures of the interfering tasks
is dominated by LK : (Si + Sj + ... + Sl) - LK . Interestingly, given a task τB whose signature is
dominated by τA, i.e. SB - SA, the obtained ∆RStB

RSeB for τA can be used to upper bound τB ’s execution
time: ETBK

B = ET isolB + ∆RStB
RSeB.

Overall, RUs and RUl provide powerful abstractions for the interfered and the interfering tasks, which
simplify the integration of multiple tasks by combining their signatures.

4.4.2.2.2 The case of a SnapDragon-like architecture

Our reference multi-core architecture [?] comprises Nc = 4 symmetric cores in each of the 2
multicores (ARM Cortex-A57 and ARM Cortex-A53), see Figure 4.10, each equipped with private
instruction cache (IC) and data cache (DC). Some of the hardware characteristics described next are
derived from the manuals while others are inferred from limited information in those manuals. Those
that may affect the methodology and cannot be obtained unambiguously from the processor manual
will be studied empirically as part of BSC work in T4.1.

Relevant hardware characteristics
ARM Cortex-A57 and ARM Cortex-A53 multi-cores differ. However, the ARM Cortex-A57 is more
powerful than the Cortex-A53 one, so the features of the Cortex-A57 are a superset of those in the
Cortex-A53. Hence, we refer to the particular hardware characteristics of the Cortex-A57 multi-core
given that they already include those of the Cortex-A53 one. IC and DC can be used in many different
ways including write-allocate, write-no-allocate, write-through, etc. This has a direct influence on
the number of accesses issued to the L2 cache, and so on the contention suffered. Analogously,
speculation on branches and prefetch operations may issue further requests to the shared resources
that may also suffer contention (or increase the contention suffered by non-speculative requests).
The L2 cache can process up to 2 requests simultaneously if they access different tag/data Random
Access Memory (RAM) arrays. L2 is accessed through an Advanced Microcontroller Bus Architecture
(AMBA) AXI interface which, in principle, may receive requests from the different cores and process
them in parallel. Therefore, it is the L2 cache the resource serializing requests, not the AMBA AXI
interface.
It is, therefore, unclear what type of network is implemented. We will assume that core-to-L2 networks
are also implemented using AMBA buses, as it is the case for the L2-to-memory network, since this
is the worst case because requests are fully serialized and so contention is the highest. As the
work in the project progresses we will confirm or reject our assumption. However, if it is rejected, our
methodology should be flexible enough to adapt to any common network available in small multi-cores
such as the 4-core ARM Cortex-A57 and Cortex-A53.

Bus
For the sake of this discussion we assume that our target processor implements round-robin bus
arbitration so that if, in a given round, core ci, i ∈ {1, .., Nc} is granted access to the bus, the priority
ordering in the next round is: ci+1, ci+2, ..., cNc , c1, c2, ..., ci. A lower priority core can use the bus when
all higher priority cores do not use it. Whether this is the policy in place or not will be investigated.
Currently, as part of the work in T4.1, BSC is developing a method that, among others, is able to
identify whether the arbitration policy in shared resources is round-robin or FIFO.
The bus access jitter that a task incurs on access to the bus, depends not only on the number of
co-runners but also on the way their requests interleave. The worst contention situation happens
when a task τB assigned to core ci requests the bus in a given round of arbitration, simultaneously

SAFURE D3.1 Page 36 of 45

D3.1 - Interim Analysis of Integrity Algorithms

Figure 4.12: Hypothetical impact (in cycles) from/to the different access types to the bus. l2h, l2m
and st refer to L2 load hits, L2 load misses and stores respectively.

with tasks in all other cores and the previous round was assigned to ci.

L2 cache
In this discussion we assume that the L2 cache processes up to one miss per core at a time and allows
hit-under-miss and miss-under-miss so that when a miss from a core is processed, hit/miss requests
from other cores can be served. In practice the L2 cache might process multiple requests from the
same core since any core may have several pending requests. However, although it needs to be
validated empirically, we expect a round-robin arbitration policy across cores, thus limiting the impact
of other cores on a particular request to a single request per core, so in line with our assumption. Still,
this needs to be corroborated empirically to find reliable upper bounds to the contention across cores
when accessing the L2 cache. To the best of our knowledge, the L2 cache cannot be configured to be
partitioned across the different cores to remove L2 cache interference. This brings a new challenge
in terms of on-chip interference. Solutions reported in this deliverable neglect L2 cache interferences
on purpose, since this work is to be developed in T3.3 up until M24 to complete the management of
on-chip timing interferences. At this stage we plan to build upon some form of probabilistic/statistical
analysis of L2 cache interferences based on the fact that L2 caches implement random replacement
policies to upper-bound the number of misses that a task could suffer due to interferences and upper-
bound also the impact that this may have on the number of memory accesses.

Memory controller
The L2 sends a request to a memory controller on every L2 miss. Requests are stored in a FIFO
request queue, with one entry per core. Whether only one memory controller is in place or each multi-
core has a separate one needs to be investigated. For the sake of this discussion we will assume that
each multi-core uses one different memory controller. In future enhancements of our methodology
we will relax this constraint.

4.4.2.2.3 Bus

The AMBA bus handles three distinct request types, which differ in the contention they induce and
suffer. Stores (st) regardless of whether they hit or miss on the L2, are served immediately by the L2
and hold the bus for few cycles (e.g. 2 cycles). L2 load hits (l2h) hold the bus for few more cycles (e.g.,
7 cycles) because the bus is retained while retrieving the data from L2. L2 load misses (l2m) release
the bus once the request reaches L2, and perform a new arbitration whenever the L2 responds to
the miss, holding the bus for as many cycles as L2 store accesses (e.g., 2 cycles) in each arbitration.
Figure 4.12 shows the contention suffered by a source (interfered) request by another (interfering)
request for all request types assuming some hypothetical latencies of 2 cycles for short L2 stores and
L2 load misses, and 7 cycles for L2 load hits. l2h generate the highest contention and l2m are the
most affected since they suffer two rounds of arbitration: l2m can therefore be interfered twice by two
concurrent contending requests, one round of arbitration per each such request.
Our approach based on RUs and RUl does not require knowing the exact time of request issue,
but whether they have asymmetric timing behavior in the impact they suffer and they cause to other
request types so that RStB and RSeB can be designed with the appropriate request types. The RStB
and RSeB for the bus are called BStB and BSeB:

BSeB (abstracting interfered task bus usage). The signature of a task τA running in this archi-

SAFURE D3.1 Page 37 of 45

D3.1 - Interim Analysis of Integrity Algorithms

tecture may take different forms, with different levels of tightness and experimentation effort. The
canonical signature for the bus contains the number of accesses of each type made by the task. That
is: SbusA = (ast, al2h, al2m). This can be simplified by realizing that l2h and st access the bus once
whereas l2m do it twice. Moreover, the delay suffered by an access does not vary whether the access
was generated by a l2h, st or l2m. Hence, signatures have the form: SbusA = (ast + al2h + 2× al2m).
BSeB can be implemented with either l2h or st. Conversely, l2m are not appropriate as it is not
possible to place high pressure on the bus with l2m since they miss in cache and take long to be
served from memory, leaving the bus idle in the meantime. Instead, l2h and st can place very high
pressure on the bus. Our approach considers BSeB to only have st operations.

BStB (abstracting interfering task(s) bus usage). Templates can be mono- (L1D) or bi-dimensional
(L2D).
L2D. Accesses of type st and l2h generate different impact on the bus (recall that l2m are equated
to 2 st). In particular, l2h produces the highest impact and st the lowest. This allows generating
bi-dimensional templates: L2D = (kl2h, k2×l2m+st), whereby BStBs comprises load L2 hit accesses
and store accesses to generate each respective type of interference.
L1D templates comprise only l2h, which generate the highest interference. A given L1D = (kl2h) with
k l2h accesses upper bounds the impact that one or several tasks, whose bus access count is lesser
or equal to k, can generate on any other interfered task. L1D are easier to generate and simplify
experimentation, but they increase the pessimism of ETBs, since st are considered to generate the
same impact as l2h.

Putting it all together. Deriving the access count for BSeB and BStB varies for L1D or L2D as we
show next.
SA − L1D. Let a and k be the number of accesses in the signature SA and the template LK re-
spectively. Running BSeB and BStB concurrently, we derive an upper bound to the increase in
execution time (∆BStB

BSeB) that k accesses of the template can have on the a accesses of the signature.
If k ≥ (Nc − 1)× a then each request of SA suffers the impact of Nc − 1 contenting requests. If this is
not the case, only dk/(Nc − 1)e requests from SA suffer the impact of Nc − 1 contenting requests.
The number of request accesses generated by the BSeB is given by N = min(a, dk/(Nc − 1)e). By
running this BSeB against Nc − 1 BStB copies, each having a number of accesses largely above N ,
we derive an upper bound to the impact that LK has on SA. The impact that a task can suffer due to
a template LK with k l2h is upper bounded as: ∆BStB

BSeB = ETBStBBSeB − ET isolBSeB. The ETB derived for a
given task τA and template LK is: ETBK

A = ET isolA + ∆BStB
BSeB.

SA−L2D. In the case of 2-dimensional signatures and templates we account for the fact that requests
sent by the interfered task, τA, suffer different interference by the l2h and l2m/st sent by the interfering
tasks, abstracted in L2D. In this approach we pair up every request in τA with Nc − 1 requests in
L2D causing the highest interference (l2h) on the former. If the number of those requests in L2D is
exhausted, we pair up τA requests with those in L2D causing the second worst interference (st).
We generate two BSeB and BStB pairs to capture the impact that accesses in SA suffer from l2h and
l2m/st in L2D so that:

∆BStB
BSeB =

(
∆BStBl
BSeB1

+ ∆BStBs
BSeB2

)
(4.1)

BSeB1/BStBl and BSeB2/BStBs capture the interference on τA’s accesses caused by the l2h and
l2m/st in L2D respectively. BSeB1 and BSeB2 have different number of st operations, N1 and N2.
BStBl comprises l2h operations whereas BStBs comprises st operations.
Let us assume for example a = 30, kl2h = 60, and kst = 80. In this case, BSeB1 has N1 =
min(30, d60/3e) = 20 st, which we pair up with 20 accesses in SA; and BSeB2 has the rest of
accesses in SA, N2 = 30−20 = 10 st, which we pair up with 3×10 requests out of the 80 accesses in
kst. The remaining 50 st in kst are not paired since they will not cause further impact on SA. Overall,
an upper bound to the impact that an application can suffer due to L2D is given by:

SAFURE D3.1 Page 38 of 45

D3.1 - Interim Analysis of Integrity Algorithms

ETBK
A = ET isolA +

(
∆BStBl
BSeB1

+ ∆BStBs
BSeB2

)
(4.2)

For the memory controller we follow the same principles as for the bus, with the particularity that the
impact from/to the read/write request types is homogeneous. Hence we only need L1D templates.
The RStB and RSeB for the memory are called MStB and MSeB.

4.4.2.2.4 Multi-resource signatures

In the presence of several shared resources, the signatures and templates must cover the features
to upper bound contention in each of them. For the reference architecture considered in this work,
signatures and templates are as follows: Sbus+mcA = (ast + al2h + 2al2m, amem) and Lbus+mcK = (kst +
2kl2m, kl2h, kmem).
It is possible that a task suffers contention in several shared resources simultaneously, so that the
impact of the contention does not accumulate but rather overlaps. However, determining trustworthy
bounds to the degree of overlap in the contention suffered on requests to different resources is hard.
Signatures and templates are intentionally made agnostic to the distribution of requests over time.
As we focus on the number of requests to each resource rather than on their timing, it is difficult to
determine how contending requests overlap. Our current approach assumes no overlap in contention,
which in a time-anomaly free processor design [?] is a safe assumption on the maximum impact
of contention. It needs to be investigated to what extent the SnapDragon processor is subject to
timing anomalies and to what extent those timing anomalies break our assumptions. Overall, in the
presence of a template for the bus Lbus and the memory Lmc (a.k.a. Lbus+mc), a task is assumed to
suffer the sum of the contention generated by both templates:
ETB

LbusK +LmcK
A = ET isolA + ∆BStB

BSeB + ∆MStB
MSeB

4.5 Vulnerability Detection for Networks

This section describes a timing analysis approach for networks, which can be used to detect timing
vulnerabilities (usually at design time). In principle, the approach works on a timing model of the
system, in which the key timing parameters are captured (see Section 5.1.1 of Deliverable D1.3). On
this, different analyses can be performed: A simulation-based system distribution analysis computes
the ”average” timing behavior, while a formal worst-case analysis computes the timing corner cases
(see Section 5.1.2 of Deliverable D1.3).
In this section, we will describe a worst-case analysis for Ethernet networks, that has been developed
and extended in the SAFURE project. With it, upper bounds on the timing of Ethernet networks can
be computed, which can be used to verify timing requirements and guarantees. This way, it can be
assured that a given configuration meets its timing integrity goals. In this analysis, unknown ”attacker”
traffic can be captured by assuming a worst possible attack scenario (e.g. flooding of the network at
a certain priority level with the maximum possible bandwidth) to derive the effects of such attacks on
the timing of critical traffic.

4.5.1 Worst-Case Ethernet Analysis in SymTA/S

The worst-case analysis of Ethernet implemented in SymTA/S is based on the theory of compositional
performance analysis [?] and the corresponding extensions from TUBS [?].
The analysis is based on an Ethernet model, comprising the topology (switches, ports, links, end
nodes) and traffic configuration (Ethernet messages) In this context, an Ethernet message is defined
by a logically independent communication stream between a sender and (one or multiple) recipient(s).
For each Ethernet message, the payload size (as an interval between minimum and maximum size)
and activation model (e.g. period and jitter) must be defined, as well as some additional parameters
(e.g. protocol, message priority).

SAFURE D3.1 Page 39 of 45

D3.1 - Interim Analysis of Integrity Algorithms

As a first step, the analysis computes the loads of ports on switches and end nodes based on the
network configuration and traffic description in the model, using especially the size and transmission
activation patterns of Ethernet messages. This is done per individual message and then accumulated
for each port. The load can be used to evaluate the utilization of the topology and identify overloaded
resources, for which subsequent analyses may not make sense.
To compute the latencies of messages, the model describing the Ethernet network is first transformed
into an equivalent timing analysis model. This way, the Ethernet system can be modeled in “typical”
network jargon (with switches (hops), ports, links and messages), but the analysis can operate on a
typical timing model (with resource providers and consumers). The conceptualization of these models
and their transformation has been performed in WP2.
The internal timing analysis model transformation is based on the following rule set:

• Each EthernetPort is transformed into a EthernetPortResource, i.e. a resource providing ser-
vice of transferring data to the next hop. This resource is shared by all frames leaving a hop
through the same port. Any contention between frames is accounted for at this resource.

• Each Switch is transformed into a EthernetSwitchResource, i.e. a resource providing service
of internal switch traversal (from input to output port). With this resource, a non-constant (but
static) transmission time inside the switch can be accounted for.

• An EthernetMacFrame is created at each internal EthernetPortResource the message tra-
verses, i.e. a task consuming the service of transferring data to the next hop. The timing
properties of the EthernetMacFrame are derived as follows:

– The transmission time is calculated based on the frame size and port transmission speed.

– The priority is the EthernetMessage priority.

– The activation is the EthernetMessage activation.

• An EthernetSwitchFrame is created at each internal EthernetSwitchResource the message tra-
verses, i.e. a task consuming the service of internal switch traversal.

– The transmission time of the EthernetSwitchFrame is the switch delay.

• An EthernetInternalTrigger is created to link the connected EthernetFrames. This models event-
driven activation of Ethernet frames (i.e. the transmission of a frame on one hop is activated by
the completion of the transmission of the frame on the previous hop).

• An EthernetPath is created and the EthernetFrames of one transmission are mapped to it. Thus,
the latency of this path is equivalent to the latency of the corresponding message.

Figure 4.13 shows an example of the internal timing analysis model for a simple network with two
Electronic Control Units (ECUs) , a single switch and one message. During model transformation,
the timing analysis model will “stay connected” to non-Ethernet model elements, such as tasks on
ECUs that trigger the transmission of an Ethernet message. This way, a complete system analysis
can be performed.
The model transformation may also require a consideration of message fragmentation, which hap-
pens if the size of a message is larger than the Maximium Transfer Unit (MTU) of the sender. In this
case, a single message is divided into multiple Ethernet frames. Note that the timing analysis model
only knows Ethernet frames, so a transformation of the activation event model is required, because
one activation of the Ethernet message results in multiple Ethernet frames being activated.
After model transformation, the analysis is performed based on the approach presented in [?]: The
routes (paths through the network), as well as all Ethernet frames and needed triggers, are generated
by the internal model generator and will be deleted after the analysis run through. The routes of each
Ethernet message are separately analyzed hop by hop. The worst-case latency analysis consists of
4 steps (without generation and cleaning of the timing analysis model):

SAFURE D3.1 Page 40 of 45

D3.1 - Interim Analysis of Integrity Algorithms

Figure 4.13: Example of a timing analysis model for a simple network with a single message.

1. EthernetMacFrames are analyzed message per message. A response time for the traversal of
the output port is calculated for each of them.

2. The same is done for EthernetSwitchFrames. They are analyzed for each hop, producing a
response time for internal switch traversal.

3. EthernetPaths are analyzed. For this, all response times of all hops of a route (computed in
steps 1 and 2) are summed.

4. At last the response times for EthernetPaths are summarized for each Ethernet message. For
this, the maximum response time of all routes (possible at multi- or broadcasted messages) is
used as the worst case response time of the analyzed EthernetMessage.

The analysis produces various results, which are presented in the SymTA/S GUI as tabular results
and/or charts.
Specifically, the results are (see Figure 4.14):

• Load of each port (item 4) and data rate for each message (item 2)

• Latency of each message (item 3)

• Path Gantt diagrams across Ethernet messages (item 1)

• Buffer requirements at each switch (work in progress)

4.5.2 Scheduling and Resource Management Algorithms

With respect to the topic of scheduling and resource management, there are several research topics
that are of interest for mixed-critical Cyber-Physical System (CPS). Among those, we plan to investi-
gate two topics:

SAFURE D3.1 Page 41 of 45

D3.1 - Interim Analysis of Integrity Algorithms

Figure 4.14: Results for an example system

• Scheduling and resource management algorithms for providing timing isolation and guaranteed
processor bandwidth in multi-core systems and/or when end-to-end computations span across
the boundaries of several resources (multi-core nodes and networks).

• Scheduling techniques for time-critical automotive systems, especially with respect to systems
that need to perform with controlled degradation in (temporary) overload conditions.

With respect to the first topic, the traditional approach consists in guaranteeing timing isolation by
strict time separation and time-triggered scheduling or scheduling in which each thread or partition is
assigned a well-defined time slice. However, in single core scheduling, there are other options that
have been demonstrated capable of providing time isolation that do not require the strict enforcement
of time-slot scheduling (and ensuing possible inefficiency for unused time slots). These techniques
are based on the concept of controlling the execution of threads by means of a (time) server that
assigns a time budget to each thread. When the threads execute according to the assumptions on
activation rates and worst-case execution time, the server allocates them the planned time budget.
If a thread attempts at executing longer than assumed, or more often, then the server time depletes
and the thread is suspended until the server planned replenishment time.
An example of such technique is the CBS server [?], that allows the server time to be scheduled by
fixed priority or Earliest Deadline (EDF). The CBS server has been extended to deal with resources
[?] and finally implemented as part of the Linux kernel [?]. The extension fo these mechanisms to
multi-core systems has been investigated in the Actors project [?] using the concept of hierarchical
scheduling and an analysis methodology is presented in [?]. The discussion of techniques for
resource management in multi-cores is also in [?]. Finally, for the relevant case (for multi-core
systems) in which the memory is a significant shared resource, the Memguard algorithm [?] has
been proposed to guarantee performance isolation for real-time tasks, see Section 4.2.2.1.
With respect to the second topic, there are three other possible specific research targets of interest.

SAFURE D3.1 Page 42 of 45

D3.1 - Interim Analysis of Integrity Algorithms

The first consists of the extension of a set of task models and analysis techniques that have been
developed in recent years for applications such as engine control. In this case, a significant number
of threads are activated when the engine crankshaft reaches a given position. The activation is not
periodic, but with variable rate. This means that a given processor utilization at low speeds could
become higher and lead to possible overloads unless the behavior of the task is changed at high
revolution rates. These threads are called Adaptive Variable Rate and the schedulability analysis for
them has been studied in several papers [?] [?] [?]. The basic scheduling model assumed a hard-
type behavior (deadlines should never be missed). However, in many engine control applications
selected deadline misses can be tolerated and a true performance analysis as well as studies for the
scheduling behavior of these tasks in overload conditions are needed.
The second target consists of the study of analysis techniques for another model to control overload,
also known as (m-k) scheduling. In this case, the scheduling algorithm and the analysis methodology
are required to guarantee that at least m instances of the thread are executed within their deadlines
in any sequence of consecutive k instances.
Finally, we plan to review the model of real-time scheduling and schedulability analysis for mixed-
criticality systems. The conventional model studied by the research community assumes that threads
have different criticality levels (to simplify, sometimes only two levels are assumed). High criticality
threads have two execution time specifications, one for high-critical certifications, and another for low-
criticality behaviors. The high criticality execution time should be guaranteed for all the highly critical
tasks, at the possible expense of low criticality computations. However, this models has been recently
challenged [?] [?], and new techniques should be developed to provide analysis techniques that
are best suited to the industrial needs for highly critical systems.

4.6 Design for the Joint Consideration of Data and Timing Integrity

The need to meet integrity constraints of different nature in the same system reveals cross concerns
that are better addressed by an integrated design process that can aim at the optimization of the
software architectures with respect to safety and security constraints.
Examples of research papers in this direction are appearing in several contexts. With respect to the
automotive domain, there are established standards for scheduling and communication, as part of
AUTOSAR. Also, AUTOSAR has standardized the security mechanisms for adding MAC codes to
messages. When messages have joint time and security constraints, the addition of a MAC is going
to affect the utilization of network bandwidth, and creates a cross concern with respect to the network
delays.
Several research proposals discuss the options for the implementation of authentication protocols
over CAN buses, and a performance analysis and comparison can be found in [?]. In [?] the
problem of how to optimize the design of a set of CAN messages with time and security constraints is
discussed as an extension of previous work, such as [?], in which the problem of assigning identifiers
to CAN messages with timing constraints is solved using a Mixed Integer Linear Programming (MILP)
formulation, that jointly optimizes also the task allocation to ECU nodes, signal packing into messages
and the priority assignments of tasks upon the ECUs.
When considering security constraints, the solution in [?] and its extension in [?] assume that
ECUs are classified in receiving groups with an assigned security level, so that multiple receiving
ECUs are allowed to share the same MAC contained in a message, that is, the ECUs share the same
key. According to the analysis in [?] such group keying is also the best practice for ensuring a high
security level in a CAN bus based system. ECUs in the same group share the same trust level, which
should be specified by the manufacturer.
With respect to the security constraints, [?] assumes that the trust level and the reserved max-
imum MAC lengths for each receiving ECU group are given as parameters in the design problem
formulation, and the final objective is to minimize the security risks (leveraging MAC truncation when
required by the timing constraints). Below we list examples of security constraints that can affect the

SAFURE D3.1 Page 43 of 45

D3.1 - Interim Analysis of Integrity Algorithms

task allocation and signal packing.

• A task can be allocated onto an ECU only if the ECU is in a receiving group in which the
associated trust level is no lower than the value required by the task for receiving a secured
message.

• A task can be allocated onto an ECU only if the reserved MAC length of the corresponding re-
ceiving group is not smaller than the one required by the task for receiving a secured message.

• Multiple MACs can be packed into the same message only if the data payload and required bits
for MAC protection do not exceed the limit of a CAN bus frame.

Still, in [?] the security constraint is put on each signal/message transmission that needs security
protection, and its objective function is to minimize the end-to-end latency of the functional path. This
may not reflect the real security requirement in the embedded system, where the security requirement
is associated with the functional path (e.g. from the sensor to the actuator) and an objective function
to minimize the security risk along with the functional path becomes more meaningful. As a result, [?
] extends the formulation in [?] to take such reasoning into account. To ease the complexity of the
resulting problem definition, [?] simplifies the MILP formulation in [?]. As an example, a security
constraint can be in the form such that the MAC lengths of all signals in a path are long enough or
the security risk of a functional path, which passes by several different receiving groups with different
trust levels, should not exceed a given level.
The MILP approach provides an optimal solution, at the cost of a possible high computational com-
plexity. Heuristics have also been studied in [?] and [?] for the security-aware mapping of functional
paths: signal packing, task/message priority assignment and ECU/receiving group assignment.
When more than one authentication protocol is available in the CAN system, the above discussed
security-aware mapping of functional path can also be applied for selecting the best one, as dis-
cussed in [?]. For security mechanism selection, at first each corresponding security-aware mapping
problem can be solved, then the one with best performance will be selected. On the other side, if
different security mechanisms can be abstracted into a common set of variables and parameters,
then it is possible to efficiently choose the best one according to one single security-aware mapping
problem.
In SAFURE we plan to extend this line of research by explicitly considering the AUTOSAR recom-
mendations and requirements and by studying the impact of different security requirements applied
at the functional/application level, as defined in WP2.

SAFURE D3.1 Page 44 of 45

D3.1 - Interim Analysis of Integrity Algorithms

Chapter 5 Conclusion

This document overviews the different integrity aspects considered in SAFURE and their respective
integrity algorithms. This document only presents interim analysis of integrity algorithms; where final
analysis will be covered in D3.2. We consider three different aspects of integrity:

5.1 Temperature Integrity

In SAFURE we consider both threats to system safety and threats to system security posed by tem-
perature. For the safety aspect, we consider the impact of scheduling tasks with multiple criticalities
(different safety requirements) on a multicore platform. In this research thread, we will provide a
method to analyze the peak temperature of mixed-criticality systems in different scheduling modes,
with temperature dependencies across scheduling modes addressed. Our analysis will show how
common mixed-criticality mechanisms could affect the system peak temperature.
For the security aspect, we have already studied the characteristics of thermal covert channel. On
a modern mobile platform, we have shown that data rates of up to 50 bits per second are possible
with an error probability of 0.1 percent. Going forward, we will analyze the covert channel in the
telecommunication use case platform (Dragon board 810).

5.2 Data Integrity

In SAFURE we focus on ensuring data integrity by cryptographic mechanisms. While checksums
are sufficient to detect erroneously transmitted data or defective memory areas, they can easily be
adapted by an adversary who has manipulated the data. We are going to analyze the suitability of
algorithms from different areas of cryptography, including symmetric and asymmetric approaches as
well as algorithms based on finite field arithmetic and Elliptic Curve Cryptography, for mixed-critical
systems. We want to examine to what extend the different cryptographic systems meet real-time
requirements of safety-critical systems and how the benefits of a multicore platform can be utilized.
Demo implementations of certain algorithms will be provided on the Dragon Board 810, which has
been chosen as the demonstrator platform for the telecommunication use case.

5.3 Timing and Resource Sharing Integrity

SAFURE focuses on timing integrity on multiple areas: On multi-core architectures, interference be-
tween applications due to access of hardware shared resources is considered. For Ethernet net-
works, interference of different traffic streams in the network is considered. For both areas, state-
of-the-art has been presented and analyzed. First approaches on vulnerability detection have been
proposed and explained in this document. With these, an assessment is possible whether a given
configuration or scenario results in illegal timing interference and thus a violation of timing integrity.
A future direction, which we plan to address in the Deliverable D3.3, is to build and/or analyze vulner-
ability protection mechanisms, which allow not only detection but also prevention of timing integrity
violations.

SAFURE D3.1 Page 45 of 45

	Introduction
	Meaning of Integrity in the Context of SAFURE
	Temperature Integrity
	Data Integrity
	Timing and Resource Sharing Integrity
	Cross-Domain Concerns in the Design for Integrity

	Temperature Integrity
	Introduction
	Emergence of Temperature Constraints
	Safety Critical Context
	Security Context

	Existing Temperature Integrity Algorithms
	High Temperature Mitigation Strategies
	Temperature Related Security Risks

	First Results and Research Directions
	Temperature Analysis of Mixed-Criticality Systems
	Task Model and Scheduling
	Maximum Temperature Analysis

	Temperature Threats to Platform Security
	The Covert Channel Threat Model
	Analysis Methodology
	Experimental Setup
	Results

	Data Integrity
	Checksums and Error Correcting Codes
	Authentication
	Message Authentication Codes
	Digital Signatures

	Public Key Infrastructure

	Timing Integrity and Resource Sharing Integrity
	Introduction
	Safety-Critical and Time-Critical Context
	Dealing with Worst-Case Execution Time
	Multi-Core & Interferences: An Issue for Time Determinism
	Defining Interferences
	Timing Covert Channel From Shared L2 Cache

	State-of-the-Art on Timing Integrity for Multi-Cores
	Control Solutions Avoiding Interferences
	Deterministic Execution Models
	Deterministic Adaptive Scheduling
	Marthy

	Regulation Solutions Keeping Interference Below a Harmful Level
	Memguard
	Distributed Runtime WCET
	Conclusion

	Multi-Core Interference-Sensitive WCET Analysis Leveraging Runtime Resource Capacity Enforcement

	State-of-the-Art on Timing Integrity for Ethernet
	Switched Ethernet
	ADFX - Avionics Full-Duplex Switched Ethernet
	Ethernet AVB - Audio Video Bridging
	Ethernet TSN - Time-Sensitive Networking
	TTEthernet
	Analysis Optimizations
	Ingress Filtering

	Vulnerability Detection for Multi-Cores
	Shared Hardware Resources in the Telecom Use Case Platform
	On-Chip Resource Sharing
	Formalization of RUs and RUl
	Resource usage signature (RUs)
	Resource usage template (RUl)
	RUs and RUl through an example

	RUs & RUl for Measurement-Based Timing Analysis
	Methodology
	The case of a SnapDragon-like architecture
	Bus
	Multi-resource signatures

	Vulnerability Detection for Networks
	Worst-Case Ethernet Analysis in SymTA/S
	Scheduling and Resource Management Algorithms

	Design for the Joint Consideration of Data and Timing Integrity

	Conclusion
	Temperature Integrity
	Data Integrity
	Timing and Resource Sharing Integrity

