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Executive Summary

The integration of time-critical tasks in multicore processors needs to take into account the impact of
interferences due to accessing shared hardware resources. Those interferences impact the execution
time of tasks in non-obvious ways and means are required to account for them in the Worst-Case
Execution Time (WCET) estimates of tasks. This deliverable describes the methodologies integrated
towards quantifying such impact in some specific hardware platforms relevant for the use cases as
well as a toolset (METrICS) to analyze performance and understand the sources of interference. The
effectiveness of those methodologies is assessed quantitatively with appropriate benchmarks and
avionics prototypes, leaving their evaluation in use cases for WP6.
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Chapter 1 Introduction

Increasing time-predictability needs of the consumer electronics market and increasing (guaranteed)
performance needs of the critical real-time market push toward their convergence [16, 19]. In partic-
ular, consumer electronics market, which includes mobile phones and tablets, is expected to embed
a growing number of critical functionalities related to monitoring and communication with other de-
vices in the health, car, smart cities, Internet-of-Things domains. The critical real-time market, which
includes avionics, automotive, robotic and healthcare applications, has also been shown to demand
higher guaranteed performance to meet the needs of an increasing number of complex functions (e.g.
autonomous vehicles) [3].

High-performance processors in the consumer electronics market are well known to pose difficul-
ties to derive execution time bounds needed for critical real-time applications, while processors in
critical real-time embedded systems offer (typically low) guaranteed performance. Therefore, while
time-predictable high-performance processors have the potential to satisfy the needs of both mar-
kets, reconciling high-performance and predictability is a major challenge. Some issues have already
been identified [8, 16], however, such convergence has not been explicitly studied for many popular
processor architectures in the consumer electronics market. As an example, the ARM big.LITTLE
architecture used in many tablets and mobile phones, as well as in driving safety support systems in
commercial automotive solutions (e.g. Renesas R-Car H3 [37]), has not been fully analysed against
the requirements of critical real-time applications. Analogously, processors intended for critical appli-
cations, such as the Infineon AURIX architecture, pose similar challenges (at a lower scale), which
also need to be studied.

In this deliverable we address these challenges with two complementary directions:

• Providing means to upper-bound contention in shared resources of commercial off-the-shelf
(COTS) processors (see Chapter 2).

• Delivering a toolset that allows assessing performance interference in COTS processors so that
bottlenecks can be understood (see Chapter 3).

In particular, the former contribution, allows tightly upper-bounding potential contention in COTS
processors, either allowing any task to be consolidated together with the task under analysis, or
once a specific task consolidation has been performed and contender tasks are known, thus allowing
deriving tighter contention upper-bounds. The latter contribution allows assessing whether specific
consolidations of critical and non-critical tasks lead to high or low performance interference, and what
the source of that interference is, so that the tasks can be integrated in a way that interference is
minimized.
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Chapter 2 Assessment and Modelling of the Relevant Hard-
ware Platforms

The multicore contention models developed in WP3 are intended to be integrated in one of the use
cases. In particular, the main target was the Telecom use case. Different hardware platforms have
been considered for the integration of the use cases. Initially, the Qualcomm SnapDragon 810 was
regarded as the best fit for the Telecom use case based on the (limited) information available about
the different target platforms. It implements an ARM big.LITTLE architecture. Details on the analysis
of its hardware support to manage timing interferences and how to interface it from the software layers
is provided in Section 2.1.

Results with the SnapDragon board have shown that it cannot be easily mastered with the vendor
support available. Therefore, a development board also implementing an ARM big.LITTLE architec-
ture, the ARM Juno board, has been assessed instead. While it cannot be directly used in the Telecom
use case1, it allows providing a first assessment of whether ARM big.LITTLE architectures provide
the timing characteristics needed. Of course, conclusions on the Juno board illustrate those aspects
that need improvement in commercial platforms, such as the SnapDragon 810, for their appropriate
use in real-time applications. In any case, while conclusions are positive, as shown in Section 2.2,
this platform cannot be directly assessed against the Telecom use case. Instead, results are obtained
for an avionics prototype that could be successfully integrated onto the Juno board.

Finally, we have further assessed the timing interferences occurring in the Infineon AURIX TC27x
processor, which is the preferred platform for the Automotive multicore use case. While this effort
was not initially planned, additional resources have been devoted to integrate multicore contention
management technology in one of the use cases. Integration efforts and results are presented in
Section 2.3. The evaluation on the Automotive multicore use case is done as part of WP6.

2.1 SnapDragon

2.1.1 Goal and Scenario

In this section we determine whether the SnapDragon 810 processor can be used in the context of
critical real-time applications. We use the term critical real-time to refer to any hardware or software
component with any time criticality need: either mission, business of safety related.

2.1.1.1 The Platform

The SnapDragon 810 processor is a Qualcomm implementation of the ARM big.LITTLE architec-
ture used in several recent Sony Xperia mobile phones. In the SnapDragon 810, several hardware
events can be tracked with PMCs. Therefore, conclusions obtained on this specific processor apply
to several others in the consumer electronics market, especially those building upon ARM big.LITTLE
architecture and those implemented by Qualcomm.

The architecture of the processor, shown in Figure 2.1, comprises 2 clusters (also referred to as
processors according to ARM’s nomenclature): an ARM Cortex-A57 cluster with 4 cores and an ARM

1The Juno board is a development board that has been regarded neither compatible nor appropriate for commercializa-
tion for the Telecom use case. This board has neither appropriate interfaces nor the form factor for embedded products.
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Figure 2.1: Schematic view of the elements of the SnapDragon 810 processor analysed in this work

Cortex-A53 cluster with 4 cores. A57 cores are high-performance cores with out-of-order execution,
whereas A53 cores are low-power lower-performance in-order cores. Yet, the A53 cluster is already a
relatively high-performance platform w.r.t. current microcontrollers in many critical real-time systems.
Therefore, as a first step we analyse this cluster, whose cores are more amenable to current timing
analysis technology, with the aim of extending our work to the A57 cluster at a later stage. Each A53
core is equipped with local first level instruction (IL1) and data (DL1) caches. Level 1 caches are
connected to a shared L2 cache, local to the cluster. An Advanced Microcontroller Bus Architecture
(AMBA) bus interface connects both clusters to two shared memory controllers to access DRAM.
Peripherals and accelerators (present in this platform but not shown in the figure) are also connected
to the AMBA bus. In this work we decrease their effect by keeping them either disabled or idle.

Both clusters (A57 and A53) and the AMBA bus have been developed by ARM, the Intellectual
Property (IP) provider. Qualcomm, the chip manufacturer, integrates those components along with
some others, which may or may not be provided by ARM. Moreover, in the integration process Qual-
comm may introduce modifications in some IP components and/or their interfaces.

2.1.1.2 Tracing and Events

We focus on measurement-based timing analysis (MBTA), widely used in most real-time domains.
For instance MBTA is used in avionics systems [33, 5], including those with DAL-A safety require-
ments [26] (though on top of much simpler single-core processors).

In the context of MBTA, in D3.2 we have shown that it is fundamental tracing those events that
impact shared resource contention – e.g. cache misses – to derive bounds for a task factoring
in a specific contention level rather than the worst contention possible [11]. It follows that MBTA
techniques demand more and more advanced hardware tracing mechanisms.

For that purpose we build upon the existence of PMCs to derive the type and number of accesses
each task does, since this is needed to account for the contention a task can experience from (or
produce on) others (see D3.2, section 4.6). We also build upon stressing benchmarks, i.e. small
user level applications, that are able to create very high contention for each access type to the target
shared resource [12].

2.1.2 Qualitative Analysis: Specifications

The main source of information for the analysis of the SnapDragon 810 processor is the ARM Cortex-
A53 processor technical reference manual [2]. As detailed in the manual, a number of A53 features
are regarded as ‘implementation dependent’, thus meaning that the processor manufacturer has the
flexibility to choose among different options available. For instance, this is the case of the DL1,
IL1 and L2 cache sizes. From the information available in the A53 manual, we regard the following
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information particularly relevant for contention analysis:

• The arrangement of the main components in the A53 cluster, including DL1, IL1 and L2 caches,
as well as data prefetching features in DL1 and coherence support in L2.

• PMCs for events occurring in the cores (e.g. in DL1 and IL1 caches) and in the L2 cache.

However, some parameters are not available in the A53 manual, including the following: (1) Timing
characteristics of the interconnect between DL1/IL1 and L2 caches; (2) Specific characteristics of
the different cache memories such as, for instance, their sizes; and (3) PMCs for events spanning
beyond the A53 cluster such as accesses to the bus connecting A53 and A57 clusters with memory,
and PMCs for the memory controllers. From a detailed analysis of each of those missing parameters,
we reached the following conclusions:

• The interconnect between DL1/IL1 and L2 caches, as the remaining in-cluster components,
should be documented in ARM manuals. The lack of this information in the manuals makes us
resort to software testing (e.g. stressing benchmarks) to bring some light on the characteristics
of this interconnect.

• Some instructions exist to read the particular characteristics of the cache hierarchy so they can
be directly retrieved from the platform itself.

• PMCs and events beyond the A53 cluster should be documented in the SnapDragon 810 man-
ual, since the processor manufacturer integrates those components, and so has access to the
appropriate information for each component.

By the time we performed this work, ARM manuals were available, so we could retrieve them2.
However, SnapDragon 810 manuals are neither publicly available in Qualcomm’s website, nor in-
cluded in the documentation coming along with the Intrynsic DragonBoard (development board based
on the SnapDragon 810 processor), nor obtained upon request. In particular, while we requested ap-
propriate manuals through Qualcomm public services as well as through internal contacts, and NDAs
are in place, we were unable to get access to them. Other partners in the consortium have experi-
enced similar issues. Therefore, to the best of our knowledge, no information has been obtained on
what PMCs/events exist beyond the A53 cluster and how they could be used. From our analysis of
the available information, we have reached the following conclusions:

• The interconnect between DL1/IL1 and L2 can only be analysed empirically without specific
guidance on its timing behaviour. The confidence on those measurements is limited due to the
unknown specification of the interconnect.

• DL1, IL1 and L2 features can be directly obtained from the board via control instructions.

• Specific instructions exist to disable the data prefetcher. This is particularly relevant to discount
uncontrolled (prefetcher) effects during operation. However, as explained later, the prefetcher
could not be disabled.

• The L2 is inclusive with DL1 for coherence purposes. Thus, one core can create interferences
on the DL1 of other cores by evicting their data from the L2 cache.

• The L2 cache cannot be partitioned across cores. This feature, together with L2 cache inclusiv-
ity, leads to potentially high inter-core interferences if not controlled by software means.

• PMCs up to the L2 cache exist and are abundant. However, no information is available about
PMCs beyond the L2 cache.

2They have later become unavailable online and can only be retrieved upon request to ARM.
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Overall, several cache features challenge the calculation of inter-core interference execution time
bounds, and the lack of documentation for the DL1/IL1-L2 interconnect and the PMCs/events beyond
L2 decrease the confidence that can be obtained on measurement-based bounds. However, some
information about contention can still be retrieved empirically based on information available. In the
next section we present the experiments performed for that purpose, and the results obtained.

2.1.3 Quantitative Analysis: Experimentation

The number of hardware events that can be monitored in the SnapDragon 810 processor is limited ac-
cording to ARM’s documentation. For instance, while cache and memory accesses can be counted,
it cannot derived whether DL1/IL1 and L2 cache accesses turn out to be hits or misses. This com-
plicates the development of our methodology to measure the impact of contention in the access to
shared resources.

2.1.3.1 Stressing Benchmarks

In order to access PMCs we have developed a library with the an interface to read/write PMCs. The
main functions of the library include resetting/setting PMCs, activating/stopping PMCs, read/write
PMCs and start/stop the Performance Monitoring Unit. To quantify the impact of contention in the
access to the different shared resources, we have developed several stressing benchmarks that
stress each specific resource separately, in line with the method in [12]. This allows estimating the
maximum delay that a request to a particular shared resource can suffer. Then this data is used
to upper-bound contention impact. As starting point, we have developed stressing benchmarks to
account for contention in the access to the shared L2 cache and to the shared memory controller.
The basic structure of a stressing benchmark is given in Algorithm 1.

Algorithm 1 Structure of a stressing benchmark
1: procedure SB BODY
2: for (i = 0; i ≤ N ; i+ +; ) do
3: reset PMCs;
4: for (j = 0; j < M ; j + +) do
5: R2 = Load [@A+R1]; R1 = R1+STRIDE;
6: R2 = Load [@A+R1]; R1 = R1+STRIDE;
7: ...
8: R2 = Load [@A+R1]; R1 = R1+STRIDE;
9: end for

10: read PMCs;
11: end for
12: end procedure

Since measurements can be polluted, e.g. by the OS running below, we collect several (N ) mea-
surements and remove outliers keeping only the statistical mode. The iterator M and the number of
LOAD operations in the loop are set to values sufficiently high so that the overhead of the loop (i.e.
the control instruction) and the overhead to fill the IL1 cache become negligible (e.g. M = 1000 and
16 LOAD operations). In each outer loop iteration, the particular PMCs/events read and reset depend
on the contention that is to be measured in a particular experiment. Finally, STRIDE relates to the
distance between memory objects accessed so as to make sure that they either hit in L1, miss in L1
and hit in L2, or miss in L1 and L2. Vector size is properly set also with the same goal.

2.1.3.2 Disabling the Data Prefetcher

We disabled the data prefetcher so that read and write operations occurring in the different cache
memories are only triggered explicitly by the instructions executed in the stressing benchmarks, rather
than being automatically generated by hardware. For that purpose, we have configured the CPUACTLR
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register as described in the A53 manual [2]. Unfortunately, the execution of these commands led to
a system crash.

In order to verify the source of the problem, we repeated the same experiment on a PINE A64 [35]
board. The PINE A64 platform is built with the aim of being a low-cost open source platform. It
implements the same Quad-Core A53 Processor as the low-power SnapDragon 810 cluster. Thus,
its interface is expected to be the same. In the PINE A64 platform, the commands to disable the
prefetcher worked properly and subsequent experiments revealed that the data prefetcher was ef-
fectively disabled on that board. However, such board is a low-cost and low-power general-purpose
computer, so the board itself is not oriented to the industry in the mobile market. Instead, it is an open
platform. Thus, mobile industry will unlikely use it since there is no a large enterprise that provides
support in the long term.

Overall, we could not disable the prefetcher in the SnapDragon 810. This problem likely relates to
potential modifications introduced by the processor manufacturer, from which we did not succeed in
obtaining the information required about the SnapDragon 810.

As a confirmatory experiment, we run a stressing benchmark accessing 88KB of data, thus ex-
ceeding DL1 capacity (64KB) but fitting L2, with a 8B stride. Hence, every 8 accesses we have 1 DL1
miss and 7 DL1 hits due to spatial locality (DL1 line size is 64B). With the prefetcher disabled, we
would expect that the number of L2 accesses was 1/8 those in DL1. We observed that the number
of DL1 accesses matches quite well our expectations, but the number of L2 accesses is roughly 0,
revealing that the prefetcher is active and fetches data into DL1 reducing L2 accesses (the PMC for
prefetch requests confirms this hypothesis).

2.1.3.3 Assessing Stressing Benchmark Results

In order to assess the behaviour of the PMCs in the A53 cluster, we have run our stressing bench-
mark, which performs 11,000 load operations with a specific stride. This code is in a loop iterating
100 times, and we report average results across those 100 iterations to minimise the impact of cold
misses in the first iteration and noise in the measurements.

Figure 2.2: Avg. number of IL1 (L1I), DL1 (L1D), L2 (L2D) and memory (MEM) accesses, and L2
refills per loop iteration for different data strides.

We explore strides ranging between one 64-bit element (8 bytes) and 512 elements. With the
smallest stride (8 bytes), we traverse a vector of ≈ 88KB (11,000 elements x 8 bytes), which does
not fit in DL1, but fits in L2. Thus, the number of DL1 accesses expected is 11,000 approximately.
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Each load is expected to miss in DL1 when 64-byte boundaries (DL1 cache line size) are crossed,
and should hit in DL1 otherwise.

Overall, for a 1-element stride we expect 1,375 (11,000/8) L2 accesses per outer loop iteration.
Then, since ≈ 88KB fit in L2, we expect roughly 0 memory accesses (13.75 on average in practice).
When doubling the stride, we expect L2 accesses to double until reaching value 11,000 (at stride
8), and then flatten. Memory accesses should remain roughly 0 until L2 cache capacity (512KB) is
exceeded, at stride 8 (≈ 704KB), when all accesses become also L2 misses so we have 11,000
DL1, L2 and memory accesses.

Figure 2.2 shows how DL1 accesses effectively match expectations while L2 data accesses (L2D
in the plot) show much higher values. Interestingly, L2 refills (L2 REFIL), i.e. lines brought explicitly on
a DL1 miss, match our expectation for L2 accesses. This reveals that, apart from the DL1 misses, we
have another source of L2 accesses, which seems to be the prefetcher. When looking at the number
of memory accesses (MEM), we observe that it matches quite accurately L2 accesses plus L2 refills,
thus reflecting a number of accesses around 4x the expectations (44,000 memory accesses instead
of 11,000). This also reveals interferences from the prefetcher since, even when data should fit in L2
(up to stride 8) and so memory accesses should be negligible, we have plenty of them. Overall, this
experiment reveals that the prefetcher is active and produces severe interferences that defeat any
intent to control contention in shared resources in the A53 cluster.

2.1.4 Summary of Lessons Learned

In this section we analysed the difficulties that entails using a popular microprocessor in consumer
electronics, the SnapDragon 810, in the context of critical real-time applications. This microprocessor
provides the level of performance needed by many critical real-time applications, but at the same time
poses a number of challenges in its utilisation, which we summarise next.

Uncontrolled resource sharing. The use of a fully-shared L2 cache across several cores brings
some difficulties to control or tightly upper-bound inter-core interferences. In particular, one task
running in one core is allowed to evict any line in the L2 cache, thus affecting the performance of
other cores in non-obvious ways if those other cores rely on the contents stored in L2. This issue
may be potentially exacerbated by the fact that the L2 cache of this processor is inclusive with DL1
caches. Thus, a task may also get its data evicted from DL1 due to the inclusion property with L2.

The most promising approach to overcome this challenge builds upon cache partitioning. For
instance, the Freescale P4080 processor, also representative of a high-performance processor of
interest for real-time applications, allows configuring its shared L3 cache so that private regions are
allocated to specific cores [6]. However, space partitioning may not be enough if buffers and queues
are shared, which may still allow high contention across cores, thus leading to low performance
guarantees [40]. However, as shown in this section, a popular processor such as the SnapDragon
810 does not provide such a support yet.

Need for documentation. For enabling MBTA based on PMCs, at least some documentation
about components interfaces is mandatory. The information on hardware-to-hardware interfaces in-
cludes the way in which requests are managed (e.g. whether shared queues are used, what policies
are used to serve requests). This allows reasoning about the theoretical worst-case scenarios so that
stressing benchmarks can be developed to stress them and obtain timing information via measure-
ments.

Regarding software-to-hardware interfaces, which include precise information on how to enable/dis-
able some features (e.g. prefetchers) or how to monitor hardware events through PMCs available,
information released is often limited. Again, this prevents appropriate configuration and monitoring of
the processor, thus defeating the intent of obtaining tight WCET estimates on top of these platforms.
The unavailability of this information often relates to IP protection and competition.

Both issues are exacerbated by the fact that many microprocessors incorporate IP from different
suppliers, as in the case of the SnapDragon 810 processor, which includes at least IP from ARM and
Qualcomm. In our view, detailed information will be made progressively available as market pressure
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increases and releasing details becomes the only way to make sales grow. Still, this shift towards
openness will occur slowly, so we have to resort to study a development platform, the ARM Juno
board, to assess ARM big.LITTLE architecture at this stage.

2.2 Juno Board

In this section we follow a similar process to that for SnapDragon 810, but for the Juno SoC, which
has only been developed by ARM, thus avoiding unmatching features with those documented, and
also allowing a broader access to technical documentation.

2.2.1 The Platform

Next we provide the most relevant details of the ARM Juno R2 board for this work. The Juno board
includes the Juno SoC, whose general purpose components are depicted in Figure 2.3. This ARM
big.LITTLE design includes two computing clusters, being one of them equipped with 2 Cortex-A72
high-performance cores and another with 4 Cortex-A53 low-power cores. We refer to those clusters
as HPclus and LPclus for short. Each cluster includes a local shared L2 cache. Both clusters are
connected to a shared memory controller.

Figure 2.3: Schematic view of the Juno SoC components analyzed in this work.

A72 cores feature out-of-order execution, whereas A53 ones offer low-power in-order execution
instead. For the sake of facilitating the interpretation of results, the assessment in this work will
focus on A53 cores (LPclus), to discount the measurement noise that out-of-order execution could
introduce. Yet, conclusions reached in this work, are not necessarily restricted to this cluster and, to
some extent, apply to both clusters.

Each core includes a first level instruction (IL1) and data (DL1) cache. Also, each cluster includes
a shared L2 cache. In order to assess the impact of shared resources on execution time we stress
caches with increasing data sizes. The size IL1 caches do not impact results since benchmarks
tested are designed to be tiny (< 1KB) in comparison to the IL1 size (32KB for LPclus and 48KB for
HPclus). Data cache sizes for the LPclus are 32KB 4-way 64B/line for DL1 and 1MB 16-way 64B/line
for the L2.

The particular interconnect between cores and L2 caches is not described in the documentation.
L2 caches are connected to the memory controller through an ARM AMBA 4 bus (ARM CoreLink
CCI-400 Cache Coherent Interconnect). Other components, such as accelerators and peripherals
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(not depicted in Figure 2.3), are also attached to this bus. Since they are not used in our analysis, we
omit details and keep them disabled or idle during test campaings.

2.2.1.1 Measurement Collection Infrastructure

Measurement-Based Timing Analysis (MBTA) is the most common practice in industry for timing
analysis [42]. Hence, our quantitative assessment builds upon empirical evidence obtained directly
on the Juno SoC. For our analysis, we build upon the measurements collected with the Performance
Monitoring Unit (PMU), which allows us to monitor the following events: execution time, instructions
retired, DL1 accesses and IL1 accesses (per core), L2 accesses (per cluster), and memory accesses
(global). Although some other events may also be monitored, we focus on the ones listed as they
prove being enough to reach clear conclusions.

Note, however, that the number of Performance Monitoring Counters (PMCs) in the PMU is limited,
so we cannot monitor all events in a single run. Instead, each experiment needed to be repeated
twice with different event-to-PMC mappings to obtain all measurements. The particular experimental
methology used is described later in Section 2.2.3.1.

2.2.2 Qualitative Assessment

We have conducted first a qualitative analysis on the adequacy of ARM big.LITTLE architectures
for Critical Real-Time Embedded Systems (CRTES). The main sources of information for such anal-
ysis are the processor specifications such as the ARM Cortex-A53 processor technical reference
manual [2]. Although several parameters are regarded as implementation dependent in the docu-
mentation, conducting our work on an ARM development board – the Juno board – grants us access
to further details and means to poll the platform for implementation details. For instance, cache pa-
rameters can be obtained by executing specific instructions, which provide the user with the particular
sizes, number of ways and line sizes of the different cache memories in the SoC.

Next we review the main shared resources in the SoC that may become sources of contention,
i.e. timing interference, and to what extent they are expected to impact the execution time of critical
real-time tasks due to contention.

2.2.2.1 L1-L2 Interconnect

The first shared resource that tasks use when exiting the core is the interconnect between L1 and L2
caches. Unfortunately, details on its design are not publicly documented, so its impact can only be
assessed quantitatively (see Section 2.2.3). However, our expectation is that, given that the L2 may
be accessed often from the different cores, the L1-L2 interconnect provides high bandwidth, thus,
avoiding the complete serialization of accesses.

2.2.2.2 Shared L2 cache

It is unclear whether requests are processed in-order or in a round-robin fashion across contenders
since this feature is not documented in the specification. Hence, the impact of this feature can only
be sensibly assessed quantitatively, as done later in Section 2.2.3. However, the main issue related
to the L2 cache for critical real-time tasks is the fact that it cannot be partitioned. Hence, unless
software partitioning is implemented (e.g. controlling the memory regions allowed for the different
tasks in each core [28, 31]), L2 cache space is fully shared across cores. Therefore, any task can
evict data belonging to tasks running in other cores. Note that avoiding those interferences by means
of software partitioning would have important side effects since it (1) increases the difficulty of task
migration across cores, (2) makes data sharing more challenging (needed at least for communication
purposes), (3) causes memory fragmentation, and (4) may be not even implemented for shared
libraries or Operating System services.
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2.2.2.3 Inclusive DL1 caches

DL1 caches are inclusive with L2 caches. This means that, on an L2 eviction, if the evicted line
resides in any DL1 cache, it is also evicted from the DL1 cache. Hence, even if a task is not using
L2 cache contents explicitly and reuses its DL1 contents, it may suffer evictions due to other tasks
evicting its DL1 cache lines from L2.

2.2.2.4 L2-memory Interconnect

The AMBA bus connecting L2 caches and memory may serialize requests, thus making contention
have an impact in memory latency. However, requests are already serialized per cluster in L2 caches.
Hence, the additional serialization caused by this bus has a limited impact in memory latency, which
is expected to be relatively low since memory latency is typically much larger than the latency of a
shared bus.

2.2.2.5 Memory Access Contention

The fact that 6 cores share a memory controller and a single memory subsystem may make memory
contention have an impact in memory latency. However, the Juno board uses DDR3 DRAM modules,
which allows them to process memory requests quickly w.r.t. the SoC operating frequency. In partic-
ular, LPclus and HPclus operate at 950MHz and 1200MHz respectively, the L2-memory AMBA bus
at 400MHz, and DDR3 DRAM at 1600MHz.

2.2.2.6 Recap

In summary, shared resources may lead to contention interferences. From this qualitative assessment
we expect the impact of contention in the interconnects and DRAM memory to be limited, whereas
the impact of shared L2 cache space and inclusive DL1 caches may be potentially high.

2.2.3 Quantitative Assessment

This section presents the quantitative assessment of the timing behavior of the Juno SoC with regard
to its adequacy for CRTES. First, we present the experimental setup. Then, we provide results
identifying pros and cons of the ARM big.LITTLE architecture for its use in CRTES.

2.2.3.1 Experimental Setup

To perform measurements, we use stressing benchmarks (SB) that traverse a data vector, in line with
the proposals in the literature [12] and analogously as for the SnapDragon 810 processor. The size of
the vector is set to be 2NKB and accesses are performed with a stride of 64B, thus matching cache
line size. PMCs are reset before each traversal and read right after. Each experiment is performed
twice reading different events so that all events of interest can be monitored.

Collecting measurements on a real board poses some challenges, such as the difficulties brought
by the monitoring software to interface the counters and the noise of the interrupts. These factors
may also interfere with the measurements. Hence, some measurements can be abnormally high or
low. To mitigate the impact of noise, traversals are repeated 1,000 times (per set of events read). The
pseudo-code of the stressing benchmarks is shown in Algorithm 1, where the main loop is unrolled
16 times to reduce the relative overhead of the loop management instructions. Such an approach
produces 1,000 measurements for each event. The first one is intended to warm up caches. Hence,
its results can be regarded as irrelevant for our study. Then, to discount outliers we keep the median,
which is still subject to some noise. However, filtering outliers automatically with this approach allows
identifying trends as needed for this work.

Two main experimental setups are considered. The first one (see Figure 2.4 (a)) runs the monitored
SB (SBmon) in one of the cores of the LPclus. All the remaining cores remain idle. The only exception
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is one core of the HPclus, which runs the Real-Time Operating System (RTOS), marked with an
asterisk. Such activity has been placed in a different cluster to minimize unwanted interference. The
second setup is identical to the first one, but all contender cores run SB also (see Figure 2.4 (b)). To
simplify the discussion, we focus only on the results of experiments conducted where N is identical
across all SB in all cores.

Figure 2.4: Experimental setup (a) in isolation and (b) with contention.

Vector sizes per SB vary between 1KB and 2MB (so 10 ≤ N ≤ 21), hence the SBmon may either fit
in DL1, exceed DL1 and fit in L2, or exceed L2 cache space.

2.2.3.2 Assessing Stressing Benchmark Results

Figure 2.5: Cycles per access for the two setups when varying vector size.

Figure 2.5 presents the results of the experiments in both setups in the form of cycles per (memory)
access, or CPA for short (straight lines). Such a metric allows comparing all measurements regard-
less of the size of the vector. The plot also includes DL1 and L2 miss rates w.r.t. the total number of
accesses for the setup in isolation. While this is the usual miss rate for DL1, since all accesses are
directed to DL1, it is not for L2. However, we report the number of L2 misses w.r.t. the total number of
accesses so that, if the total number of L2 misses is very low, this metric is also very low. Otherwise,
we could have a very high L2 miss rate (e.g. 50%) with very few L2 misses (e.g. 1,000,000 DL1
accesses, causing only 4 L2 accesses, out of which 2 are L2 misses). If the absolute number of L2
misses is very low w.r.t. the total number of memory accesses, then the L2 miss rate (L2 misses
divided by L2 accesses) is irrelevant in practice.
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Results in isolation show that the CPA is slightly above 3 cycles when the vector size does not
exceed 32KB. Such a vector size fits in DL1 and hence, vector accesses are expected to hit, as
reflected in the DL1 miss rate. Note that, since each memory access comes along an arithmetic
operation to increase the index, 3 cycles is expected to be the latency to execute both, the memory
access and the arithmetic operation. We observe that the CPA slowly decreases when moving from
1KB to 16KB. This occurs because the code inside the loop has some prologue and epilogue to
set up and read the PMCs. For a larger vector size, the relative impact of such code decreases.
We also note that the lowest CPA value is 3.15 for a vector size of 16KB, still above 3 cycles. This
occurs because every 16 memory accesses, there are few arithmetic instructions to check the loop
condition. We also note that whenever the vector size matches DL1 size exactly (32KB), the CPA
increases to 3.62. This occurs because prologue and epilogue fetch few cache lines that cause some
DL1 evictions in each iteration and hence, some additional L2 cache accesses. Hence, DL1 miss
rate grows from <1% to 9%.

When moving to vector sizes in the range 64KB-1MB, the CPA reaches values slightly above 9
cycles, with the exception of the case for 64KB. In all these cases data does not fit in DL1, but fits
in L2, as reflected in DL1 and L2 miss rates. As for the case when data fit in DL1, we observe that
larger vector sizes slightly decrease the CPA until we reach the exact L2 size (1MB), when CPA slightly
increases. The CPA for 64KB is abnormally low. The source of this unexpected value is still under
investigation, although it seems to relate, to some extent, to the DL1 miss rate, which is around 73%
when we would expect it to be close to 100%. However, we are pessimistic on whether the cause can
be identified given the limited documentation available, which omits details on, for instance, whether
some form of buffering exists between DL1 and L2, or whether translation lookaside buffers (TLBs)
could create further delays.

Finally, for a 2MB vector size, L2 cache space is exceeded and virtually all vector accesses reach
memory, thus producing a CPA slightly above 20 cycles. This information is also reflected in the L2
miss rate.

In the case of the setup with contention (setup (b) in Figure 2.4), results for vector sizes between
1KB and 32KB match exactly those for setup (a) in isolation. This is expected since all cores hit in
their respective DL1 caches and hence, no contention occurs in shared resources.

For vector sizes between 64KB and 256KB, the vectors of all cores in LPclus still fit in L2 (i.e.
256KB × 4 ≤ 1MB). Hence, there is no meaningful contention for L2 space, since only some
residual contention due to loop prologue and epilogue code is expected when vector sizes are 256KB.
Therefore, the CPA increase w.r.t. the isolation setup can be attributed to contention in the L1-L2
interconnect and serialization of the accesses in L2. As the size of the vector increases, the number
of consecutive memory accesses increases and hence, there are fewer non-memory instructions per
access (due to loop condition check plus prologue/epilogue), and thus, the degree of contention per
access increases. Performing an exhaustive assessment of all potential conditions to discover the
maximum CPA is left for future evaluation, although the methodology needed to discover such a value
has already been described in [12]. Note, however, that the degree of contention in the access to L2
is so high that, despite data fitting in L2 for the 256KB vector size, CPA is 20.9, slightly higher than
the CPA of experiments in isolation when L2 cache space is exceeded (20.7).

For vector sizes in the range 512KB-1MB, L2 cache space is exceeded in LPclus, so the CPA
becomes 23.1 cycles for 512KB and 23.8 for 1MB. This indicates that moving from a scenario with
high contention in the accesses to L2 to a scenario where L2 cache space is exceeded can only
cause a modest CPA increase.

Finally, for a vector size of 2MB, the SB in the HPclus also exceed their L2 cache space, which
is 2MB. Hence, the SBmon experiences additional contention in its memory accesses, thus having
a CPA slightly above 25 cycles. While such an increase can be noticed, it is also rather modest
since DRAM memory is very fast in comparison with the operating frequency of the Juno SoC, and
contention in the access to L2 proves to be the main performance bottleneck.

For the sake of completeness, we have considered the setup with contention, but placing an in-
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Figure 2.6: CPA with contention varying the number of NOPs between accesses.

creasing number of no-operations (NOP) between memory accesses. Results for NOP counts be-
tween 0 (the default case) and 16 are depicted in Figure 2.6. As shown, an increasing number of
NOPs increases the CPA when data fits in DL1, since NOP latency can be hardly overlapped with
DL1 access latency, thus impacting execution time. However, as soon as the vector size exceeds DL1
size (from 64KB onwards), execution time is completely dominated by the contention in the access
to shared resources, so even 16 NOPs can be executed between two consecutive memory accesses
without further increasing execution time, so that CPA remains constant. This is reflected in the fact
that the CPA is roughly the same regardless the number of NOPs for any vector size equal or higher
than 64KB.

2.2.4 Assessing an Avionics Prototype

For the sake of completeness, we evaluate our methodology on an avionics prototype. As avionics
prototype, we use a critical real-time application as described in [13]. In particular, this application is
an experimental version of a Flight Management System (FMS), based on an operational FMS archi-
tecture from Thales. This test application aims at performing in-flight guidance of aircrafts following
a set of predefined flight plans. During the flight, the FMS is in charge of (1) determining the plane
localization and (2) computing the trajectory in order to follow these flight plans. The experimental
setup is similar to that used for stressing benchmark evaluation, as described in Section 2.2.3.1, but
replacing SBmon by the avionics application, FMS, and keeping the HPclus always without contention.
As explained later, contention coming from the HPclus is irrelevant. Hence, the avionics application
runs either in isolation or with contention against SB in the other cores, which create sustained con-
tention. To further increase the amount of quantitative information obtained, we consider 3 setups
with contention, varying the number of cores running SB from 1 to 3. Hence, FMS is evaluated in 4
setups: in isolation, against one SB, against two SB and against three SB (see Figure 2.7).

Since the duration of the FMS application is larger than that of the SB, SB are run repeatedly so
that FMS experiences sustained contention during its complete execution.

Results. First, we analyze the execution time to assess the impact of contention. Figure 2.8
shows the slowdown for all setups when varying the vector size of the SB from 2KB to 4MB for each
setup. Results are shown w.r.t. the fastest case. As shown, the slowdown is very low in all cases.
The reason for this behavior is the fact that FMS runs for around 4.5 million cycles in isolation and
performs only ≈ 400 accesses to the L2 cache. Hence, the FMS is highly insensitive to contention
in shared resources. It keeps its working set in DL1 so the potential slowdown that it can suffer is
roughly negligible.
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Figure 2.7: Experimental setup (a) in isolation, (b) with contention in 1 core, (c) with contention in 2
cores and (d) with contention in 3 cores.

Figure 2.8: Slowdown w.r.t. fastest case when varying vector size.

We note that in some specific cases the slowdown is between 0.5% and 1.5%, thus reflecting some
impact due to contention. Our first analysis indicates that 400 bus accesses, even if they experience
the highest contention shown with benchmarks (22 cycles per access, from 3 to 25 cycles), contention
would be only 8,800 cycles, which is below 0.2%. Hence, only contention in the access to shared
resources cannot explain this behavior. Hence, we have analyzed the number of accesses to the L2
cache, which are shown in Figure 2.9. As we can see, those cases where slowdown is relatively high
match those cases where the number of bus accesses grows from 400 to above 4,500. The reason
for this increase in the number of L2 accesses is the fact that DL1 is inclusive with L2. Hence, the
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Figure 2.9: Bus accesses when varying vector size.

FMS keeps its working set in DL1, but the SB may evict FMS data from L2 in some cases, thus
causing DL1 evictions and thus, an increased number of L2 accesses. This explains the slowdown.
In particular, if we consider the case with the highest number of L2 accesses, 6,172, we realize that
the worst potential slowdown that could ever occur is 3%. Obviously, contention experienced is not
the highest one since FMS accesses may incur lower contention due to the time alignment of events.
For instance, an access may arrive right when an access from another core has been served and
thus, it finds fewer requests in front that can delay the access.

Overall, we realize that the FMS is a good candidate application for this architecture since, despite
it may suffer some undesired contention due to inclusivity evictions in DL1, those may cause low
slowdown in practice.

2.2.5 Summary of Lessons Learned

Our qualitative and quantitative assessment of the timing behavior of ARM big.LITTLE architectures
through the ARM Juno board provide valuable lessons:

• The variation in terms of latency between L2 hits and L2 misses is large. In our results in
isolation they are 9 and 20 cycles respectively. Hence, a task hitting L2 cache often is highly
vulnerable to L2 cache space interference, which may increase execution time by a factor above
2x.

• Contention in the access to L2 due to access serialization can be as significant as the impact
of transforming L2 hits into L2 misses. In fact, L2 latency without and with contention is also 9
and 20 cycles respectively, hence a factor above 2x.

• Access latency of DRAM (≈ 25 cycles) is relatively low in comparison to access latency of L2
(≈ 20 cycles) in the presence of contention, hence a factor around 1.25x.

• Tasks hitting in their local DL1 are highly insensitive to contention. Eventually they might suffer
some DL1 evictions due to inclusivity, but they are only expected to be significant if the degree
of L2 thrashing caused by contenders is very high. Unless very unfortunate cache placement
occurs where the task under analysis and its contenders compete for very few L2 cache sets,
one might expect that contenders need to thrash the complete L2 cache to evict all DL1 data of
the task under analysis. Hence, the smaller the data set, the less frequently DL1 misses due to
inclusivity evictions will occur.
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Based on these observations, we can raise the following recommendations for the use of ARM
big.LITTLE architectures in the context of CRTES:

• Critical real-time tasks must avoid hitting in L2. This implies either hitting in DL1 (in the smallest
number of lines possible) or largely exceeding L2 capabilities. Examples of such tasks would be
control tasks with limited working sets and streaming tasks. In fact, these types of tasks could
easily coexist without jeopardizing their execution times due to contention.

• Exploiting L2 cache space must only be allowed for non-real-time tasks (or non-critical real-time
tasks) since they are highly vulnerable to interference due to L2 cache access serialization and
L2 evictions caused due to contention.

• Documentation needs to be sufficient and accurate. This is the case for the Juno SoC, but it is
not for the SnapDragon 810 processor.

2.3 AURIX TC27x

In this section we integrate the concept of signatures and templates described in WP3 on an Infineon
AURIX platform. In particular, this section builds upon the concepts presented in Section 4.6 of
deliverable D3.2, whose undertstanding is required for the right interpretation of the details in this
section. This hardware platform has a number of features different from general purpose processors,
whose structure is quite close to that of the SnapDragon 810 and the Juno SoC. Instead, AURIX
processors are specifically designed to be time-predictable. Still, contention in the access to shared
resources can occur and impact execution time significantly. Hence, we model multicore contention
as described next.

2.3.1 Preliminaries

2.3.1.1 Reference Platform

We address an AURIXTM TC277 board [20] with three different TriCoreTM processors, sharing a
common ISA but differently characterized w.r.t. computational and energy efficiency: a low-power
core with a simple microarchitecture (16E) and two higher-performance cores (16P), equipped with
high-performance features such as more complex pipelines, dynamic branch predictors and larger
caches.

As summarized in Figure 2.10, all processors are equipped with separated core-local memories
(scratchpads and caches) for instructions and data3. The 1.6P processor includes large scratchpads,
respectively 32 KB and 128 KB for Program ScratchPad RAM (PSPR) and Data ScratchPad RAM
(DSPR). Caches are relatively smaller, with 16 and 8 KB respectively for Program Cache (PCACHE)
and Data Cache (DCACHE). Processors are connected to a shared ‘memory system’ through the
Shared Resource Interface (SRI). The shared memory system comprises a SRAM device, accessed
via the Local Memory Unit (LMU or lmu) and a FLASH device, accessed via the Program Memory
Unit (PrMU) through three independent interfaces, two for code (i.e. program) and one for data.

LMU and PrMU memory areas can be accessed both in cacheable or uncacheable mode, depend-
ing on the address segment used. System software statically defines where the different elements in
the application (e.g., stack, functions, and data) are mapped and the cacheability options.

In the AURIX platform, contention happens when parallel requests (from different master modules
such as the cores) are directed to the same slave interface (e.g. LMU, PrMU). Requests to target
modules (slaves) in the SRI are arbitrated according to a priority-driven policy, where masters (cores
in our case) are mapped by configuration to a priority class. When a priority class accommodates
more than one master (e.g. several cores running with the same priority), then a round-robin mecha-
nism is used.

3The 1.6E processor implements a dedicated buffer in place of a data cache.
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Figure 2.10: Block Diagram of the AURIXTM TC-27x

2.3.1.2 Basic Notation and Assumptions

We consider one task under analysis (tua or τa), a time-critical task for which a WCET estimate is
to be derived, and a contender task (τb). In the general case, τa’s requests can map to any priority
class in the SRI, depending on the priority assigned to the core where τa is executed. However,
we restrain our focus to those cases where τa’s requests can potentially incur a relevant amount of
interference. Since τa is time-critical, we can exclude scenarios where the requests of contenders are
mapped to higher priority classes. Instead, we assume τa requests are mapped to the same (shared)
priority class of the contender’s ones, i.e. the typical case when contenders are also time-critical.
In this scenario, stalls can happen whenever τa issues a request to a target and the request arrives
right after the arbitration turn has selected another request by a contender task on the same target4.
Hence, contention is determined on a per-target basis and depends on the round-robin arbitration
policy. It is worth mentioning that the SRI also implements an anti-starvation mechanism to provide
a minimum service to lower priority requests. However, since we assume all requests belong to
the same priority class, the anti-starvation mechanism can never be triggered. How to account for
scenarios with mixed priority classes is left as future work and, in the rest of this section, we build on
the assumption that all requests from all tasks belong to the highest priority class.

In general, the exact contention a given task under analysis τa will suffer from another contender
task τb cannot be effectively predicted as it depends on how inter-core requests interleave in the
interconnect. Moreover, analysis is often forced to build on information obtained on the task under
analysis in isolation as information from joint execution cannot be derived until late design phases,
when applications are integrated together. Therefore, contention models cannot determine exactly
how tasks will interleave in reality once integrated. Contention models have no option other than
being conservative and assume that contenders’ requests align in the worst possible way with τa’s
requests [34, 24].

In the TC-27x, contention is also determined by the number of requests of τa and the number and
type of requests of τb, i.e. it does not depend on the type of requests sent by τa. As a result, a
conservative contention model is forced to assume τa is delayed by each request of its contender
by the duration of that request, which in turn depends on the target resource (t) and operation type
(o). Restricting the scope of our analysis to the Electronic Control Unit (ECU)5, the relevant target
resources accessible through the interconnect in the AURIX platform comprises LMU and PrMU. The
latter is further broken down in different Flash memory interfaces for data and program (code), which

4In fact the same effect is obtained in general when τa requests lose the arbitration round because of higher-priority
requests, with the only difference that the anti-starvation mechanism could intervene.

5We do not consider external peripherals and special communication devices.
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Table 2.1: Definitions used in this section.
Acronym Description

Target Resources and Operation Types
T Target resources in the SRI
O Types of operations on a SRI target
−→
O = {o′, o′′, ...} Operations in descending latency order

Access Counts
na, Total access count of τa
ncoa , ndaa Data and code access count of τa
n̂a, n̂coa , n̂daa Upperbounds to previous values
nt,oa τa’s accesses of type o to resource t
nrt,oa τa’s remaing o-type (or shorter) accesses

Latencies
lt,o Access latency of o-type requests to t
cst,o Stall cycles when accessing t with an access o
cscoa , csdaa τa’s code and data stall cycles in isolation
∆cscoa , ∆csdaa τa’s increment in stall cycles due to contention

we denote dfl, and pf0 and pf1 respectively.
Table 2.1 summarizes the main terms we use. We consider the set of target resources
T = {dfl, pf0, pf1, lmu}. While each target might exhibit different latencies depending on the type of
request (operation) processed (i.e., code/data reads or data writes), for the time being we differentiate
only among code (co) and data (da) requests for all targets in O = {co, da}, ∀ t ∈ T . Code accesses
can target the pf0, pf1 and lmu, while the data accesses can target any resource: dfl, pf0, pf1 and
lmu as presented in Figure 2.11.

2.3.1.3 Hardware Profiling

We develop our contention model on top of the AURIXTM Debug Support Unit (DSU) interface. The
TC-27x comes with a set of multi-purpose PMCs that can be configured to collect data on both
core-local and inter-core events. As baseline support to derive the latencies of all operations on
the platform, we exploit the on-chip cycle counter (CCNT). The most relevant information related to
inter-core contention has been identified in the PMEM STALL and DMEM STALL counters: these PMCs
count the number of cycles the pipeline has been stalled when accessing the Program/Data memory
interface respectively. Finally, as a complementary source information, we also exploit the PMCs re-
lated to cache performances and specifically to cache misses (i.e., PCACHE MISS, DCACHE MISS CLEAN

and DCACHE MISS DIRTY). The relevance of cache misses information comes from the fact that SRI
accesses may be triggered in response to a miss event.

Owing to configuration constraints, only fixed subsets of PMCs can be collected over a single
execution. Three executions were required to collect all PMCs we deemed relevant to build the
contention model. We followed a strict measurement pattern where measurement noise is completely
removed by a smart enabling and disabling of PMCs.

Maximum observed end-to-end latencies for SRI transactions in isolation are reported in Table 2.2.
Note that the reported latency is the maximum between read and write operations per SRI target as
we are only interested in discriminating between code and data operations. Table 2.2 also report cst,o

as the amount of stall cycles incurred in the best-case for single accesses in isolation to each SRI
target. Best-case stall counts should take into account the effects of prefetching, pipelining in the
SRI, etc. so that they can be used to compute an overapproximation of the number of SRI accesses
of a given application or task.
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Figure 2.11: Code and data access paths to the SRI

Table 2.2: Maximum latency and minimum stall cycles
Target (t)

lmu pf dfl

lmax 11(21) 16 43
lmin 11 12 43
cst,co 11 6 -
cst,da 10 11 42

2.3.2 Contention Models

Our first model assumes all relevant information on SRI access is available. Then, we show how we
can cope with the lack of information and proceed with a step-by-step definition of a realistic and tight
ILP-based contention model.

2.3.2.1 Ideal contention model for the AURIX

We explain the ideal model by analyzing a simplified scenario, in which τa performs more accesses
than τb to every single resource, i.e. nta > ntb ∀t. Under the worst-overlap described above, the
model simply assumes that each request of τb delays τa by its duration. The worst-case contention
τb can cause on τa, i.e. ∆cont

b→a, is computed according to Equation 2.1, where nt,ob is the number of τb
requests of type o to target resource t and lt,o is the latency of that request.

∆cont
b→a=

∑
t∈T

∑
o∈O

nt,ob × l
t,o (2.1)

In general, τa and τb may have an arbitrary number of requests, which can be trivially captured by
the model.

2.3.2.2 Coping with limited information

The above ideal model builds on detailed information on (i) the latency of each operation for each
target resource; (ii) the total access count per resource of the task under analysis; and (iii) total access
count and operation type per target resource of the contender tasks. However, such information is
not always (sufficiently) available, due to the limited hardware support in typical DSU for deriving nt,ox
for an arbitrary task τx. Furthermore, focusing on maximum lt,o for each resource and operation type
inherently introduces pessimism by possibly discarding effects of prefetching on the SRI targets. We
had to cope with these concerns in the TC-27x.
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2.3.2.2.1 Latencies

We empirically derived the longest latency incurred by each target resource when processing a code
or data request, as reported in Table 2.2. To measure the maximum latency to each target resource
we considered the latency incurred by single accesses to a target (slave) resource in the SRI as
measured by the on-chip cycle counter (CCNT). Note that dirty data misses latency on the LMU are
reported within parentheses as they apply only on limited scenarios.

2.3.2.2.2 Access counts of τa

In the case we have a lack of specialized PMCs on SRI accesses on per-resource basis, we resorted
to a secondary metric to derive upper bounds to the total (data and code) SRI requests of a task. To
that end we used the existing stall cycle counters and in particular the PMEM STALL and DMEM STALL

PMCs in our target AURIX platform. An upperbound to the number of SRI requests can be derived,
separately for code and data, by dividing the total amount of stall cycles by the minimum amount of
stall cycles per single request. We derived the latter by analyzing the PMEM STALL and DMEM STALL

PMCs under a specific set of stressing benchmarks comprising a known number of requests of a
given type to a desired target resource. This allowed us deriving a lower bound to the stall cycles a
task suffers while completing a code and data request to a given target, cst,co and cst,da. Since this
processor does not have access counters for the slaves, we have to infer them from the stall cycles.
Hence, we are interested in lower bounds to the stall cycles per request in order to upperbound
the number of possible accesses to the slave (i.e. assuming that requests experience the lowest
stall possible so that we maximize the number of possible accesses). The second factor for the
computation of (an over-approximation of) the SRI traffic of a given task consists in the total amount
of stall cycles suffered in isolation because of stalls in the memory interface. For a given task τx, these
values can be obtained for code and data request separately (cscox and csdax ) by running the task in
isolation and collecting cumulative end-to-end values of PMEM STALL and the DMEM STALL counters.

From the information on stall cycles we can derive an upperbound to the number of code and
data requests assuming that the entire stall delay has been caused by the requests of the shortest
duration, i.e. csomin = min({cst,o}∀t∈T ∧∀o∈O). As depicted in Figure 2.11, the lowest possible stall
cycles incurred for code and data requests in the AURIXTM platform can be derived by taking into
account the architectural constraints on where code and data can be deployed:

cscomin = min
(
cspf0,co, cspf1,co, cslmu,co

)
(2.2)

csdamin = min
(
cspf0,da, cspf1,da, cslmu,da, csdfl,da

)
(2.3)

An upperbound to code and access counts of task τa can be derived by assuming that all requests
are of the type incurring the lowest number of stalls (hence more requests are needed to cause cscoa
and csdaa ) by dividing the stall cycles by the duration of the shortest request.

n̂coa =

⌈
cscoa
cscomin

⌉
and n̂daa =

⌈
csdaa
csdamin

⌉
(2.4)

2.3.2.2.3 Per Target Access Counts (PTAC) of τb

Cumulative SRI access counts for code and data do not suffice for deriving a reasonably tight con-
tention model. Since the SRI mechanism allows handling requests to different slaves in parallel (and
each slave does incur different latencies), a good approximation of inter-core contention cannot be
had without considering Per-Target Access Counts (PTAC). As shown in Figure 2.11, code and data
accesses of a given task can go to different targets. With the current AURIXTM DSU support, de-
spite having upperbounds for cscob and csdab , we cannot break them down in per-target components
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(rightmost part in Equation 2.5).

nb = ncob + ndab =
∑
t∈T

nt,cob +
∑
t∈T

nt,dab (2.5)

In the next subsections we present three distinct models relying on different approximations of
PTAC information.

2.3.2.3 fTC model for PTAC

A first simple model disregards per-target information altogether, using only cumulative information at
code/data access level. In terms of access counts, we derive access data and code counts for τa and
τb as described by Equation 2.4. In terms of delay, instead, the model exploits the maximum delay
a code/data request from τa can suffer from τb, based on the type of requests that can go to each
resource.

Code accesses can potentially address the pf0, pf1 or lmu interfaces, hence the longest delay a
code access from τa can suffer is defined by the longest latency it can suffer owing to τb accessing
the same interfaces for code and data, as shown in Equation 2.6. Likewise, the maximum delay a
data access can suffer is defined by Eq. 2.7 that matches the previous one with the exception that
it factors in dflash (data) accesses from τb. Hence, the contention delay τa can suffer (Eq. 2.8) is
defined as the number of code and data accesses of τa times the longest latency each request can
suffer.

lcomax = max(lpf0,co, lpf0,da, lpf1,co, lpf1,da, llmu,co, llmu,da) (2.6)
ldamax = max(lcomax, l

dfl,da) (2.7)
∆cont

b→a = n̂coa × lcomax + n̂daa × ldamax (2.8)

This contention model is fully time-composable as it assumes that all τa requests always suffer
the longest possible contention from its contenders. The model however is inherently pessimistic
since to derive the maximum code/data access counts we assume requests are of the type incurring
the shortest contention delay, and to derive the actual contention we assume each of them is of the
longest latency.

2.3.2.4 Code-Data Based PTAC Model (CD-PTAC)

An immediate improvement to this model can be obtained by considering the number of τb code and
data requests. Hence, only the minimum among τa and τb requests are affected by contention, see
Equation 2.9. Code and data requests are collectively considered as they may address the same
target.

∆cont
b→a = min(n̂coa + n̂daa , n̂

co
b + n̂dab )×max(lcomax, l

da
max) (2.9)

The model is not fully time composable since contention bounds only hold under (up to) specific
SRI access profiles from τb. However, this partially time composable variant is capable of deriving
tighter contention bounds than the fTC one, under the condition that τa triggers fewer accesses than
its contenders and/or the difference between lcomax and ldamax is non-negligible.

2.3.2.5 ILP-Based PTAC Model (ILP-PTAC)

More tight bounds can be obtained by considering upper bounds to per-target access counts of
the contender task τb (nt,cob and nt,dab ). To that end we formulate the model as an Integer Linear
Programming problem where we are interested in finding the per-target mapping of τa’s and τb’s
requests that maximizes the contention suffered by τa.
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2.3.2.5.1 Objective function

Our objective function maximizes the SRI stall cycles incurred by τa because of contention in code
and data accesses (∆cscoa , ∆csdaa ). This is modelled in Equation 2.10 where nt,ob→a stands for the
number of requests from contender τb targeting interface t for accesses of type o that are assumed
to interfere with τa. Note that we break down interference between data and code accesses.

∆cont
b→a = [∆cscoa ] + [∆csdaa ] =[

npf0,cob→a × lpf0,co + npf1,cob→a × lpf1,co +

nlmu,co
b→a × llmu,co

]
+[

ndfl,dab→a × l
dfl,da + npf0,dab→a × lpf0,da +

npf1,dab→a × lpf1,da + nlmu,da
b→a × llmu,da

]
(2.10)

As explained before, we assume that each interfering request of τb aligns in the worst manner with
τa requests. Hence, each interfering request delays τa by lt,o.

2.3.2.5.2 Constraints

Constraints in the ILP formulation are defined on the number of requests per target resource as
follows.

Equation 2.11 captures that the number of data requests from τb that can contend with τa on the
dfl is bounded by the maximum number of requests that τa and τb make to the dfl.

The next set of constraints, Equations 2.12, 2.13 and 2.14, cover the case of the pf0 that is a
bit more complex, since unlike the dfl, it can receive both data and code requests. The constraint
in Equation 2.12 captures that the maximum number of inflictive code requests from τb onto pf0
that interfere with both τa’s code and data requests is bounded by the minimum between τb’s code
requests and all τa requests (still to pf0). Similarly, Equation 2.13 states that the number of inflictive
data requests from τb onto pf0 is smaller than τb’s data requests and τa’s data and code requests to
pf0. Finally, Equation 2.14 states a cumulative constraint on the total number of conflicts τa can suffer
because of τb accesses to pfl0, which is bounded by the total number of τa code and data accesses
to pf0.

The next two sets of constraints, Equations 2.15-2.17 and Equations 2.18-2.20 are the counterparts
of Equations 2.12-2.14 but applied to the pf1 and the lmu respectively.
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ndfl,dab→a = min(ndfl,daa , ndfl,dab ) (2.11)

npf0,cob→a ≤ min(npf0,coa + npf0,daa , npf0,cob ) (2.12)

npf0,dab→a ≤ min(npf0,coa + npf0,daa , npf0,dab ) (2.13)

npf0,cob→a + npf0,dab→a ≤ npf0,coa + npf0,daa (2.14)

npf1,cob→a ≤ min(npf1,coa + npf1,daa , npf1,cob ) (2.15)

npf1,cob→da ≤ min(npf1,coa + npf1,daa , npf1,dab ) (2.16)

npf1,cob→a + npf1,cob→da ≤ n
pf1,co
a + npf1,daa (2.17)

nlmu,co
b→a ≤ min(nlmu,co

a + nlmu,da
a , nlmu,co

b ) (2.18)

nlmu,da
b→a ≤ min(nlmu,co

a + nlmu,da
a , nlmu,da

b ) (2.19)

nlmu,co
b→a + nlmu,da

b→a ≤ nlmu,co
a + nlmu,da

a (2.20)

cscoa = npf0,coa × cspf0,coa + npf1,coa × cspf1,coa +

nlmu,co
a × cslmu,co

a (2.21)
csdaa = npf0,daa × cspf0,daa + npf1,daa × cspf1,daa +

nlmu,da
a × cslmu,da

a + ndfl,daa × csdfl,daa (2.22)

cscob = npf0,cob × cspf0,cob + npf1,cob × cspf1,cob +

nlmu,co
b × cslmu,co

b (2.23)

csdab = npf0,dab × cspf0,dab + npf1,dab × cspf1,dab +

nlmu,da
b × cslmu,da

b + ndfl,dab × csdfl,dab (2.24)

The following pairs of constraints wrap up the problem variables for the objective function. Equa-
tions 2.21 and 2.22 represent the SRI access profile (for code and data separately) from the single
core execution: they reflect that τa makes nt,cox and nt,dax accesses to the different resources, which
result in cscox and csdax stall cycles respectively. The latter values are exactly those obtained by reading
PMEM STALL and DMEM STALL when running τa in isolation. Equations 2.23 and 2.24 are the equivalent
constraints on τb execution in isolation. Note that discarding these latter constraints on τb would make
the ILP model to be fully time-composable.

It is worth recalling that, while PMCs provide unique values for cscoτ and csdaτ , there are no unique
stall values for each single cst,ob as the actual stall cycles are not constant and depend on pipelining
and prefetching effects. As a conservative assumption, we consider the minimum observed stall
cycles per request, with the inherent drawback of potentially accounting for more requests than those
actually performed by the application.

2.3.2.6 Use of Scratchpads

The TC-27x includes relatively large code and data scratchpads for predictable and short latencies
and are naturally used to accommodate part of a task code and data. The task working set exceed-
ing the scratchpad size is mapped to extra-core memory areas via the SRI. Typically, some (possibly
cacheable) code is retrieved from pf0/pf1 and some data is shared among cores in the lmu. While
technically possible, we do not consider SRI traffic caused by code and data requests targeting ex-
ternal PSPR and DSPR respectively. Admitting those types of request would introduce stalls in the
memory interface even when accessing core-local memories. This not only complicates the charac-
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(a) Scenario 1 (b) Scenario 2

Figure 2.12: Scenarios deployed in this section

terization of the SRI traffic but invalidates any attempt to approximate the number of SRI accesses
through the PMEM STALL and DMEM STALL counters.

2.3.3 Evaluation

The AURIXTM TC-27x supports a variety of deployment configurations with different choices for code
and data placement and cacheability. In this section we report on the assessment of the different
contention models on selected deployment scenarios. The evaluation of these contention models on
the automotive multicore use case will be reported conveniently in WP6.

2.3.3.1 Deployment scenarios and model tailoring

Interestingly, architectural constraints limit the range of possible deployment configurations. For our
models, which do not discriminate between reads and writes, architectural constrains are summarized
in Table 2.3.

Table 2.3: Constraint on code/data wrt SRI slaves.
pf0 pf1 dfl lmu

Code $ X X 5 X
Code n$ X X 5 X
Data $ X(const) X(const) 5 X

Data n$ 5 5 X X

Despite these constraints, the number of feasible placements for code and data is still large enough
to allow for reasonable system-level flexibility. Knowledge on the application code and data layout
can be injected into the contention model to obtain tighter results. Our generic ILP model can be
easily tailored to capture any scenario by adding some constraints on target and access type. As a
common deployment strategy, part of the application code and data is always deployed into the local
scratchpads6.

As a matter of fact, with respect to the rest of the application, some configurations, though admis-
sible, are rarely used in practice. In the evaluation of our contention models, we focus on the two
deployment scenarios in Figure 2.12, particularly representative of real-world deployment configura-
tions. Without loss of generality, we assume deployment configurations equally apply to task under
analysis and contenders. Next, we describe the scenarios and the model tailoring we applied. The
PMCs used by the model and respective notation for τa and τb are reported in Table 2.4.

6We are not interested in this part of the application as it does not generate traffic on the SRI.
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Table 2.4: PMC information available.
PMC Task a Task b

PMEM STALL PSa PSb
DMEM STALL DSa DSb
PCACHE MISS PMa PMb

DCACHE MISS CLEAN DMCa DMCb
DCACHE MISS DIRTY DMDa DMDb

Scenario 1 (see Figure 2.12-a): part of the code and data fit on local scratchpads, some (cacheable)
code is fetched from pf0/pf1, and some (non cacheable) data is shared among cores in the lmu. In
this specific case, we can exploit the fact that the PCACHE MISS counter, will hold the exact number
of code requests from a task on the SRI (as all code requests through the SRI are performed in
cacheable mode): ncoa = PMa and ncob = PMb. Nothing, instead, can be argued on data requests. The
left column in Table 2.5 shows the instantiation of the three models (fTC, CD-PTAC, ILP-PTAC) to this
scenario. Latencies used in the formulas are retrieved from Table 2.2.

Table 2.5: Tailoring of fTC, CD-PTAC and ILP-PTAC models.
Scenario 1 Scenario 2

fTC Model
∆b→a
cont ≤ PMa × 16 +

⌈
DSa
10

⌉
× 11 ∆b→a

cont ≤ PMa × 21 +
⌈
DSn$

a
10

⌉
× 11 +

⌈
DMCa+DMDa

6

⌉
× 21

CD-PTAC Model
∆b→a
cont ≤ min(PMa, PMb) × 16+

min
( ⌈

DSa
10

⌉
,
⌈
DSb
10

⌉ )
× 11

Req(∆b→a
cont) = min

(
PMa + DMCa + DMDa +⌈

DSn$
a

10

⌉
, PMb + DMCb + DMDb +

⌈
DSn$

b
10

⌉)
∆b→a
cont ≤ min

(
Req(∆b→a

cont), DMDb

)
× 21 +(

Req(∆b→a
cont)− DMDb

)
× 16

ILP-PTAC Model
ndfl,daa =0, nlmu,coa = 0 ndfl,daa =0, nlmu,coa = 0

npf0,daa =0, npf1,daa =0 npf0,daa + npf1,daa + nlmu,daa ≥
DMCa + DMDa

npf0,coa + npf1,coa = PMa npf0,coa + npf1,coa = PMa

Scenario 2 (see Figure 2.12-b): part of the code and data fit on local scratchpads, some code is
fetched from pf0/pf1 (cacheable), some data is deployed to lmu (cacheable and non-cacheable), and
finally constant data is found in pf0/pf1 (cacheable). For the fTC model, we are forced to assume all
cacheable accesses to any target can incur the latency of a dirty miss (see right column in Table 2.5).

To improve on the fTC model, we can benefit from the information from cacheable code as the
PCACHE MISS counter gives us the exact number of code requests on pf0/pf1. We cannot do the same
for data since the sum of DCACHE MISS CLEAN and DCACHE MISS DIRTY provides the cumulative count
of cacheable data requests but does not discriminate between the target of each access, which can
equally be the pf0/pf1 or the lmu (also accessed in non-cacheable mode).

This reasoning is reported in the pTC formulation in Table 2.5, where we assume we have the
same deployment configuration for τa and τb. Req(∆b→a

cont) is used as a placeholder to reduce the
length of the contention formula. Finally, Table 2.5 shows the tailoring of the ILP model, obtained by
introducing few additional constraints. Again, the definition of the same constraints on τb may give a
different degree of composability.
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2.3.3.2 Assessment

Table 2.6: PMC readings for Scenarios 1 and 2.
PM DMC DMD PS DS

S
c1 Core1 236544 0 0 3421242 8345056

Core2 120594 0 0 1744167 4251811
S

c2 Core1 458394 200 0 2753995 86371
Core2 233694 200 0 1404145 42826

Figure 2.13: Model predictions w.r.t. execution in isolation.

We evaluated the different contention models on synthetic applications conforming to the identified
scenarios. We first executed the applications (target tasks and contenders) in isolation to collect
PMC readings. We then used the PMC information to feed the models and compare the so-obtained
predictions against empirically observed contention-related delays.

In all scenarios, Core 1 and Core 2 (TC-1.6P) host the application under analysis and a contender
respectively. The benchmark we used in both scenarios is a moderately data-intensive application
fetching part of the code from pf0/pf1 and performing data reads and writes in different memory
segments, according to scenario and segment constrains. We considered as contender a reduced
version of the same benchmark, performing approximately half of the accesses.

Under Scenario 1, contention only happens on pf0/pf1 and lmu. The benchmarks are fetching part
of the code from the PFlash and performing read and writes on the lmu. Scenario 2, instead, requires
data to be deployed to the lmu (in both cacheable and non-cacheable mode) and to pf0/pf1 (constant
and cacheable). Contention is suffered on the same slave because of different types of accesses
(code and data).

Table 2.6 reports the values observed for the PMC of interest under the two reference scenarios,
for cores 1 and 2, running the target application and the contender respectively. The fact that dirty
data cache misses are zeroed under both scenarios is not surprising as cacheable data accesses
are typically performed to address constant data.

Figure 2.13 compares the predictions of the different models on the multicore execution of the target
application against the timing results after applying our model and ILP approach. Data is normalized
against the maximum observed execution time when the target application runs in isolation.

Results from both scenarios clearly indicate that the usefulness of fully time-composable bounds
may end up being poorly useful in consideration of the pessimism they incur. Partially time-composable
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models, instead, exploit the information from the PMCs to derive realistic bounds on contention under
specific deployment configuration. In both cases, contention cycles are halved in comparison to fTC
bounds. When comparing the code-data based with the ILP model, results depend on how close
a specific scenario is to the conservative assumption of the CD-PTAC model, when bounding the
number of SRI requests. In our experiments the inherent pessimism in the model is limited by the
the fact that all code-related transactions are exactly intercepted by the program cache PMC. In the
first scenario, the deployment constraints are already fully captured by the CD-PTAC model. Instead,
the ILP formulation provides slightly better results in scenario 2 (∼2% fewer contention cycles). It
is worth noting that the ILP model also allows for configurations where contenders are only partially
characterized, which leads to contention bounds with larger degree of time composability.

2.3.4 Summary

In this section, we presented three analytical contention models for the AURIX TC-27x platform,
building on the existing PMC support. While fTC bounds are confirmed to be overly pessimistic,
partially time-composable models provide realistic bounds that are valid for a wide range of contention
scenarios. Further, formulating the contention as an ILP problem, guarantees better adaptability of
the model to different configuration scenarios.
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Chapter 3 METrICS: a Measurement Environment for Multi-
Core Time Critical Systems

In this Chapter, we will present METrICS, a toolsuite dedicated to perform fine-grain time and resource
access measurements in safety critical systems, allowing us to actually measure timing interference
and search for the causes of this interference.

For the sake of completeness, we first recap in Section 3.1, the main challenges with regards to
timing integrity and multi-core as already presented in Deliverable D3.1.

We then provide further details in Section 3.2 on the specific challenges of accurate and non-
intrusive time-profiling for Real Time Operating Systems, followed in Section 3.3 by a presentation of
METrICS, the profiling toolsuite we developed in the context of the SAFURE project.

Section 3.4 proposes an evaluation of METrICS in terms of accuracy, time intrusiveness and source
code intrusiveness. Section 3.5 provides an example of METrICS usage on one of the application
composing the SAFUFE WP4 prototype.

Section 3.6 introduces METrICS server, the host-side development allowing us to perform full scale
automatized characterization campaigns involving days of evaluation on the target board, and hun-
dreds of gigabytes of performance data collection. Finally, Section 3.7 presents xTRACT visualizer,
a GUI that helps an expert data-mine and analyze the collected results.

3.1 Time Integrity Challenges for using Multi-Core COTS in Safety-
Critical Systems

For the last decades, industries from the safety-critical domain have been using Commercial Off-The-
Shelf (COTS) processors despite their inherent runtime variability. To guarantee hard real-time con-
straints in such systems, designers massively relied on resource over-provisioning, time and memory
space partitioning, and disabling the features responsible for runtime variability.

The demand for cheaper equipment and more stringent SWaP (Size Weight and Power) constraints
[4] makes the shift from from single-core to multi-core COTS processor for safety critical products ap-
pealing. But, as a consequence, the industry is facing an even larger trade-off in terms of performance
versus predictability [25, 30].

On a multi-core processor, different pieces of software will be executed on different cores at the
same time. Such software will, even if they are completely independent, compete electronically to
use the shared hardware resources of the processor architecture, causing concurrent accesses to
the same hardware as shown in Figure 3.1.

In the figure, several co-running tasks are executed on different cores and are trying to concurrently
access the same main memory shared hardware resource. From a functional point of view, this
behavior is not an issue and all the memory accesses will be successfully served.

From a hardware point of view, concurrent accesses to shared hardware resources are arbitrated,
introducing inter-task or inter-application jitter defined as timing interference [15]. These timing
interference are breaking the timing isolation principles required by the safety standards [22, 23, 36]
of time-critical software.

The literature has proposed various solutions [14] to deal with timing interference but a quantitative
comparison of such solutions is missing. Also, most of these solutions, presented in Deliverable
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Figure 3.1: The challenge of timing-interference in multi-core systems

D3.1, require accurate measurement of either task runtime or some particular hardware resource
loads, and therefore require some infrastructure to perform profiling.

3.2 The Challenge of Profiling with Real Time Operating Systems

Performance monitoring and profiling tools have existed for a long time to help the programmers with
debugging their systems, optimizing their applications, or identifying bottlenecks. A wide variety of
generic tools exists for non-RTOS systems [43] such as gprof [10], valgrind [32], or atom [9]. These
tools rely on either OS features such as multi-threading, interrupts or timers, or either on pseudo-
automatic code instrumentation to collect the required timing information.

In a real-time operating system, such features are either not available (with enforced static schedul-
ing), restricted or prohibited due to their impacts on time determinism (such as the impact of interrupts
on WCET). This is especially true for safety critical software that is constrained by drastic limitations
due to the safety standards [22, 23, 36].

Beyond this limitation, even if collecting timing information is enough to observe timing interference,
it is not sufficient to regulate the shared resource usage that causes interference due to resource
contention. As a consequence collecting resource usage information is as critical as collecting timing
information.

Generic tools such as oprofile [27] specialize in collecting such information by gathering the Perfor-
mance Monitor Counters that are usually only available in privileged mode. The claim is that oprofile
is low-overhead and non-obtrusive, and it is true from a non-RTOS point of view: Both the monitored
application and the kernel remain untouched thanks to a dedicated kernel module. Also, the overhead
mainly depends on the interrupt-based sampling frequency.

In RTOS systems, features like modular kernels do not exist, and using interrupt-based sampling
is not an option for systems based on static scheduling. Such systems are relying on micro-kernels
and modularity is even prohibited for safety and security reasons. Also ”low-overhead” does not have
the same meaning for large scale systems running minutes to hour-long applications where a cost of
tens of milliseconds is negligible and for periodic safety critical systems that are likely to have task
deadlines in the order of 10 millisecond or less.

Furthermore, dealing with timing interference forces us to perform measurement at function-call or
system-call level, where even a cost of tens of microseconds might not be acceptable.
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Also, resource contentions (the main sources for timing interference) only occur at specific mo-
ments in time, during the cycles when an arbitration occurs. As a consequence, measurements and
overheads have to be evaluated at cycle level.

Finally, even though sampling techniques are very efficient for best effort applications, such tech-
niques can be very troublesome for safety critical applications that focus on how the worst case should
behave. The sampling just acts as a filter that could filter out the worst case.

3.3 The METrICS toolsuite

METrICS consists of several components appearing in Figure 3.2, already presented in Delivrable
D3.3. The brown parts in the figure correspond to, from bottom to the top, the selected embedded
computer architecture and the PikeOS operating system above the platform support package (PSP)
corresponding to the board. The blue parts correspond to the running applications we wish to monitor,
each in their own partition.
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Figure 3.2: Architecture of the METrICS measurement tool

Finally the green parts in Figure 3.2 are the core components of the METrICS environment and are
described below:

3.3.1 The METrICS Library

The METrICS library is meant to be linked with the running applications to provide them with an
access to the measurement probes API, allowing the collection of time and resource access informa-
tion. The library contains: 1) the instrumented system call layer; 2) the application instrumentation
interface; 3) the user-level interface to the instrumentation kernel driver; and 4) the user-level interface
to the collector.

Syscall instrumentation layer: The instrumentation of system calls of some PikeOS personalities
(e.g. the APEX system calls in case of ARINC-653 applications) automatically inserts measurement
probes before and after every system call. It especially allows us to determine communication times
for the intra-partition and inter-partition communications that rely on such system calls, and that can
be a significant part of the application’s running time.

Application instrumentation: besides the syscall-level instrumentation, we provide the ability to
manually insert measurement probes directly in applications. This is achieved by adding a pair of
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functions (metrics probe begin() and metrics probe end()) around the section of the code to be
monitored. Upon execution, these functions collect the highest precision time-base counter available
(usually corresponding to the number of elapsed CPU cycles since booting) and the PMC registers of
the current core. The latter function is also responsible for sending the monitored data to the collector.

3.3.2 The Hardware Monitor Kernel Driver

On most hardware architectures, the access to hardware performance monitor counters (PMC) re-
quires supervisor-level privileges. Also on all supported hardware targets, the configuration of these
registers to select the events that should be counted does require these privileges. As PikeOS le-
gitimately prevents applications from getting such privileges, it was necessary to develop a kernel
driver (a new feature since PikeOS 4.0) allowing us to select the PMC we wish to collect on the
target.

The services provided by our driver are: 1) selecting the hardware events monitored by the hard-
ware performance counters of the local processor core; 2) starting the counters; 3) stopping the
counters.

The user interface for these services, implemented in the library, uses the regular ioctl calls pro-
vided by PikeOS for drivers. For each core of the ARMv8 Juno board, about 50 events can be selected
for 6 different counters.

3.3.3 The Collector

The collector is implemented as a native PikeOS partition whose role is: 1) to define a shared mem-
ory space where each instrumented application will save its collected measurements; 2) to configure
specific measurement scenarios (like selection of events via the driver); 3) to launch the measure-
ment campaign (relying on PikeOS scheduling schemes); 4) to transfer the content of the shared
memory to the host computer, either at the end of the measurement campaign (preferred to keep
time intrusiveness level low) or during the run (to allow huge data collection).

In case of a failure (e.g. a deadline miss, or an unexpected timeout that is causing the application
to stop), the collector also transfers the current memory content, allowing us to perform post-mortem
analysis and debugging.

3.3.4 Internal Operations

For more details on METrICS internal operation, refer to Delivrable D3.3, where we explain how we
provide the user with accurate runtime and resource usage measurements while minimizing both the
intrusiveness and the adherence to the hardware.

3.3.5 Intrusiveness Trade-off

A major challenge in performance monitoring tools is its intrusiveness in the system it monitors. We
distinguish execution time intrusiveness and code intrusiveness. The former limits the accuracy
of the measurement due to the monitoring overhead, whereas the latter requires an effort from the
developer to instrument the code of either the application or the RTOS.

Automated instrumentation tools commonly suffer from a trade-off between measurement granu-
larity (from process level down to instruction level), time intrusiveness, and code intrusiveness. En-
hancing one usually has a detrimental impact on the other two. In METrICS we chose to focus on
minimizing timing intrusiveness, due to the fact that 1) we focus on time-critical and safety-critical
applications where time determinism is of prime concern and 2) our major objective is the ability to
characterize timing interference, and correlate them to shared hardware usage.

To minimize time intrusiveness, we used several development techniques that make METrICS as
light as possible during the execution of the application under test.
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Firstly, all initialization and external communications were implemented in the Collector and run out-
side of the operational scheduling. We configured the time-base and hardware performance counter
registers to be used in user-space, avoiding time-consuming context switches associated with pro-
tected mode. Time-base and PMC accesses are performed in inline assembly code to minimize
latency. Finally, the shared memory containing the sample collection is mapped into the memory of
the processes to avoid accesses through system calls.

3.4 Evaluating METrICS Accuracy and Intrusiveness

The METrICS environment allows us to collect various measurements during the execution of safety
critical applications, including execution time distribution and shared hardware resource access infor-
mation. Rather than only extracting minimum, average and maximum values, the METrICS tool suite
extracts the whole distribution of each measured data, allowing us to study the correlations between
runtime and hardware resource usage.

This Section will evaluate METrICS in terms of accuracy, precision and intrusiveness. Next sections
will present an example of METrICS usage and focus more on the ability to correlate timings and
resource usage, as well as its ability to perform timing interference characterization.

3.4.1 Selection of time measurement mediums

To be able to perform fine-grain timing measurements, we need to rely on some kind of time mea-
suring instrument. This time measurement medium could be either external, provided by any of the
layers of the operating system or directly provided by the target processor as part of the instruction
set.

The kind of events we wish to accurately measure includes complex functional chains (up to sev-
eral seconds in avionics), runtime of individual tasks (with deadlines typically in the order of a few
hundreds of milliseconds) or time spent in system calls (typically in the order of microseconds).

Each measuring medium relies on a software or a hardware mechanism that itself has a working
period, thus limiting the obtainable precision to no less than this period. Also, each of these mediums
actually consumes time to perform a measurement, making it impossible to accurately measure time
below this measurement time overhead.

Additionally, for multi-core processors, clocks are not necessarily synchronous between all cores,
introducing the concept of inter-core clock offset. If this offset does not remain constant (which could
be the case if not connected to the same quartz oscillator (or clock PLL) or if the core is subject to
dynamic frequency scaling), then it additionally introduces the problem of clock drift.

3.4.2 Portfolio of time measurement mediums

Using the APEX (avionic) personality of PikeOS, the operating system provides two system calls
allowing us to measure time: p4_get_time() is provided directly by the PikeOS kernel, and returns
the system time since boot in nanoseconds. GET_TIME() is provided by the APEX personality, and
returns the system clock time, that is common to all processors.

However, being system calls, these time measurement mediums involve at least a context switch
from the task to the operating system, and may involve switch(es) to privilege mode(s), depending on
how the OS is handling system calls. The expected overhead for such switches is more than 1000
CPU cycles, and relying on such calls for time measurement will simply prevent us to measure short
events such as context switches and system calls themselves.

On the other hand, both the ARM-v8 and PowerPC ISA provide low-level time measurement medi-
ums. For instance, the e500mc/e6500 PowerPC provides two special registers that can be read with
the mfspr assembly instruction: The time base register is a 64-bit register, set to 0 at board reset
and incremented at the Platform Clock frequency, which is provided by a different PLL than the core
clock frequency. The time base is thus 16 to 64 times slower than the Core clock frequency, 48 being
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a common prescaler ratio. An advantage of the time base is that it corresponds to a global system
clock, synchronized on all cores. The alternate time base register is a 64-bit register, also set at
0 upon reset, that increments at every core clock cycle. No specific guarantees are provided in the
documentation about it being synchronous in all the cores.

3.4.3 Evaluation of time measurement mediums

The resolution of time measurement mediums are provided in their respective documentation. To
evaluate the overhead of the above-mentioned mediums, we set up experiments using each medium
twice in a row. The time offset between the two measurements is an upper bound of the time over-
head. Each measurement pair was performed 180000 times to ensure that each overhead is not
subject to variability. The results evaluated on a 1.8 GHz e6500-based NXP T2080 with PikeOS 4.1
are summarized in Table 3.1.

medium layer period frequency overhead
p4 get time() kernel 1 ns n/a 240 ns
GET TIME() APEX 10 ms n/a 10 ms
time base register 48 cycles 37.5 MHz 1.67 ns
alt. time base register 1 cycle 1.8 GHz 1.67 ns

Table 3.1: Resolution (period) and overhead

As expected, system-call-based mediums have a much higher overhead than special-register-
based mediums. The APEX version is clocked with the Time Partition tick, used to define application
time windows. Such a low resolution medium has a huge impact on overhead, making it impractical
for fine grain timing.

Both special register mediums exhibit a 3 cycles (1.67ns) overhead, the alternate time base

version providing a much better precision. For this reason, we chose this time measurement medium
as the preferred method of measurement for METrICS.

With regards to timing offset between cores, only the alternate time base does not provide a
null offset guarantee. We measured this offset against the synchronized time base and evaluated it
being below 200ns for core 0 with respect to the other cores, and within the measurement precision
between cores other than core 0. If a very high precision for inter-core measurements is necessary,
the method we used for this evaluation can also be used for calibration at boot. Finally, none of the
mediums showed a measurable drift among the 180000 runs.

3.4.4 Evaluation of a complete METrICS probe

A METrICS probe involves: 1) retrieving the timing information thanks to the core-dedicated special
registers; 2) retrieving the performance monitor counters, again through direct register access; 3)
retrieving thread-specific information from the OS; and 4) storing the collected information into the
shared memory.

The intrusiveness of a METrICS probe in the source code is quite low, just adding a function call
at the begin and the end of the code sequence to be monitored. Also, all the APEX system calls are
automatically instrumented, requiring no further code modification. To perform this instrumentation,
we overloaded the APEX function definitions with identical functions surrounded with our probes.

We also measured the intrusiveness in terms of timing of a complete METrICS probe by performing
successive calls to METrICS probe the same way we did in previous section. Figure 3.3 presents the
completion time results of such a probe, sorted over 180000 runs.

The probing time varies from 85ns up to 392ns. For 97% of the runs the overhead is below 110ns.
For 2.998% of the runs it is between 110ns and 191ns. And for 0.002% of the cases, it is above
191ns and up to 392ns.
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Figure 3.3: Completion time of a METrICS probe over 180000 runs

More precisely, the first three steps of a METrICS probe are quite stable with ∼25ns to retrieve
both the timing and the performance monitor counters, and ∼20ns to retrieve the thread-specific
information. The dominant part corresponds to the storage in the shared memory, varying from 40ns
to 347ns, probably because of cache effects.

As a consequence of these results, the proposed measurement mechanisms presents a very lim-
ited overhead, and the highest achievable precision. Indeed the latency added by the full measure-
ment probe remains in most cases shorter than the sole time measurement provided by the RTOS,
and we used the fastest clock available in the target processor.

The next section will provide an example of usage of these METrICS probes for one of the appli-
cation composing the WP4 avionic prototype.
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3.5 Example of METrICS usage

In this section, we provide an example of METrICS usage to evaluate how different multi-core deploy-
ments of a simple avionic-like application react with regards to timing interference. The goal would
be to evaluate which of these deployments is less sensitive to timing interference.

The experiments conducted in this section were performed with METrICS running on top of PikeOS
4.1. The selected application, part of the WP4 avionic prototype, is running with the PikeOS ARINC-
653 personality commonly used in the context of avionic applications.

3.5.1 Evaluated Application

We evaluated an in-house application: eDRON (embedded Directed Rotodrone Operated Network),
that is guiding a fleet composed of four quadricopter drones along a preset flight route. The purpose
of this application is to mimic a representative behaviour of an avionic application, while exercising
classical ARINC-653 communication mediums and proposing several multi-core deployment options.
The software architecture of eDRON is presented in Figure 3.4. More details on the applicaton and
the full avionic prototype will be provided in Deliverable D4.3.
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Figure 3.4: Software architecture of the eDRON application

This application is composed of six ARINC-653 partitions. The first one sets up the preset flight
route for all the drones, the last one displays all the drone positions, and each of the four remaining
partitions is dedicated to pilot a particular drone. These later partitions are composed of 7 tasks, with
most of the computation being performed in the four engine control tasks, each being dedicated to
control the velocity for one of the four engines of a drone, so that it follows the preset route.

When mapping such an application on a multi-core processor, we first need to decide what will
run in parallel. The application offers two obvious parallelization schemes: inter-partition parallelism
where each core will deal with a single drone, running the velocity control tasks sequentially for
each drone; and the intra-partition parallelism where each core will focus on one particular engine,
dealing with each drone sequentially. Some other parallelization options are available: for example
parallelizing along the pipeline, or performing loop-level parallelization of the tasks, but those are
beyond the scope of this project as they require deeper modifications of the application.

These two deployments have advantages and drawbacks: The Amdahl’s law [1] may limit the per-
formance of the intra-partition version, while the inter-partition version will benefit from the Gustafson’s
law [18], running independent applications in parallel. However, with regards to timing interference,
the intra-partition version offers a white-box context where the partition scheduling can limit the level
of interference between known tasks. The inter-partition parallelism on the other hand corresponds
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to a black-box context where no easy control is possible to limit the interference level of another
independent application.

3.5.2 Deployment evaluation

To evaluate the eDRON application with METrICS, we instrumented each task appearing in Figure
3.4 by adding a pair of begin / end probes around each task and partition. We then measured task
runtimes while executing the application on one of the cores (single-core version), and later compared
the results with both parallel deployments.

Note that while the full application is expected to be faster on a multi-core deployment, at the level
of each task / partition, the runtime is only expected to increase due to possible timing interference.
As a consequence, we expect to observe a slowdown at task level for the parallel versions.

Table 3.2 compares the runtime variability of a single Drone partition for three different deploy-
ments: a sequential / single-core deployment, and the deployments presented above with inter-
partition or intra-partition parallelism.

parallelism runtime (ms)
min 25% median 75% max

none 16.75 16.76 16.76 16.76 19.56
inter-partition 16.91 16.98 16.99 17.02 33.92
intra-partition 55.17 55.18 55.18 55.19 55.31

Table 3.2: Evaluating deployment impact on runtime and variability of one Drone partition

As expected, the single-core version is the deployment exhibiting the less variability with runtimes
between 16 and 20ms, with a total execution time of 80ms to sequentially run the 4 drones. The
multi-core deployment with inter-partition parallelism has similar lower bound and quartiles, but a
much larger (x1.7) upper bound around 34ms. The deployment with intra-partition parallelism exhibits
close to no variability, but with much larger runtimes of 55ms (x2.8).

We furthermore studied this latter version as the increased minimum runtime was suspicious. We
figured out that the extra runtime was spent during the system calls performing inter- task communi-
cations.

3.5.3 Communication evaluation

Within the eDRON application, data communication is performed through the ARINC-653 system
call layer. This API, corresponding to the PikeOS APEX personality, allows us to perform both intra-
partition communication and inter-partition communication using either buffer-based or fifo-based
communication services as illustrated in Table 3.3.

level type write / read
intra buffer DISPLAY BLACKBOARD()

READ BLACKBOARD()
intra fifo SEND BUFFER()

RECEIVE BUFFER()
inter buffer WRITE SAMPLING MESSAGE()

READ SAMPLING MESSAGE()
inter fifo SEND QUEUING MESSAGE()

RECEIVE QUEUING MESSAGE()

Table 3.3: ARINC-653 communication services

METrICS allowed us, thanks to the instrumented system call layer to automatically collect runtime
information relative to these communication mediums during the experiments we ran to build Table
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3.2.
The results corresponding to the deployment with inter-partition parallelism, that will serve as a

reference, are presented as boxplots [39] in Figure 3.5 for both inter and intra-partition communication
results. The results corresponding to the deployment with intra-partition parallelism will later appear
in Figure 3.6.

0 50000 100000 150000 200000
duration (ns)

DISPLAY_BLACKBOARD

READ_BLACKBOARD

SEND_BUFFER

RECEIVE_BUFFER

SEND_QUEUING_MESSAGE

RECEIVE_QUEUING_MESSAGE

WRITE_SAMPLING_MESSAGE

READ_SAMPLING_MESSAGE

Figure 3.5: Measurements of inter-partition communication (top) and intra-partition communication
services (bottom) for the deployment with inter-partition parallelism

Intra-partition communications are much more costly than inter-partition communication for the
deployment with inter-partition parallelism, especially for the receiving functions. This is expected as
running tasks sequentially introduce waiting time for communication receivers.

Figure 3.6 presents the communication time for the deployment with intra-partition parallelism.
However, to be able to represent intra-partition communication times, we had to distinguish some out-
lier results. We therefore added a specific inset for both RECEIVER BUFFER and READ BLACKBOARD
outliers with communication time above 36.9ms (36 965 107 ns).

Such high communication times occurs in 25% of the runs for READ BLACKBOARD and in 49%
of the runs for RECEIVE BUFFER. With such a high occurrence rate, they are clearly responsible for
the low performance of the deployment with intra-partition parallelism.

Further studying these strange timing behaviors, we figured out than the runtimes of these sys-
tem calls were mostly equal to their timeout value (The ARINC-653 layer specifies communication
with timeouts). Strangely, the communications that reached their timeout were successful as well.
Increasing the timeout value or reducing the data size did not decrease the phenomenon, but setting
infinite timeout fixed the issue.

We reported this strange behaviour to SYSGO and this issue is now fixed in the latest 4.2 version
of the RTOS.
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Figure 3.6: Measurements of inter-partition communication (top) and intra-partition communication
services (bottom) for the deployment with intra-partition parallelism

3.5.4 Conclusion

Even tough the identified bug did not really allowed us to figure out which of the multi-core deployment
is best with regards to interference, we have a proof of concept that METrICS can be used for such a
study, and further can be used to identify software bugs with regards to timing.

In the next section, we will evaluate the number of total experiments that would be required to
perform a full characterization of several deployments of the eDRON application while varying both
the hardware target configuration and the application memory footprint.

3.6 Dealing with large Design Space: METrICS and Automation

A full characterization of a selection of multicore deployment of the eDRON application would require
a number of experiments described in Table 3.4. It tests four deployment options including the three
presented in previous section; three different options for the application memory footprint (fitting in
L1 cache, in L2 cache or not fitting in caches); and whether or not to flush all caches between time
partitions (a common practice in avionics to reduce variability).

Table 3.4: Number of runs for a full characterization
Application deployments 4
Buffer size 3
Cache Policies 2
Hardware Counter Selection C2

41

Number of iterations 1000
TOTAL RUNS 19.68 million
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The target ARMv8 architecture provides a selection of hardware events that could be measured
with performance monitor registers. Among those events, we identified a set of 41 events related to
the shared hardware resource the cores may compete on. The ARM-v8 architecture of the JUNO
board provides 6 performance monitor counters, meaning that testing all possible pairs of counters
would require C2

41/6 different configurations.
As shown in Table 3.4, this represents a large number of experiments to run, and some form of

automation is desirable. Therefore we developed a series of Python scripts running on the host
computer to automate all aspects of running a series of experiments: selecting the right executable
file for booting the target by tftp, rebooting the board using a debug probe, providing the collector
with the right set of hardware counters to use, receiving the results with a telnet connection to the
server, and storing the CSV file in a directory named after the experiment configuration and date.
This automation infrastructure allows us to perform large measurement campaigns by iterating on the
steps presented in figure 3.7 without frequent user supervision.

Time-critical
application

Time-critical
application

Collector

Instrumented System-Call Layer

PikeOS µKernel
Hardware
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Driver
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METrICS
server

config

collect

raw.csvraw.csvraw.csvraw.csv

2

3
4

1

Target Board PC Host

Figure 3.7: Host-side automation server, performing 1) selection of target executable and test config-
uration 2) configuration of hardware counters to use 3) collection of measurements and 4) storage of
result files.

Such experimental campaigns generate a rather large amount of raw data, making the direct anal-
ysis quite difficult. In the next section, we present the visualization tools we developed to assist the
analysis.

3.7 Supporting Analysis: Data-Mining and GUI

Considering the large amount of data collected in the experiments of previous sections (over 110GB
of data collected over 14 cumulative days of runtime), it would be great to also fully automate the
data mining, allowing us to analyze the collected results. This is however far beyond the scope of this
project.

With METrICS we aim at providing means to perform an expert-driven analysis. In such a context,
we developed a GUI providing different ways of visualizing the collected data. In this section, we will
present a portfolio of the available visualizations.

3.7.1 Underlying visualization technology

As the purpose of METrICS is to collect the full distribution of events (rather than only minimum /
maximum values) to study correlations between timing and shared hardware resource contention, we
need the same kind of visualizations as the ones used in the statistics domain.
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As we are manipulating gigabyte-large datasets, a major concern for data mining is scalability.
Some other important features will be rendering speed and interactivity, to ease the expert analysis.

In the domain of data science and big data, academic research usually relies on Python language
coupled with numpy [41] and pandas [29] for data analysis, coupled with matplotlib [21] and jupyter
[38] for visualization.

An alternative for online and interactive data visualization is to rely on dedicated javascript libraries
such as d3.js [7] or google charts [17]. These libraries render charts as SVG (Scalable Vector Graph-
ics) which enable the user to interact with each element of the chart, typically with zooming or filtering
ability.

Data visualization in METrICS involves both charts with millions of points (usually scatterplots)
as well as charts with much fewer points (e.g. boxplots) but many filtering options. As a conse-
quence, we opted for two different rendering options: pandas coupled with matplotlib for rendering
static large-scale charts, and pandas coupled with d3.js for rendering interactively filterable data. All
these visualization are bundled into a single custom Qt-based GUI using the pyside Python binding:
xTRACT visualizer (expert Timing and Resource Access Counting Trace visualizer).

3.7.2 Visualization related to user probes

User probes are typically used to monitor task runtime and resource usage. Such information allows
us to build up classical Gantt charts, effectively showing what is running in parallel, but it does not
help to focus on the runtime variation caused by timing interference.

To better visualize runtime variability, we build for each user probe a histogram showing the distri-
bution of observed runtimes during the successive runs, as depicted in Figure 3.8.

Figure 3.8: Histogram of the drone partition runtime as appearing in xTRACT visualizer

The x-axis corresponds to the observed duration while the y-axis indicates how many times each
runtime has been observed. The best (shortest) runtime appears on the left, the worst (longest)
observed execution time on the right, the median value being identified with a black dot.

We also added colored vertical bar markers. The green one corresponds to the best case in term
of runtime, the red one to the worst case, the black one to the median and the blue one to the first
iteration of the application, that frequently behaves quite differently.

To figure out correlations between runtime and hardware resource access, we also build histograms
with the collected Performance Monitor Counter data, as shown in Figures 3.9 and 3.10. In these two
figures, the colored vertical bar markers still correspond to the best, worst, median and first iteration
case with regards to runtime. In these figures, the x-axis corresponds to the number of accesses to
a particular hardware resource. In 3.9, accesses seem to somewhat correlate with execution times,
whereas it is not the case for 3.10.

Potential correlations could be better observed with scatterplots such as the one appearing in
Figure 3.11. Scatterplots allow to easily identify linear correlations. Each point of the scatterplot
indicates that a particular run has been observed with a number of resource accesses equal to the
value on the x-axis, and an observed runtime equal to the value on the y-axis.

If the points approximate a straight line, there is a linear correlation. In Figure 3.11 most of the
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Figure 3.9: Histogram of correlating resource accesses (L2 read cache accesses) as appearing in
xTRACT visualizer

Figure 3.10: Histogram of not correlating resource accesses (issued store instructions) as appearing
in xTRACT visualizer (worst and best cases are reversed)

Figure 3.11: Scatterplot showing linear correlation between runtime and L2 read cache accesses as
appearing in xTRACT visualizer

points are on a line except the one corresponding to the first iteration that we highlighted with a
specific symbol, confirming the correlation.

Another option could be to identify correlation among performance monitor counters to eliminate
redundant information provided by correlated hardware resources (like the obvious redundant infor-
mation of L1 cache misses versus L2 cache accesses) to reduce the experimental design space.

3.7.3 Visualization related to the instrumented syscalls

We also rendered various charts related to the probes automatically inserted around system calls.
These renderings allow the expert user to split the runtime into the classical user time (time really
spent in the application) and the system time (time spent in the operating system to deal with the
application I/O). Alternatively it can be used to observe the usage of kernel locks in system calls.

For instance, the top charts of Figure 3.12 show the distribution of APEX system calls in the EN-
GINE R1 task of the eDRON application running on the 6-core Juno board ARM-v8 architecture. The
x-axis corresponds to the time, and a gap can be observed between the SEND BUFFER and the
SET EVENT system calls despite being called sequentially. This is due to the fact that the applica-
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Figure 3.12: Visualizing ARINC-653 syscalls in ENGINE R1 task with xTRACT visualizer

tion is no more schedulable during system calls, and therefore at least two time-consuming context
switches occur between the two function calls.

The bottom part of Figure 3.12 shows with boxplots the variability of the execution time of APEX
system calls for different runs of the ENGINE R1 task, actually showing that the RTOS is also affected
by timing interference, while the left navigation bar allows a degree of iteractiveness by proposing to
filter out some of the calls.

3.8 Conclusion

In this chapter, we presented and evaluated METrICS, a toolsuite dedicated to perform fine-grain time
and resource access measurements in safety critical systems in terms of accuracy, intrusiveness,
and ability to measure timing interference.

This toolsuite does not claim to be a solution to deal with the timing interference problems of multi-
cores with regards to safety critical systems, but as a reliable and non intrusive way to measure these
interference, and therefore a way to evaluate different solutions guaranteeing time integrity.

Beyond the layer running on top of PikeOS on the target system, METrICS is also a host-side server
than can automatically drive large-scale test campaigns, and xTRACT visualizer, a GUI that can help
the expert to analyze collected results.
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Chapter 4 Summary

Contention in hardware shared resources of multicore processors challenges the integration of real-
time critical tasks, which need strict guarantees on their WCET. This deliverable provides comple-
mentary means to obtain tight bounds (multicore contention model) and to analyze performance so
that tasks can be consolidated smartly (METrICS).

The different technologies are assessed on COTS platforms such as the DragonBoard, the Juno
board and the AURIX TC27x. Results on benchmarks and avionics prototypes prove the reliability of
these technologies and their appropriateness for use on industrial platforms and applications.

In particular, our work shows that the DragonBoard cannot be used for real-time industrial ap-
plications unless further documentation is made available. Instead, the Juno board, despite some
limitations can be practically used. Finally, the AURIX TC27x automotive platform allows devising
tighter contention bounds due to its controllability and, therefore, is a very convenient platform for
industrial use.

A detailed toolset, METrICS, has been developed and integrated on top of the Juno board, showing
through an avionics prototype that timing interferences can be analyzed. In particular, METrICS
shows its ability to reveal the sources of interference, which is a critical information for end users for
an efficient consolidation of real-time critical tasks on multicores.

Overall, this deliverable provides both, mechanisms to upper-bound interference on COTS plat-
forms and tools to analyze interference so that consolidation can be optimized, thus achieving lower
bounds.

Table 4.1: Summary of integrations on prototypes and use cases.
Technology Avionics Telecom Automotive multicore Automotive

prototype (Juno) (DragonBoard) (AURIX) networked
Multicore

contention YES NO(*) YES N/A
model

METrICS YES NO(*) NO N/A

For completeness, we provide the table of technologies integrated in use cases and industrial
prototypes. As shown, both technologies are integrated on the avionics prototype. None of them
is directly integrated in the telecom use case, which was the original target instead of the avionics
prototype. However, an assessment of what could be obtained with the limitations of the DragonBoard
platform and a best effort analysis will be performed. The multicore contention model is currently
being integrated in the automotive multicore use case, whereas METrICS is not. In fact, the original
plan was integrating none of both technologies in this use case. Finally, multicore analysis does not
apply to the automotive networked use case.

SAFURE D4.2 Page 43 of 47



D4.2 - Analysis of run-time and software applications on multi-core

Chapter 5 List of Abbreviations

AMBA Advanced Microcontroller Bus Architecture

API Application Programming Interface

CE Consumer Electronics (market)

COTS Commercial Off the Shelf

CPA Cycles Per Access

CRTES Critical Real-Time Embedded Systems

DSPR Data ScratchPad RAM

DSU Debug Support Unit

ECU Electronic Control Unit

eDRON
embedded Directed Rotodrone Operated Network (application parts of
the WP4 avionic prototype)

HPclus/LPClus High- (2xA72) and Low-Power (4xA53) Clusters

FMS
Flight Management System (application parts of the WP4 avionic pro-
totype)

IP Intellectual Property

ISA Instruction Set Architecture

LMU Local Memory Unit

METrICS Measurement Environment for Multi-Core Time Critical Systems

PLL Phase-Locked Loop (clock frequency)

PMC Performance Monitoring Counters

PMU Performance Monitoring Unit

PrMU Program Memory Unit

PSPR Program ScratchPad RAM

RTOS Real-Time Operating System

SB (Resource) Stressing Benchmark

SoC System on Chip

SRI Shared Resource Interface

SWaP Size, Weight and Power

WCET Worst-Case Execution Time

xTRACT expert Timing and Resource Access Counting Trace visualizer (GUI)
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