

D6.4 Evaluation of Telecommunications
demonstrator

Project number: 644080

Project acronym: SAFURE

Project title:

SAFURE: SAFety and secURity by dEsign for

interconnected mixed-critical cyber-physical

systems

Start date of the project: 1st February, 2015

Duration: 40 months

Programme: H2020-ICT-2014-1

Deliverable type: Report

Deliverable reference number: ICT-644080 / D6.4/ 2.0

Work package WP 6

Due date: May 2018 – M40

Actual submission date: 07th August 2018

Responsible organisation: TCS

Editor: DR

Dissemination level: PU

Revision: 2.0

Abstract:

This document presents the evaluation covers the modelling of tasks and
resources using the SymTA/S tool, the description of the test methodology,
tests of the elements to be evaluated in the systems, and a synthesis of the
requirements compliance. It provides a conclusion on the adequation of
Android-based terminals and connected systems to provide the safety and
security properties for the telecom use-case.

Keywords: Security, safety, Android, modelling, validation, testing, telecommunications

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 644080.
This work was supported by the Swiss State Secretariat for Education‚ Research

and Innovation (SERI) under contract number 15.0025. The opinions expressed and arguments
employed herein do not necessarily reflect the official views of the Swiss Government.

D6.4 Evaluation of the Telecommunications demonstrator - V2.0

SAFURE D6.4 – V2.0 Page II

Editor

Dominique Ragot (TCS)

Contributors (ordered according to beneficiary numbers)

André Osterhues (ESCR)

Don Kuzhiyelil (SYSG)

Björn Gebhardt (SYM)

Elodie Leveugle (TCS)

Disclaimer

The information in this document is provided “as is”, and no guarantee or warranty is given that the
information is fit for any particular purpose. The content of this document reflects only the author`s
view – the European Commission is not responsible for any use that may be made of the information it
contains. The users use the information at their sole risk and liability.

D6.4 Evaluation of the Telecommunications demonstrator - V2.0

SAFURE D6.4 – V2.0 Page III

Executive Summary

This document is and update on an initial version of D6.4, including an update on the extend
of satisfaction of functional requirements. It presents the results of the evaluation of the
Telecom use case demonstrator, as described in D6.3. This demonstrator is based on an
Android smartphone connected to a smartband and providing safety and security
capabilities. The evaluation covers the modelling of tasks and resources using the SymTA/S
tool, the description of the test methodology, tests of the elements to be evaluated in the
systems, and a synthesis of the requirements compliance according to the structure defined
in D1.3 “SAFURE Framework Specifications”.

It is possible to provide additional security in Android by using additional security
components such as Cycurlib, in order to ensure better control of health-related data.

The addition of safety capabilities is presently quite difficult considering the lack of control of
the Android platform by applications. Hence safety is limited to application monitoring and
alert propagation whenever degraded conditions can be detected.

D6.4 Evaluation of the Telecommunications demonstrator - V2.0

SAFURE D6.4 – V2.0 Page IV

Contents

Chapter 1 Introduction ... 1

Chapter 2 Demonstrator Description .. 2

2.1 Use case .. 2

2.1.1 Medical devices ... 2

2.1.2 Hardware platform ... 2

2.2 Demonstrator architecture ... 2

2.2.1 Security components .. 3

2.2.2 Safety components .. 4

Chapter 3 Timing Analysis ... 5

Chapter 4 Test plan .. 11

4.1 Methodology .. 11

4.2 Elements to be evaluated .. 11

4.2.1 Smartband ..11

4.2.2 Bluetooth link ..12

4.2.3 Smartphone ..13

4.2.4 WiFi link ..14

4.2.5 2G/3G/4G link ...15

4.2.6 Infrastructure ...15

4.3 Requirements compliance ... 16

4.3.1 Common Integrated Requirements ...17

4.3.2 Common Functional Requirements ...18

4.3.3 Common Non-Functional Requirements ...19

4.3.4 Telecom Integrated Requirements ..22

4.3.5 Telecom Integrated Non-Functional Requirements ...23

4.3.6 Telecom Functional Requirements ..24

4.3.7 Telecom Non-Functional Requirements ..26

4.4 Applications integration process verification .. 28

4.5 Integration of application-independent components to Android 29

4.5.1 CycurLIB port to Android ...29

4.5.2 Gstreamer integration to Android ..31

Chapter 5 Summary and conclusion ... 33

Chapter 6 List of Abbreviations .. 34

D6.4 Evaluation of the Telecommunications demonstrator - V2.0

SAFURE D6.4 – V2.0 Page V

List of Figures

Figure 1: Architecture of the demonstrator ... 3

Figure 2: Architecture for SymTA/S timing analysis ... 5

Figure 3: SymTA/S project explorer tree of Task, Runnables and Triggers 6

Figure 4: Example of properties for CApps Task ... 6

Figure 5: SymTA/S Gantt Diagram - Run with no optimization ... 8

Figure 6: SymTA/S Gantt Diagram – run with first sequencing optimization 9

Figure 7: Cycurlib port to Android ...30

Figure 8: Cycurlib secure communications demo ...31

Figure 9: Integration of Android-independent components ...32

D6.4 Evaluation of the Telecommunications demonstrator - V2.0

SAFURE D6.4 – V2.0 Page VI

List of Tables

Table 1: Common integrated requirements ...17

Table 2: Common functional requirements ...18

Table 3: Common non-functional requirements, part 1 ...19

Table 4: Common non-functional requirements, part 2 ...20

Table 5: Telecom integrated requirements ...22

Table 6: Telecom integrated non-functional requirements ..23

Table 7: Telecom functional requirements ..24

Table 8: Telecom non-functional requirements, part 1 ..26

Table 9: Telecom non-functional requirements, part 2 ..27

Table 10: Telecom non-functional requirements, part 3 ..28

Table 11: List of Abbreviations ...35

 D6.4 Evaluation of the Telecommunications demonstrator - V2.0

SAFURE D6.4 – V2.0 Page 1 of 35

Chapter 1 Introduction

The aim of the telecom use case is to provide a test platform integrating SAFURE
components and able to be evaluated for safety and security aspects. This document
presents the test methodology and the associated results.

The telecom use case and the elements composing it are described in the following chapter.
The architecture of the demonstrator is also presented with a focus on the safety and
security components.

Modeling work and results with respect to task description and timing analysis are presented
in Chapter 3.

Chapter 4 presents the test plan methodology, the elements that are evaluated and the
evaluation results based on the requirements structure provided in D1.3” SAFURE
Framework Specifications”. The latter results include the two variants of the architecture for
the telecom use case, namely:

• The architecture where separation is provided by a hypervisor on the smartphone.

• The architecture without a hypervisor on the smartphone where separation is partly
achieved by the infrastructure along with the smartphone.

Since only the architecture without a hypervisor has been implemented (cf. D6.3), the results
for the hypervisor-based architecture have been inferred from similar architectures
implemented on other platforms.

 D6.4 Evaluation of the Telecommunications demonstrator - V2.0

SAFURE D6.4 – V2.0 Page 2 of 35

Chapter 2 Demonstrator Description

The demonstrator is shortly described hereafter. The use case and interacting devices are
presented firstly. Then the architecture of the demonstrator and the components included are
described. Further details about the demonstrator are provided in D6.3 “Telecommunications
prototype”.

2.1 Use case

The use case is a body area network in where there is a mix of critical and non critical
devices as well as secure and non-secure functions.

The goal of the use case is to provide additional capabilities to support the use of critical
devices in a secure environment, and the impact of these capabilities on the overall system.

2.1.1 Medical devices

For reasons mostly related to availability, the medical device has been substituted by a
smartband. It can illustrate similar concerns and provides the same interfaces, with the
monitoring capability of body constants such as heartbeat rate. However it is not able to act
on body. This is in line with the project general rules with respect to medical devices.

2.1.2 Hardware platform

The hardware platform consists of a smartphone and an infrastructure which jointly should
implement the whole set of capabilities for safety and security as described in D1.2 and
according to methodology described in D1.3.

2.2 Demonstrator architecture

The demonstrator architecture is depicted as follows:

 D6.4 Evaluation of the Telecommunications demonstrator - V2.0

SAFURE D6.4 – V2.0 Page 3 of 35

Figure 1: Architecture of the demonstrator

The smartphone (upper part of the schema) is based on Android and provides the additional
security and safety functions which are detailed hereafter.

The infrastructure (lower part of the schema) is based on a PC-based system running Linux,
and provides the counterparts of the security and safety functions provided by the
smartphone.

2.2.1 Security components

The security components are of several kinds:

On the smartphone:

• The native Android security components

• The SAFURE Cycurlib component

• The Matrix component

On the infrastructure:

• The native Linux security components

• The SAFURE Cycurlib component

• The Matrix/Riot component

These components can be used in conjunction or in isolation to provide the necessary
security capabilities

 D6.4 Evaluation of the Telecommunications demonstrator - V2.0

SAFURE D6.4 – V2.0 Page 4 of 35

2.2.2 Safety components

The safety components are

On the smartphone:

• The monitoring component

• The supervision component

• The logging component

On the infrastructure:

• The log manager component

• The alert manager component

• The reporting component

 D6.4 Evaluation of the Telecommunications demonstrator - V2.0

SAFURE D6.4 – V2.0 Page 5 of 35

Chapter 3 Timing Analysis

In the SAFURE telecommunication use case, safety-critical medical applications associated
with security-critical applications need to be running alongside non-critical applications on a
common platform (smartphone or tablet). The critical applications can run either in a periodic
or asynchronous manner, need to be preemptive on any other non-critical application to
ensure potential safety requirements while avoiding overload of the running hardware and
seamless experience for the end-user of the platform. This functioning scheme requires in-
depth analysis of potential timing issues at core level.

For these analyses Symtavision’s timing analysis tool “SymTA/S” was used to investigate
different scenarios for concurrency of both medical (MedicalApp) and critical (CApps) and
non-critical (NCApps) applications according to the simplified architecture, previously
captured in the Capella modelling tool in Figure 2.

Figure 2: Architecture for SymTA/S timing analysis

This architecture was used as a basis to create the Runnables and Tasks in SymTA/S as
shown in Figure 3.

 D6.4 Evaluation of the Telecommunications demonstrator - V2.0

SAFURE D6.4 – V2.0 Page 6 of 35

Figure 3: SymTA/S project explorer tree of Task, Runnables and Triggers

For each element, several parameters need to be fulfilled such as the priority, the execution
time range and period (when applicable). Triggers can also be used to account for event
based activation of tasks. An example is shown in Figure 4. These parameters are key to
investigating the impact of processes number, length and interdependence on the viability of
architecture, thus allowing design-space exploration.

Figure 4: Example of properties for CApps Task

 D6.4 Evaluation of the Telecommunications demonstrator - V2.0

SAFURE D6.4 – V2.0 Page 7 of 35

The software then runs simulations of these multi-processes on a single core and provides a
series of interpretable data on the various tasks, runnables, core load, etc.

The feature that was the most used in the telecommunication case was the Gantt Diagram,
which provides a visual overview of the concurrent running tasks. Used to identify timing
bottlenecks or delays, it quickly gives a sense of acceptable configurations and overall
impact on safety-security and user experience.

Figure 5 and Figure 6 below are examples of the results obtained with the tool and how it
was used to investigate the optimization of concurrent critical and non-critical tasks running
on a single core.

 D6.4 Evaluation of the Telecommunications demonstrator - V2.0

SAFURE D6.4 - V2.0 Page 8 of 35

Figure 5: SymTA/S Gantt Diagram - Run with no optimization

 D6.4 Evaluation of the Telecommunications demonstrator - V2.0

SAFURE D6.4 - V2.0 Page 9 of 35

Figure 6: SymTA/S Gantt Diagram – run with first sequencing optimization

 D6.4 Evaluation of the Telecommunications demonstrator - V2.0

SAFURE D6.4 – V2.0 Page 10 of 35

In the examples of Gantt diagrams above (Figure 5 and Figure 6), each task has been given
a priority (from 0 to 5, the highest here) and a repetition period (in ms), and a duration which
is the sum of the duration of its runnables. The SymTA/S software then runs the simulation
taking into account those parameters and provides the diagrams. All tasks are running on the
same core, therefore in a sequential manner. At all time the running task is represented by a
white box on its line and the priority setting will decide which task is run from start to end.
Tasks with lower priority can be delayed or even pre-empted, as represented by the yellow
lines and interrupted white boxes. In the first diagram, one can see that most tasks are
delayed, even the task with highest priority (first line).

We then performed some optimization that account for the specificities of some of the tasks:
reassigning priorities, introducing trigger-inducing tasks instead of periodic repetition and
adding offsets (in ms). Indeed, as in the telecommunication case some event can occur on a
non-regular basis, it is important to account for specific sequencing of tasks.

In the last example, we insure that the objectives are met for most of the time. However, the
periodicity and priority of the MedicalApp task is such that the NCApps are almost constantly
delayed. This could translate into poor user experience. Also some instances of the critical
task turn out to be pre-empted by the MedicalApp task, which raises the question of security
versus safety in this mixed context.

These examples show how such timing analysis tool was used to try and solve some of the
issues raised and addressed in the SAFURE project. However, fully conclusive usage of this
tool would require a more specific solver which could better apprehend event based
scheduling on and multi-core mapping.

 D6.4 Evaluation of the Telecommunications demonstrator - V2.0

SAFURE D6.4 – V2.0 Page 11 of 35

Chapter 4 Test plan

The test plan is focused at testing non-functional aspects of the system related to SAFURE
capabilities and in the meantime to be able to evaluate qualitatively at least the impact of the
added capabilities on the behaviour of the system. For instance it can be useful to evaluate
the perturbations introduced by a safety feature on a non-safety one, and of greater
importance to evaluate the opposite.

4.1 Methodology

In order to evaluate the requirements the following methodology has been chosen.

1. We have identified the elements that can be evaluated according to the SAFURE
framework. These elements have to be measureable and their measurement in
nominal mode shall be known.

2. Then we have identified the tests that can be done when these elements are not
working in nominal mode and how the degraded mode can be detected and, if
applicable, quantified

4.2 Elements to be evaluated

The elements to be evaluated are :

• The smartwatch

• The Bluetooth link

• The smartphone

• The WiFi link

• The 2G/3G/4G link

• The infrastructure

For each of these we provide tables indicating

• What items can be evaluated

• The tests can evaluate each or several of the items

4.2.1 Smartband

Items that can be evaluated

No Item Nominal range Degraded range Alarm range

W1 Battery level > 10% < 10% and > 2% < 2%

W2 Heartbeat sensor OK/on KO/off

W3 Heartbeat sensor calibration Done in last 24h Done in last 72h Not done

 D6.4 Evaluation of the Telecommunications demonstrator - V2.0

SAFURE D6.4 – V2.0 Page 12 of 35

Tests that can be used

No Test Monitoring
ranges

Test typical
duration

Remotely
triggable

W1 Battery drain/charge close to
thresholds.

N,D,A > 1h No

W2 Isolate sensor from wrist N,A < 1min No

W3 Activate calibration None Unknown Yes

4.2.2 Bluetooth link

Items that can be evaluated

No Item Nominal range Degraded range Alarm range

B1 Connected devices < 3 including 1
critical

> 3 including 1
critical

No critical
device
connected

B2 Link signal level for each
critical device

> 50 % > 10 % and < 50
%

< 10 %

B3 Link interference for each
critical device

Low Moderate High

B4 Link jitter level for each
critical device

Low Moderate High

Tests that can be used

No Test Monitoring
ranges

Test typical
duration

Remotely
triggable

B1 Fetch information from
settings.

N,D,A < 1min Yes

B2 Move smartphone away from
smartwatch

N,D,A < 1min No

B3 Use several smartwatches N,D,A < 1min No

B4 Use other active Bluetooth
devices

N,D,A < 1min No

 D6.4 Evaluation of the Telecommunications demonstrator - V2.0

SAFURE D6.4 – V2.0 Page 13 of 35

4.2.3 Smartphone

Items that can be evaluated

No Item Nominal range Degraded range Alarm range

S1 Critical apps running < 3 and > 0 > 3 0

S2 Monitoring of each critical app App-dependent App-dependent App-dependent

S3 Monitoring frequency reported
for each critical app

Yes No, guessed by
monitor

No, not
guessed by
monitor

S4 Uptime of each critical app

S5 Number of failures/ restarts of
each critical app

S6 Time of last failure/restart

S7 Cause of last restart By planned
action or user
action

After Failure Unknown

S8 Battery level > 10% < 10% and > 2% < 2%

S9 Supervision status OK degraded KO or not
reported

S10 Safety subsystem autotests Done in last 1h Done in last 24h Not done in
last 24h

S11 Last acknowledgement
received from infrastructure

 D6.4 Evaluation of the Telecommunications demonstrator - V2.0

SAFURE D6.4 – V2.0 Page 14 of 35

Tests that can be used

No Test Monitoring
ranges

Test typical
duration

Remotely
triggable

S1 Identify critical apps by name N,D,A < 1min Yes

S2 Critical app-dependent test N,D,A < 10min Yes

S3 Periodic cooperative
monitoring of critical app

N,D,A < 1min No

S4 Event-driven reliability criteria
based on S4-S7
Trigger applications restart

Not applicable App-dependent No

S5 Cf. S4

S6 Cf. S4

S7 Cf. S4

S8 Battery drain/charge close to
thresholds.

N,D,A > 1h No

S9 Stop/start supervision
application

N,D,A < 1min No

S10 Start/stop safety functions
test

N,D,A < 1min Yes

S11 Same test as I2

4.2.4 WiFi link

Items that can be evaluated

No Item Nominal range Degraded range Alarm range

F1 Link security WPA2 WPA none

F2 Link signal level > 50 % > 10 % and < 50
%

< 10 %

F3 Link interferencewith respect
to other beacons

Low Moderate High

F4 Link jitter level Low Moderate High

 D6.4 Evaluation of the Telecommunications demonstrator - V2.0

SAFURE D6.4 – V2.0 Page 15 of 35

Tests that can be used

No Test Monitoring
ranges

Test typical
duration

Remotely
triggable

F1 Change WiFi beacon N,D,A < 5min No

F2 Move smartphone away from
WiFi beacon

N,D,A < 1min No

F3 Use several colocated WiFi
beacons

N,D,A < 1min No

F4 Use other active WiFi devices N,D,A < 1min No

4.2.5 2G/3G/4G link

Items that can be evaluated

No Item Nominal range Degraded range Alarm range

G1 Link type : 2G/3G/4G 4G 3G/2G None

G2 Link signal level > 50 % > 10 % and < 50
%

< 10 %

Tests that can be used

No Test Monitoring
ranges

Test typical
duration

Remotely
triggable

G1 Change network settings for
SIM

N,D,A < 1min No

G2 Move smartphone in area
with low connectivity (indoor)

N,D,A < 1min No

4.2.6 Infrastructure

Items that can be evaluated

No Item Nominal range Degraded range Alarm range

I1 Last status info received from
each smartphone

< 3 h > 3 h > 24 h

I2 Report of acknowledgement < 3 h > 3 h > 24 h

 D6.4 Evaluation of the Telecommunications demonstrator - V2.0

SAFURE D6.4 – V2.0 Page 16 of 35

received by infrastructure

Tests that can be used

No Test Monitoring
ranges

Test typical
duration

Remotely
triggable

I1 Switch smartphone to
airplane mode

N,D,A > 3h No

I2 Visual display at monitoring
console

N,D,A > 3h No

4.3 Requirements compliance

The requirements from D1.2 have been evaluated in two cases:

1. The initial architecture with PikeOS. Information is based on knowledge on similar
systems and extrapolated to the specific test case.

2. The revised architecture with Android. Information is based on implementation results
for the Telecom prototype

 D6.4 Evaluation of the Telecommunications demonstrator - V2.0

SAFURE D6.4 – V2.0 Page 17 of 35

4.3.1 Common Integrated Requirements

Table 1: Common integrated requirements

 D6.4 Evaluation of the Telecommunications demonstrator - V2.0

SAFURE D6.4 – V2.0 Page 18 of 35

Although the hardware platform complies to these requirements the capabilities usable by
PikeOS and Android, despite being complementary, are not mixable on this hardware
platform. In order to have a better coverage it is needed:

• To extend Android in order to support some more real-time capabilities, for instance
by enabling access to other scheduling policies already existing in the Linux kernel.

• To enable virtualization at the HW platform level or at the Android level in order to be
able to integrate a hypervisor such as PikeOS to manage real-time aspects and HW
monitoring.

4.3.2 Common Functional Requirements

Table 2: Common functional requirements

None of these requirements could be satisfied in the architecture with Android.

For CR-F-001 it has been alleviated by using a dedicated architecture for the WP4 prototype.
Support for mixed-criticality is not existing in Android and it could be implemented using an
hypervisor should the HW architecture support it. This is the case for the ARMv8 architecture
but among the smartphones tested built with ARMv8-based cores or similar cores, none was
supporting this feature.

For CR-F-002 the usage requirement has been modelled but the tools available to monitor it
on PikeOS and Android are providing a coarse-grain application view and not the more fine-
grain resource view needed. Furthermore, without direct access to PMIC or PMU it is not
easy to benchmark these tools

 D6.4 Evaluation of the Telecommunications demonstrator - V2.0

SAFURE D6.4 – V2.0 Page 19 of 35

4.3.3 Common Non-Functional Requirements

Table 3: Common non-functional requirements, part 1

 D6.4 Evaluation of the Telecommunications demonstrator - V2.0

SAFURE D6.4 – V2.0 Page 20 of 35

Table 4: Common non-functional requirements, part 2

The requirements that are related to time analysis (NF5 to NF12) are very partially covered
by Android and there is no possibility to handle them more completely within Android.

Security requirements (NF15 to NF19) are covered for the cryptography but not for the
secure boot. As these security requirements are of major importance for SAFURE, more
information of CR-NF-018 and CR-NF-019 is provided hereafter.

 D6.4 Evaluation of the Telecommunications demonstrator - V2.0

SAFURE D6.4 – V2.0 Page 21 of 35

CR-NF-018 coverage on PikeOS

CycurLIB has been integrated into PikeOS as a File Provider that runs in a separate partition.

In this partition, cryptographic keys are managed, this covers part a) of CR-NF-018.

Also, the calculation of cryptographic functions is performed in this partition, this covers part
b) of CR-NF-018.

Cryptographic certificates are stored in this partition and are not accessible to other user
partitions. The certificate can be updated using the Secure Update process with the update
packet containing the new certificate. This covers part c) of CR-NF-018.

CR-NF-018 coverage on Android

CycurLIB is integrated into the app using JNI.

Cryptographic keys are managed in the Android app, which covers part a) of CR-NF-018.

The cryptographic calculations take place in CycurLIB (as part of the Android app), which
covers part b) of CR-NF-018.

The management of certificates is handled in the Android app, externally from Cycurlib and
using the infrastructure provided by Android, compliant to Java Cryptography Architecture
(JCA). Cryptographic certificates are stored within Android.

CR-NF-019 coverage on PikeOS

Access rights/methods to the partition hosting the CycurLIB is configured statically by the
system integrator who is the trusted entity. And this configuration cannot be changed during
runtime. This covers part a) of CR-NF-019.

During runtime, PikeOS ensures that the access to File Providers in the CycurLIB partition is
according to the security architecture configured statically by the system integrator. This
covers part b) of CR-NF-019.

By allocating different partitions to different roles, users, services, and domains and using
PikeOS separation mechanism to provide different access rights/methods to the CycurLIB
partition’s File Providers, part c) of CR-NF-019 can be fulfilled.

Overall access is handled using File Provider access rights. To have individual cryptographic
functions with separate access controls, the functions can be realized as different virtual File
Providers within the CycurLIB partition. This covers part d) of CR-NF-019.

Similarly, the usage rights of cryptographic objects/services can be mapped to access rights
on the virtual File Providers, this covers part e) of CR-NF019.

CR-NF-019 coverage on Android

As a library, Cycurlib does not provide support for these capabilities.

Configuration is done in the development IDE (e.g. Android Studio).

Access and usage rights to cryptographic objects are handled by the Android app, which is
entirely dependent of Android permissions infrastructure. If the security infrastructure is
aligned to Android permissions e.g authorized entities are applications, then a) b) c) and d)
are provided. If the security infrastructure is not aligned to Android permissions, then none is
provided.

 D6.4 Evaluation of the Telecommunications demonstrator - V2.0

SAFURE D6.4 – V2.0 Page 22 of 35

As there is limited settable usage rights to cryptographic objects in Android from
android.security.keystore introduced in Android 6.0 and applying only to private and

secret keys, support for e) is only partial at this time.

When the Android device is rooted, the user might be able to access cryptographic objects.

Safety and mixed-criticality requirements

Safety requirements are very partially covered by Android. However with Google Project
Treble integration in Android Oreo (although in the security scope) the updates may be more
easily feasible which could provide more compliance for CR-NF-026.

Almost no support for mixed-criticality is available. Proprietary hardware modifications made
by some vendors inhibit almost completely the use of PMC in some chips.

4.3.4 Telecom Integrated Requirements

Table 5: Telecom integrated requirements

Although Android is based on Linux, integration of thermal protection mechanisms could not
be done due to the absence of an API to support it in Android similarly to the API that exists
in Linux.

 D6.4 Evaluation of the Telecommunications demonstrator - V2.0

SAFURE D6.4 – V2.0 Page 23 of 35

4.3.5 Telecom Integrated Non-Functional Requirements

Table 6: Telecom integrated non-functional requirements

These requirements are almost all HW-related and are covered in the same way for any
software architecture. The requirement S1-NF-010 deals with security and protection profile.
No such compliance exists for Android so it has to be covered at least partially by the
middleware related to the IMD device.

 D6.4 Evaluation of the Telecommunications demonstrator - V2.0

SAFURE D6.4 – V2.0 Page 24 of 35

4.3.6 Telecom Functional Requirements

Table 7: Telecom functional requirements

Requirements such as S1-F-003 need to be verified by inspection of application code and
this requires access to source. However for vendor-applications controlling connected
objects, the source code is not available and there is no way to ensure that no other party
may have access to the data. Moreover the use of these applications is very often submitted
to acceptance of terms and conditions that are quite long and difficult to understand and as a

 D6.4 Evaluation of the Telecommunications demonstrator - V2.0

SAFURE D6.4 – V2.0 Page 25 of 35

consequence not read but accepted by the average user, who wants to use the device
altogether.

Since these devices collect data that can be used for medical usage it is very important that
there is a compliance of these licences which can be given by an independent entity
whenever health related data can potentially be collected by the device or application
provider. To mitigate this problem based on technical elements the use of a framework such
as Matrix, with open protocols and open-source codebase, and independent from any device
vendor or platform (Android or iOS) maker shall be mandatory for all data having potential
medical or health purpose. This enables the user to have control and confidence over its
data by choosing devices and applications that are approved by an independent entity.

Furthermore the use of this framework enables to have interoperating capabilities for
applications which allows to break the vertical device vendor scheme where data is firstly
controlled by the device vendor and then by the user. Interoperating capabilities allow third
parties to have access to the data provided, that they comply to the access requirements
enforced by the framework, independently of the device vendor. For the data, which indeed
belongs to the user, this proposed scheme is user-centric and service-oriented whereas the
actual scheme is vendor-centric and business-oriented, leaving the user with a view of its
own data under the sole control of the device vendor.

 D6.4 Evaluation of the Telecommunications demonstrator - V2.0

SAFURE D6.4 – V2.0 Page 26 of 35

4.3.7 Telecom Non-Functional Requirements

Table 8: Telecom non-functional requirements, part 1

 D6.4 Evaluation of the Telecommunications demonstrator - V2.0

SAFURE D6.4 – V2.0 Page 27 of 35

Table 9: Telecom non-functional requirements, part 2

 D6.4 Evaluation of the Telecommunications demonstrator - V2.0

SAFURE D6.4 – V2.0 Page 28 of 35

Table 10: Telecom non-functional requirements, part 3

In general the telecom non-functional requirements are covered very partially, and mostly not
by Android. Partial coverage is brought by the middleware such as Matrix. As stated before
the combination of PikeOS and middleware features would bring a much better coverage of
these requirements.

4.4 Applications integration process verification

Integrating applications under Android has been done using the Android Studio tool. Other
tools, with a strong technical interest, such as cross-platform development tools (for Android
and iOS), have been considered but not used due to their proprietary character and license
cost.

The Android Studio tool is very easy to use and well suited for Android development.
However it requires to have a connection to internet due to dependencies resolution that can
be made at almost any part of the production and execution process

From an industrial perspective it is hence very difficult to ensure that

• all components needed for production are available locally

• dependency check will not require to fetch components from Internet should a single
component be marked as potentially obsolete by the build or execution system

As a matter of facts we have first tried to maintain Android studio disconnected from Internet
and we have incorporated elements required on a manual basis by duplicating them from a
shadow Android Studio connected to internet. The list of elements needed is difficult to

 D6.4 Evaluation of the Telecommunications demonstrator - V2.0

SAFURE D6.4 – V2.0 Page 29 of 35

establish and regularly the unconnected build system would block for dependency miss.
Maybe this is related to our relative inexperience with the Android Studio tool, however it is
not the default use of this tool and we found only little documentation for our unconnected
use.

In a second step, and to ease development we switched to connected use and the previous
problems disappeared.

Android Studio releases are quite numerous over time. The integration started with Android
Studio 2.1.1 and is now using Android Studio 3.1. Not all intermediate releases have been
used. Release update was no problem provided the permanent connection to internet.

For long-term maintenance of applications and middleware, this raises three main problems:

1. the prefetching and build process of applications, with components whose availability
over time is not warranted, shall be evaluated

2. the update cycle of Android itself adds some obsolescence to these applications that
have to follow since most recent smartphones only support the most recent Android
versions

3. the Android update process which allows to update an application but does not allow
to revert to the previous version, should the update bring unexpected problems on a
specific smartphone

4.5 Integration of application-independent components to Android

As the initial plan for the demonstrator was to integrate Cycurlib, it has been completed by
another component for low-throughput video streaming in order to validate the overall
process over a wider functional range covering limited bandwidth availability.

4.5.1 CycurLIB port to Android

The Cycurlib port to Android has provided the following results:

• Performance check for cryptographic algorithms (e.g. AES, SHA-2, ECDSA, EdDSA)

• Integration into Android apps via JNI

• Secure communication demo

• Encrypted with AES

• Integrity-protected with MACs

• Secure update demo

• Encrypted with AES

 D6.4 Evaluation of the Telecommunications demonstrator - V2.0

SAFURE D6.4 – V2.0 Page 30 of 35

Figure 7: Cycurlib port to Android

 D6.4 Evaluation of the Telecommunications demonstrator - V2.0

SAFURE D6.4 – V2.0 Page 31 of 35

Figure 8: Cycurlib secure communications demo

Since it had been successfully demonstrated on a DragonBoard 810, there was no major
interest except for performance measurements to demonstrate it again on a commercial
smartphone.

4.5.2 Gstreamer integration to Android

Following the scheme of integration of Cycurlib, the Gstreamer software has been integrated
to Android along with a very low-rate video encoder based on H264.

A sample application has been designed around the Gstreamer software using the same JNI
technology that was used for Cycurlib.

As a result this application is able to provide a very low video rate under a constrained
bandwidth by using only software resources on the smartphone.

 D6.4 Evaluation of the Telecommunications demonstrator - V2.0

SAFURE D6.4 – V2.0 Page 32 of 35

Figure 9: Integration of Android-independent components

The interest of Android-independent components is

• They can be updated independently from Android, for safety or security reasons

• They can be audited separately or within Android, since they have well-defined
interfaces and contents

The problems raised by such components are*

• They must be adapted to be integrated to several Android versions

• They cannot be shared simply by several applications, especially for updates

• They rely on access rights provided by Android, which are application-level centric

 D6.4 Evaluation of the Telecommunications demonstrator - V2.0

SAFURE D6.4 – V2.0 Page 33 of 35

Chapter 5 Summary and conclusion

This document has reviewed the evaluation of the telecommunications prototype. It has
provided the test cases performed and the traceability of the SAFURE requirements as
described in D1.2. This document has presented the aspects related to integrating the
telecom prototype.

In conclusion, it has been shown that the integration using an evaluation board, as done in
SAFURE WP4, and using a real product such as a smartphone, both assembled using
individual components that are indeed very similar, may exhibit very different outcomes in the
feasibility and in the SAFURE support of these platforms.

Despite the SoC capability to support hypervisor mode, no hypervisor support for current
smartphones really exists presently. The initial approach in SAFURE which is to enable
security and safety by design has been adapted by necessity to bringing safety and security
by architecture.

The safety features can be introduced by adapting applications to a distributed safety
infrastructure which on the smartphone does the monitoring of the corresponding
applications. However there is presently no way to make sure these safety applications
cannot be starved from resources since Android does not support a-priori resource allocation
and arbitration for applications.

The security features can be introduced by connecting the corresponding SAFURE
applications through an open middleware such as Matrix which provides only open protocols.
This allows certification by independent entities that the user remains in control over its own
data.

 D6.4 Evaluation of the Telecommunications demonstrator - V2.0

SAFURE D6.4 – V2.0 Page 34 of 35

Chapter 6 List of Abbreviations

Abbreviation Explanation

API Application Programming Interface

AUTOSAR AUTomotive Open System ARchitecture

BSP Board Support Package

COTS Component Off The Shelf

GNU Gnu is Not Unix

GPU Graphics Processing Unit

HW Hardware

IMD Implantable Medical Device

I/O Input/Output

LE Low Energy

MAC Medium Access Control

MARTE Modeling and Analysis of Real-Time Embedded Systems

NFC Near Field Communications

OS Operating System

OSEK Offene Systeme und deren Schnittstellen für die Elektronik im Kraftfahrzeug

OSS Open Source Software

PAMU Peripheral Access Management Unit

PKI Public Key Infrastructure

PMC Performance Monitoring Counter

PMIC Power Management Integrated Circuit

PMU Power Management Unit

QoS Quality of Service

RT Real Time

RTOS Real Time Operating System

SDHC Secure Digital High Capacity

SDK Software Development Kit

SFPP Security Framework Protection Profile

SoC System on Chip

SRAM Static Random Access Memory

SW Software

TCS Thales Communications and Security

TRT Thales Research and Technology

UC Unit of Computing

 D6.4 Evaluation of the Telecommunications demonstrator - V2.0

SAFURE D6.4 – V2.0 Page 35 of 35

Abbreviation Explanation

USB Universal Serial Bus

VPN Virtual Private Network

WCET Worst-Case Execution Time

WiFI Wireless Fidelity

WPA WiFi Protected Access

XML eXtended Markup Language

Table 11: List of Abbreviations

	Executive Summary
	Contents
	List of Figures
	List of Tables
	Chapter 1 Introduction
	Chapter 2 Demonstrator Description
	2.1 Use case
	2.1.1 Medical devices
	2.1.2 Hardware platform

	2.2 Demonstrator architecture
	2.2.1 Security components
	2.2.2 Safety components

	Chapter 3 Timing Analysis
	Chapter 4 Test plan
	4.1 Methodology
	4.2 Elements to be evaluated
	4.2.1 Smartband
	4.2.2 Bluetooth link
	4.2.3 Smartphone
	4.2.4 WiFi link
	4.2.5 2G/3G/4G link
	4.2.6 Infrastructure

	4.3 Requirements compliance
	4.3.1 Common Integrated Requirements
	4.3.2 Common Functional Requirements
	4.3.3 Common Non-Functional Requirements
	4.3.4 Telecom Integrated Requirements
	4.3.5 Telecom Integrated Non-Functional Requirements
	4.3.6 Telecom Functional Requirements
	4.3.7 Telecom Non-Functional Requirements

	4.4 Applications integration process verification
	4.5 Integration of application-independent components to Android
	4.5.1 CycurLIB port to Android
	4.5.2 Gstreamer integration to Android

	Chapter 5 Summary and conclusion
	Chapter 6 List of Abbreviations

