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Executive Summary

There has been a tremendous improvement in performance and efficiency of processing platforms
in the past four decades. System designers have exploited various architecture and device level
techniques to bring about this improvement.
While the average case performance has increased tremendously, there is a large gap between the
requirements of real-time applications and what architectures of embedded processors offer today.
On the one hand, real-time applications need predictability in order to enable safe operation based
on worst-case execution time analysis. On the other hand, following the end of Dennard scaling,
embedded processors increasingly feature a multicore architecture with shared resources (e.g., last-
level cache, memory controller) in order to keep improving performance and efficiency.
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Chapter 1 Introduction

The focus of Work Package 3 is to study algorithms for ensuring integrity of Safe and Secure sys-
tems which are the focus of SAFURE project. This document overviews the integrity algorithms and
presents first results on the application of these algorithms and/or development of new algorithms for
preserving system integrity.
This document reflects the research done since the publication of D3.1 and therefore mainly can be
seen as continuation of D3.1. While this chapter was already provided in D3.1, it is also provided
here for the sake of making D3.2 a self-contained complete report.

1.1 Meaning of Integrity in the Context of SAFURE

Before delving into the different aspects of integrity, it is important to define the integrity of a computer
system. In one of the seminal works titled “Integrity Consideration for computer Systems” [11], K.J.
Biba states that ”We consider a subsystem to have the property of integrity if it can be trusted to
adhere to a well defined code of behavior”. This “code of behaviors” is the specification of a given
system.
Deliverable D1.3 states the SAFURE framework specification in detail. However, important aspects
of this specification are outlined here to motivate the different aspects of system integrity. As stated in
D1.3, SAFURE adopts a unified presentation of properties that make a system dependable. Specifi-
cally, in SAFURE we focus on the following system attributes:

• Safety attributes: maintainability, reliability and safety

• Security (as of IT security) attributes : availability, confidentiality and integrity

For ensuring that a mixed critical system has these attributes, we have identified three separate areas
of system integrity:

• Temperature integrity

• Data integrity

• Timing and resource sharing integrity

We will now briefly overview these integrity aspects. Details on each of these aspects are given in
Chapters 2, 3 and 4.

1.2 Temperature Integrity

Temperature integrity refers to maintaining system temperature below a safe operating threshold. It
mainly affects reliability, safety, availability and confidentiality attributes of a safe and secure system.
This aspect has become important due to rapid increase in power density of modern processing plat-
forms. High temperature conditions adversely affect the reliability/safety of a system. Since reliability
and safety are fundamental requirements of mission-critical real-time systems, adherence to ther-
mal constraints is vital for maintaining system integrity. In SAFURE we study the thermal impact of
executing tasks of multiple criticalities on a multi-core platform.
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We also identify that temperature can be used to compromise the security of a system by its use as
a covert communication channel. This compromises the confidentiality attribute. We study analy-
sis/mitigation strategies for countering these threats to system integrity.

1.3 Data Integrity

Data integrity refers to assuring and maintaining the accuracy of data. Thus it can be said that data
integrity techniques aim at preventing unintentional changes to information. Data integrity mainly
affects reliability, safety, confidentiality and integrity attributes of a safe and secure system.
Problems in that domain comprise unintended changes to data due to storage, retrieval or process-
ing operations. This also includes targeted changes, unexpected hardware failures, human errors
and malicious attackers. Measures to preserve integrity of data are diverse, including application of
checksums, error correcting codes as well as cryptographic message authentication codes (MACs)
and access control techniques, the latter two of which are considered in SAFURE.

1.4 Timing and Resource Sharing Integrity

Timing integrity refers to the property of a (real-time) system to meet its timing requirements, e.g.
deliver a response to an external stimulus in time. Timing integrity mainly effects maintainability,
reliability, safety and availability attributes of a safe and secure system.
There are varying degrees of criticality w.r.t. timing integrity, ranging from ”best effort” (e.g. providing
some service at all) all the way up to safety-critical control loops with short deadlines (e.g. advanced
driver assistance, autonomous driving).
Guaranteeing timing integrity requires that all effects that impact the timing of a certain function are
controlled. Typically, this means controlling interference during the sharing of resources (e.g. pro-
cessor time, memory access, ...). This can be done by providing corresponding hardware/software
mechanisms on the execution platform. Giving a guarantee on timing integrity typically involves per-
forming a formal analysis of the timing properties.
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Chapter 2 Temperature Integrity

This chapter focuses on temperature integrity mechanisms developed in SAFURE. It covers both
safety and security implications of temperature. For the safety aspect, we overview thermal isolation
servers, which can be used to provide thermal protection in a multi-core mixed-critical system. For
the security aspect, we provide a progression of the thermal covert channel analysis covered in D3.1.
Additionally, we present an analysis of the frequency covert channel. Towards the end of this chapter,
we also provide preliminary results for a temperature side-channel attack.

2.1 Thermal Isolation Servers

To provide thermal protection, we developed a new scheduling construct called Thermal Isolation
Server which significantly simplifies the real-time application design process under thermal con-
straints. A TI Server has thermal budget associated with it, which upper-bounds the temperature
increase caused by tasks executed by it. Through detailed theoretical analysis, we prove that a given
server will never exceed its thermal budget. This allows us to thermally isolate different sets of tasks.
The total budget is governed by the thermal constraint of the hardware platform. Furthermore, we
prove that TI Servers are time- and space-composable; which implies that we can simply add the
thermal budgets of several servers executing in parallel to compute their net worst-case temperature
increase. This composability significantly simplifies the server design problem. We also propose a
heuristic to design a set of TI Servers given the computation requirements of tasks and the thermal
constraint of the hardware platform.
We now formalize the models used in this work. Bold characters represent vectors and matrices
while non-bold characters represent scalars. Subscripts are used to reference individual elements
of matrices/vectors; e.g. Hk,l denotes the element in kth row and lth column of matrix H, and Ti
denotes the ith element of vector T . I is used to denote identity matrix.

2.1.1 Processor Model

We consider a multi-core constituting m identical cores. The set of all cores is denoted by M . Each
core has two operation modes: active and idle. The mode of a given core has a direct impact on its
dynamic power dissipation. A detailed power model is discussed later in this section. The platform
has a thermal constraint T∆. The temperature of each core i ∈ M is required to be at or below T∆

i

for safe system operation.

2.1.1.1 Thermal Model

We develop the thermal model of the multi-core using an equivalent RC network [80, 21, 73]. In this
abstraction, temperature is modeled by voltage and power dissipation is modeled by a current source.
We model the layout of the chip by four vertical layers, namely heat sink, heat spreader, thermal
interface, and silicon die. This is identical to the model adopted by the Hotspot thermal simulator [80].
Each layer is divided into a set of blocks according to the architectural-level units. In our case, we
select a processing component abstraction, , i.e., we represent each core as an individual node
with separate power source and temperature characteristics. Ri,j represents the thermal resistance
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between note i and node j, with Ri,i = ∞. The processing component abstraction has been shown
to be reasonably accurate [24, 90]. In our thermal model, 12 additional nodes are introduced in the
heat spreader and heat sink layers to account for the area which is not covered by the subjacent
layer. Therefore, a multi-core system with m cores is modeled by n = 4 · m + 12 thermal nodes.
The n-dimensional temperature vector T (t) at time t is described by a set of first-order differential
equations:

C · dT (t)

dt
= (G−K) · T (t) + Power(t) +K · TA (2.1)

where C is the thermal capacitance diagonal matrix, G is a square matrix composed with thermal
conductances such that:

Gi,j =

1/Ri,j If i 6= j

−
∑

0≤k<n
1/Ri,k Otherwise. (2.2)

K is the thermal ground conductance diagonal matrix, Power(t) the power dissipation vector at time
t, and TA = TA · [1, . . . , 1]ᵀ is the ambient temperature vector.

2.1.1.2 Power Model

The total power dissipation has leakage and dynamic power components. Leakage power can be
approximated to linearly increase with temperature [56, 21]. Dynamic power of a core depends on its
mode (active or idle). Based on these assumptions, the power dissipation of the system is given by
the following equation:

Power(t) = φ · T (t) +ψ(t) (2.3)

where φ is diagonal matrix of dimension n with constant coefficients, and ψ a vector with n elements.
Furthermore:

ψi(t) =


ψa if node i is a core active at time t

ψi if node i is a core idle at time t
0 otherwise

(2.4)

i.e. ψa and ψi are used to denote the temperature independent power dissipation of a core in active
and idle mode respectively. ψd is used to denote ψa − ψi. The power dissipation of non-core nodes
is zero. Therefore, φii = 0 if node i is not a core.

2.1.2 Application Model

We assume that individual tasks are sporadic. A given task τi is characterized Worst Case Execution
Time (WCET) Ei, minimum inter-arrival time Wi, relative constrained deadline Di ≤ Wi. The set of
all tasks is denoted by Π. In a later setting, we also consider mixed-critical applications.

2.1.3 Sample platform architecture

Unless otherwise stated, we use the following representative platform for all empirical results, evalu-
ations and examples:

Core1Core2

Core3Core4

8 mm

8 mm

Parameter Value
ψa 70 W
ψi 20 W
φ 0.00
TA 25◦C

Figure 2.1: System parameters for the sample architecture
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The thermal parameters (C, G and K) are acquired by simulating the sample architecture floorplan
with Hotspot thermal simulator’s [80] default configuration. This configuration captures the typical
thermal characteristics of silicon, thermal interface material, heat spreader material, and heat sink.

2.1.4 Formalizing Thermal Isolation Servers

In this section we introduce the TI Server. which is the scheduling construct used to provide thermal
isolation/protection. TI Server Si is characterized by period Pi, utilization Ui, phase φi, and the core
on which Si executes cri. TI Servers are partitioned, i.e. Si always executes on cri without migrating
to a different core. We will refer to cri as Si’s self-core. state(Si, t) represents the state of TI Server
Si at time t and can be either active or idle. state(Si, t) follows a fixed periodic schedule such that:

state(Si, t) =

{
active if Pi(k + Ui) + φ ≥ t ≥ k · Pi + φ

idle otherwise

where k is any non-negative integer. Each server is assigned a set of sporadic tasks. When server
state is active, Earliest Deadline First (EDF) is used to schedule individual tasks. Nothing is executed
when server state is idle. Multiple servers can execute on the same core as long as their active times
(time range where server state is active) do not overlap.
In order to provide thermal isolation, a TI Server is assigned a thermal budget, Λi which is the upper
bound on temperature increase caused by all tasks executed by Si. Λi is a function of Pi, Ui and
cri. In this section, we will first compute Λi and analyze how changing Pi and Ui changes Λi. We
will then study how timing guarantees can be given using TI Server and how multiple TI Servers can
be executed together without violating the thermal constraint. For proof of the proposed concepts,
please refer to [5].

2.1.4.1 Thermal properties of TI Servers

Let Θ(t, Si) represent the thermal component of server Si, i.e. temperature increase at time t due to
all executions performed by Si. Also assume that Si never runs out of tasks to execute when its state
is active.

Theorem 1 The thermal component at the end of active time of TI Server Si with Pi > 0 converges
to:

Θ( lim
k→∞

(Pi(k + Ui) + φ), Si) = (I − eA·Pi)−1(I − eA·Pi·Ui)T∞(Bcri,ψ
d

) (2.5)

Theorem 2 The thermal component of TI Server Si with Pi → 0 converges to:

Θ( lim
t→∞

t, Si) = T∞(Bcri,ψ
d
) · Ui (2.6)

Theorem 3 The upper bound on thermal component of server Si is given by:

Λij = −A−1
j,cri
·Θ(te, Si)cri/(−A−1

cri,cri) (2.7)

where Θ(te, Si) =

{
R.H.S of (2.5) if Pi > 0

R.H.S of (2.6) if Pi → 0

We now analyze the constant thermal budget design space. Given a fixed value of self-core thermal
budget Λicri of server Si, following inequality has to be satisfied:

Λi
cri ≥

{
[(I − eA·Pi)−1(I − eA·Pi·Ui)T∞(Bcri,ψ

d

)]cri if Pi > 0

T∞(Bcri,ψ
d

)cri · Ui if Pi → 0
(2.8)

For the Pi > 0 case, we have a continuous range of {Pi, Ui} tuples that satisfy (2.8).
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Figure 2.2: Period/Utilization trade-off when core 1 thermal budget for TI Server Si executing on core
1 is fixed.

Theorem 4 Given fixed self-core thermal component budget Λicri of Si, the highest utilization point
occurs when Pi → 0.

Now we empirically look at the constant self-core thermal component design space. Fig. 2.2a shows
the tradeoff between server period and utilization. The server is run on core 1 and the thermal
budget of core 1 is fixed. We present results for three different values of the fixed self-core thermal
budget [5, 8, 10]. For each of these self-core thermal budgets, the thermal budgets of other cores
are calculated using (2.7). As stated by Thm. 4 and illustrated by Fig. 2.2a, it is preferable to have
the server period as low as possible. However, such a scheduling scheme is hardly practical since it
incurs a high number of preemptions. To take this into account, we introduce a server overhead ε. ε
time is wasted when a server switches from idle to active state. The power dissipated during ε is ψa.
Therefore, the server utilization which can be used to execute tasks becomes:

Ui(ε) =
max(PiUi − ε, 0)

Pi
(2.9)

We call Ui(ε) the augmented utilization of server Si. When ε > 0, the optimal server period is > 0.
Fig. 2.2b and Fig. 2.2c show the tradeoff between the augmented utilization and period for different
values of ε and Λi1. In general, the optimal point (maximum utilization) moves to the right (higher
period values) when ε is increased and moves to the left when self-core budget is increased.

2.1.5 Timing guarantees

In this section, we cover how timing guarantees can be provided using TI Servers. As stated earlier,
TI Servers execute tasks using EDF in their active time slots. Under EDF scheduling, a well known
schedulability test is based on service bound and demand bound functions [78, 79]. These functions
have the following definitions:
Supply Bound Function: Supply Bound Function (SBF) lower bounds the amount of supplied
execution within any time window of fixed length l. The SBF for TI Server Si is given by:

sbf(Si, l, ε) = bl/Pic · Pi · Ui(ε) + max {l − Pi(1− Ui(ε))− bl/Pic · Pi, 0} (2.10)

Demand Bound Function: Demand Bound Function (DBF) upper bounds the minimum amount of
compulsory execution within any time window of fixed length l. For a given sporadic task τj we can
compute DBF using the following equation:

dbf(τj , l) = max

{(⌊ l −Dj

Wj

⌋
+ 1
)
· Ej , 0

}
(2.11)
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Theorem 5 (condition (1) from [79]) Suppose that Πi is the set of tasks assigned to TI Server Si. A
necessary and sufficient condition for meeting deadlines of all tasks in Πi is:

sbf(Si, l, ε) ≥
∑
τ∈Πi

dbf(τ, l) ∀l ≥ 0 (2.12)

Theorem 6 Given two TI servers S1 and S2 with U1(ε) ≥ U2(ε) and P1 ≤ P2 and P2/P1 ∈ Z+, then
sbf(S1, l, ε) ≥ sbf(S2, l, ε) ∀l.

The implication of Thm. 6 is that, keeping the augmented utilization the same, low harmonic server
periods are always better in-terms of schedulability. This means that, for a given self core thermal
budget and ε, all harmonic server periods greater than the period that yields maximum utilization (see
figures 2.2b and 2.2c), are sub-optimal.

2.1.5.1 Composing multiple servers

Theorem 7 Given n TI Servers, the maximum temperature increase due to their execution is upper
bounded by: ∑

1≤i≤n
Λi (2.13)

Theorem 8 Suppose that T∆ is the thermal constraint, and the platform is only executing n TI
Servers. In this setting, we have the following sufficient thermal feasibility condition: ∑

1≤i≤n
Λi


j

≤ T∆
j − [T∞(Bidle)]j ∀j ∈M (2.14)

Theorems 7 and 8 are the direct result of thermal composability of TI Servers. This simplifies the
application design process under thermal constraints. Effectively, it allows us to individually design
TI Servers for subsets of tasks that constitute the entire application. Each TI Server can be designed
relatively independently of other servers; where only (2.14) has to be checked to guarantee adher-
ence to thermal constraint. The simplicity of design process is also illustrated in the following text,
where we present a heuristic for designing TI Servers; and in Section 2.2 of SAFURE Deliverable
D3.3 where we illustrate how TI Servers can be used to provide thermal protection to a mixed-critical
application running on a hardware test-bed.

2.1.6 Designing thermal Isolation servers

This section proposes a heuristic for designing TI Servers such that the peak temperature is min-
imized while adhering to timing constraints. Note that due to the compositional nature of thermal
component based analysis used by TI Servers, the design process is relatively low complexity com-
pared to exhaustively evaluating all combinations of scheduling options. The proposed heuristic has
two stages:1) Optimal partitioning of tasks to cores. 2) Optimal server configuration search.

2.1.6.1 Optimal task partitioning

In the partitioning phase, we assign tasks to cores optimally assuming TI server period of 0. This
partitioning is done using a Mixed-Integer-Linear-Program (MILP).
In Formulation 2.1, we assign tasks for cores such that the minimum temperature difference between
threshold temperature and the maximum temperature of a given core is maximized. The constraints
state that: (2.15) each task has to be assigned to exactly one core, (2.16) utilization of each core
(CoreUtil) is the sum of utilization of tasks assigned to that core, (2.17) utilization of each core is
≤ 1 for timing feasibility, and (2.18) assignment of thermal component using (2.6) assuming a fluid
system.
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Variables:

αi,j =

{
1, if task τi is assigned to core j
0, otherwise

Θi = Thermal component of core i
CoreUtili = Utilization of core i
Objective:

maximize min
1≤i≤m

(
T∆
i − [T∞(Bidle)]i −Θi

)
Constraints: ∑

1≤j≤m
αi,j = 1 ∀τi ∈ Π (2.15)

CoreUtilj =
∑

1≤i≤|Π|

(
Ci
Wi
· αi,j

)
∀j ∈M (2.16)

CoreUtilj ≤ 1 ∀j ∈M (2.17)

Θj =
ψd

Cj,j
·
∑
i∈M
−A−1

j,i · CoreUtili ∀j ∈M (2.18)

Formulation 2.1: MILP for optimal thermal partitioning of sporadic tasks

2.1.6.2 Optimal server configuration search

Next we employ a search strategy to find the server configurations that meet the timing requirements
of the partitioned tasks. For the ith core, let us suppose that the utilization after partitioning is U∗i
and the server preemption overhead is ε. We consider server periods in the range [ ε

1−U∗i
, Pmax], in

steps of 0.01. Pmax is specific to a given problem, and in our evaluations, was set statically to 2ms.
However, dynamic allocation of Pmax based on self-core thermal budget is also possible. For each
period, we find the minimum TI Server utilization such that the schedulability condition of Theorem 5 is
satisfied. This gives us a set of timing feasible TI Servers. Out of this set, we select the configuration
which has the lowest self core thermal component.

2.2 Thermal Covert Channel

The thermal covert channel transmission rates reached in previous work were achieved under labora-
tory conditions by mitigating interfering system characteristics [60, 8]. This leaves the open question
of whether the thermal covert channel can still be considered a threat in a real scenario. In this
deliverable, we extend our investigations of the thermal covert channel by demonstrating the poten-
tial of this threat by leaking sensitive information through the thermal covert channel in a real attack
scenario.

2.2.1 Extended Robustness Analysis

The power consumption of a CPU is correlated to its heat generation. By controlling how much power
a core is currently using, it is possible to influence the temperature of that core. By inducing variations
in the power consumption and consequently variations in the temperature of the CPU, the sending
application (source) app can transmit data through the thermal covert channel. In order to increase
the power consumption, a source generates utilization on the cores of the system. The transmitted
symbols can then be encoded in different utilization patterns and decoded from the resulting temper-
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ature variations. In an ideal scenario, the thermal behaviour can be entirely controlled by the source,
however in modern systems this is not the case. Power and thermal management, as well as other
system performance tools, change the way the source affects the channel. Other processes may also
impose CPU utilization creating thermal noise.
In a realistic scenario, all the factors that can influence the thermal behaviour of a system have to
be taken into account as we cannot alter the environmental conditions. As an extension to the work
presented in D3.1, we analyze these influence factors in detail and show how we can deal with them
in a real environment.

2.2.1.1 Thermal Noise

Thermal noise can be caused by two main factors: changes in the device surrounding temperature
and other processes generating high load on the CPU. In a laboratory setup we can keep the utiliza-
tion noise caused by other processes to a minimum, allowing just the core processes of the Operating
System (OS) to run. The temperature changes are then almost entirely caused by the source.
In a real attack scenario the same condition of low base utilization can be reached when the system
is not actively used, such as a phone charging at night or a laptop left turned on in the office during
the weekend. We consider the covert channel attack to happen during those low usage periods. We
expect that the remaining background noise will not be able to disturb the thermal channel, meaning
that no high external utilization will occur over a long period of time.
In order to exclude thermal noise generated by the receiving application (sink ), the rate at which the
temperature measures are sampled and the execution of the sampling itself cannot generate a high
load on the CPU. This means that the sampling rate of the sink needs to be adapted accordingly.

2.2.1.2 Fans

Fans are the most commonly used active cooling devices in computing hardware, while the system
can alter the efficiency of heat disposal by changing the fan speed. Modern systems usually change
the fan speed depending on the current temperature, altering the behaviour of the thermal channel
with correlated thermal noise.
To exclude interference from changes in fan speed, in a laboratory setup the fan speed is fixed to the
maximum level during the experiments. When fixing the fan speed is not possible, the transmission
scheme has to be adapted to changing thermal dynamics. Since the changing thermal dynamics
caused by the fan speed is correlated to the actual temperature, the source could adapt the trans-
mission scheme depending on the measurement of the thermal sensors. However, we assume that
the source has no access to the temperature readings. This means that the source does not have
the ability to create a back-channel, i.e. cannot use the output of the channel to improve its input.

2.2.1.3 Core Pinning

Modern multicore systems take advantage of their multiple cores to increase the system performance.
This can result in processes being shifted between cores, which also causes a shift of the thermal
dynamics from one core to another. To exclude these events from happening, in a laboratory setup
the source and sink processes can be pinned to specific cores. In a realistic attack scenario core
pinning is not possible.
Since the attack is happening on a not actively used system, only the core on which the source is run-
ning will have strong temperature variations. We already defined the all-cores in the work presented
in deliverable D3.1, which consists of the thermal channel created by observing the summed temper-
ature of all cores. All the thermal noise generated by other processes are also summed up in the all-
cores along with the temperature variations of the transmission. Thus in a system with low thermal
noise, the main variations of the all-cores represent the transmitted signal. The sink will collect and
sum the temperature measurement of all cores to decode the signal on the all-cores, as the sink can
access all thermal sensors.
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2.2.1.4 Sleep States

When the system is idle, as in the attack scenario, the CPU can enter so called sleep states to
optimize energy consumption. Waking up a physical core takes some time, lowering the immediate
performance and introducing delays in the execution of a process.
The system used in a laboratory setup may not be allowed to enter deep sleep states by limiting the
cpu dma latency. This system functionality cannot be modified by our attack because changing the
cpu dma latency requires root access. Hence the source will have the task to wake up the CPU
before transmitting in the case all cores entered a sleep state. This can be done by generating an
initial utilization on the system and not allowing longer idle periods during the transmission.

2.2.1.5 Frequency Governor

Modern devices try to optimize power consumption through Dynamic Voltage and Frequency Scaling
(DVFS), which changes the CPU frequency and the supply voltage at runtime. By lowering the CPU
frequency and the supply voltage, the system can decrease the amount of power consumed, while
still maintaining high performance. The OS software that regulates the operating frequency is called
governor. The governor uses the CPU utilization to decide which frequency to set, depending on its
policy. Since different frequency levels produce different amount of heat, in a system with varying
frequency the thermal behaviour will have a more complex correlation with the utilization generated
by the running processes.
In the systems used in a laboratory setup, the frequency can be fixed to exclude interference from
the governor’s behaviour. In the presented scenario, processes won’t have the rights to fix the fre-
quency, so the effects of governors on the system have to be taken into account. Different devices
have different default governors on them, which may hinder or enhance the thermal dynamics of the
thermal channel. However, frequency governors base their policy for the operating frequency on the
CPU utilization, which source can influence. This means that we can adapt the transmission scheme
to the frequency governor running on the target device.

2.2.1.6 Scheduling

Scheduling is used by the OS to assign resources to the different processes. For example, schedulers
can work with a priority system, where higher priority processes will have precedence over lower
priority ones, in terms of access to resources. Moreover, a scheduler may force a process to leave
resources to another one, in order to prevent starvation or to support critical system processes. Thus
the scheduler can cause timing jitters in the channel, which means that there are variations between
the expected and the actual execution timing of processes.
To exclude interference from the scheduler, First In, First Out (FIFO) scheduling can be used in a
laboratory setup with source and sink at highest priority. Using FIFO scheduling, any process that
uses a resource cannot be interrupted until completion by processes with the same or lower priority.
FIFO scheduling and maximum priority allows source and sink to work undisturbed.
In the real case, the attacker cannot change the scheduling algorithm, which means that the default
has to be used. However, in an idle system, timing jitter caused by the scheduling algorithm should
be sufficiently small to be corrected by a synchronization effort in the transmission.

2.2.2 Results from a realistic attack scenario

The thermal covert channel attack is performed on a platform representative of a modern commercial
business laptop. We use a Lenovo ThinkPad T460s, with an Intel Core i7-6600U CPU that has two
physical cores, each running two hyper-threads resulting in four logical cores. The OS on the device
is Ubuntu 15.10, and to grant isolation between the two applications, Oracle VM VirtualBox is used.
The used Virtual Machine (VM) runs the same OS (Ubuntu 15.10), has two cores and the CPU
execution cap is set to 100%. Other notable specifications of the laptop that influence the thermal
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covert channels are the default frequency governor, which is intel p-state powersave, and the default
scheduler called Completely Fair Scheduler (CFS).
A message sent by the source through the thermal channel will be composed of one or more packets.
Each packet is structured as in figure 2.3, starting with a synchronization pulse, in short sync pulse,
followed by the payload composed of the data bits and error detection coding. The sync pulse is used

Figure 2.3: Packet structure

during the decoding of the thermal trace to localize the packets in order to extract the payload. This
initial pulse needs to be distinguishable from the rest of the signal, but the longer it is, the more the
effective transmission rate is reduced. Another aspect of the transmission is that the implementation
of sync pulses helps us to correct timing jitters inside packets. Timing jitters occur because source
and sink use different timing sources, which are not synchronized, as the source is running within the
VM and the sink on the host OS. The two timing sources used are different and timing jitter on the
VM process causes synchronization issues between source and sink .
Payload symbols are divided between data and error detection. We use Cyclic-Redundancy-Check
(CRC) error-detecting code inside the packets sent in our experiments. The CRC coding uses a fixed
polynomial to calculate the remainder of the polynomial division on the packet’s data. The remainder
is then attached at the end of the packet as a check value, which is recomputed and compared
after the transmission. CRC is good at detecting random errors generated by noise in transmission
channels and is easy to implement. Using this transmission scheme we can reach bitrates as high
as 20 bps with less than 5% bit error rate (BER).
We then successfully performed an attack in a real case scenario exploiting the thermal covert chan-
nel, successfully leaking the 13′432 bits of a id rsa file containing a private SSH key. The key was
correctly decoded after an average of six transmissions of all packets, which has a resulting average
goodput1 of 1.358 bps.

2.3 Frequency Covert Channel

One of the most commonly used techniques for power optimization is DVFS, due to the relatively low
impact of DVFS on the user experience. As previously mentioned, DVFS allows the optimization of
the energy consumption by changing the operating frequency and the supply voltage of the cores,
according to performance needs. Typically, a software component in the operating system of a device,
denoted as governor, is responsible for selecting the frequency based on a specific predefined policy,
the associated parameters, and run-time information. In this section, we investigate the implications
of frequency scaling on the security of mobile multicore systems, i.e., the possibility to establish a
covert channel between two isolated applications with a sufficient bandwidth and a low error rate to
break the security paradigm of permission separation and application isolation.
Similar to previous research on covert channels [8] or D3.1, we consider two colluding applications
trying to establish a covert channel on a multicore system (see figure 2.4). The first application,
the source application (src) running on core 0, has access to restricted data but no access to the
communication interfaces. The restricted data could have very high security demands, for example a
cryptographic key, which only needs a channel with a very low bandwidth to be leaked. The second

1The goodput is the application level throughput of a transmission, i. e. the number of bits that can really be used by a
application after removing all transmission overhead and errors from the received data
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core 1

snk

core 0

src

Figure 2.4: The source application (src) has access to restricted data, while the sink application
(snk) has access to the internet. Although source and sink are isolated from each other, they

manage to establish a covert channel by observing the frequency of the cores, thus compromising
the security paradigm of permission separation and application isolation.

application, called sink application (snk), runs on core 1 and has full access to a communication
interface but no permitted access to the restricted data available to src. The two applications are
isolated from each other and, according to this security principle, are not allowed to communicate.
We consider a common setting in current multicore architectures; a processor with multiple cores
in the same frequency and voltage domain, i. e., the cores share the same voltage and frequency
level at any point in time. Further, we assume that the system is idle, hence only the OS and its
vital processes are active at the time of the attack. As the system is idle, the behaviour of DVFS will
depend on the utilization generated by the source application and scale the frequency accordingly. If
the sink application is able to detect the frequency changes induced by the source application, the
applications can establish a covert channel. From now on we will refer to this channel as frequency
covert channel, as the key shared resource is the frequency of the cores.

2.3.1 Frequency Scaling in Linux

We base our investigations and the communication model of the frequency covert channel on the
implementation of frequency scaling in the Linux Kernel. Linux is used among a diverse range of
devices, i.e. Linux can be found in server or desktop systems, laptops, or powering Android on smart-
phones or tablets. In addition, the open source nature of the Linux Kernel and its components allows
us to review the code which handles frequency scaling.
Examples of CPU frequency driver implementations in Linux are the intel p state or the acpi-cpufreq2

driver. In this work, we consider the acpi-cpufreq driver, which is used in Android systems as well as
in Ubuntu and similar desktop OSs. Figure 2.5 gives a simplified overview of its main components,
which we discuss in detail in this section.
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sysfs /proc/stats

scheduling & timing

Figure 2.5: A simplified structure block diagram of the CPU frequency control in the Linux Kernel.

2http://www.acpi.info

SAFURE D3.2 Page 14 of 90

http://www.acpi.info


D3.2 - Final Analysis of Integrity Algorithms

2.3.1.1 The CPU frequency driver

The CPU frequency driver operates as an interface to all the other kernel components, most impor-
tantly the sysfs nodes and the hardware driver. One responsibility of the CPU frequency driver is to
maintain the sysfs nodes used to control frequency scaling, which we describe in subsection 2.3.2.
Furthermore, the CPU frequency driver instructs the hardware driver to set the frequency for each fre-
quency domain, interacts with the scheduling unit and passes information like the utilization statistics
from the Kernel to the governor.

2.3.1.2 The governor

The governor should be called periodically with the timer period Ts, also called sampling period, to de-
termine the new frequency fset for every frequency domain. Ts is determined as Ts = max (Ts,min, Ts,U ),
where Ts,min is the minimum possible sampling period and Ts,U is the sampling period set via a sysfs

node. While Ts,min depends on hardware and kernel limitations and is typically in the range of tens of
milliseconds, Ts,U can be changed by any process in the userspace with sufficient permissions. The
default value for Ts,U is set by the CPU frequency driver.
Due to differences in hardware and user needs, many customized frequency governors are available
for devices based on open source platforms like the Linux kernel and acpi. The multitude of gover-
nor options allows the user to set the trade-off between performance and battery lifetime. Different
governors can vary in terms of static characteristics like minimum and maximum frequency, but also
in their frequency dynamics. In this work, we will focus on the conservative governor which is one of
the most commonly used governors in mobile, battery powered systems.
Roughly speaking, the conservative governor uses the average core utilization in the past time inter-
val to determine the new frequency fset. If the utilization is below or above a certain threshold, the
governor reduces or increases the frequency, respectively. The new frequency target fnew is calcu-
lated according to Equation 2.19. In our calculations, fcur is the current frequency target and ∆f is
the frequency scaling step. ∆f is defined as ∆frel · fmax and relative frequency step ∆frel is set in
the corresponding sysfs node.
To scale the frequency, the governor uses the relationship between idle time ti and the total mea-
surement time tm, which is equal to the time elapsed between the last and the current call time of the
governor.

fnew =


fmax ∀ ti

tm
< Ilow ∧ fmax < fcur + ∆f

fcur + ∆f ∀ ti
tm

< Ilow ∧ fmax ≥ fcur + ∆f

fcur ∀ Ilow ≤ ti
Ts
≤ Ihigh

fcur −∆f ∀ ti
tm

> Ihigh ∧ fmin ≤ fcur −∆f

fmin ∀ ti
tm

> Ihigh ∧ fmin > fcur −∆f

(2.19)

For simplicity, let us call the term ti/tm idleness. The governor adapts the frequency depending on the lower
idleness threshold Ilow and the higher threshold Ihigh, which can also be set via sysfs nodes. Equation 2.19
shows that there are three main cases: (i) If the idleness is lower than Ilow, the frequency is increased by
∆f . In case the target would be higher than fmax, fnew is set to fmax. (ii) If the idleness is between Ilow and
Ihigh, the frequency is not changed. (iii) If the idleness is higher than Ihigh, the frequency is decreased by ∆f .
Whenever the target would be lower than fmin, fnew is set to fmin.
After calculating fnew, the CPU frequency driver selects fnew from the discrete set of frequency levels that are
available on the system. To select the frequencies, the CPU frequency driver applies one of two rules: (A) If
the frequency is scaled up, fnew > fcur, fset is set to the highest available frequency below or at the target.
(B) If the frequency is scaled down, fnew < fcur, fset is set lowest available frequency at or above the target.
After the frequency has been changed to fset, fcur is set to fnew.

2.3.2 Userspace Interfaces

The sysfs and the /proc/stats pseudo file system nodes allow processes to access frequency scaling rele-
vant information from userspace. On the one hand, detailed information on the CPU usage statistics can be
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read via the /proc/stats node. On the other hand, the sysfs nodes offer not only information about the gov-
ernor but also give processes with root permissions the opportunity to change the governor behaviour during
runtime.
The sysfs holds a so-called policy3 for every frequency domain. Among others, the policies contain following
parameter nodes:

• All cores affected by the policy in affected cpus.
• The current frequency fcur in scaling cur freq.
• The minimum frequency fmin in scaling min freq.
• The maximum frequency fmax in scaling max freq.
• All possible frequency steps in scaling available frequencies.
• All available governors, scaling available governors.
• Currently used driver and governor in scaling driver and scaling governor respectively.

Furthermore, the sysfs contains nodes for the global governor and frequency driver settings which apply to
all frequency domains4. The global parameters contain, e. g. (i) the current sampling period in sampling rate,
(ii) the minimum sampling period in sampling rate min, and (iii) the utilization thresholds in down threshold

as (1− Ihigh)·100 and up threshold as (1− Ilow)·100, (iv) the size of the frequency scaling steps in freq step

as ∆frel · 100.

2.3.3 Threat Model

We consider the scenario presented in Figure 2.4. The sink application snk measures and records the current
frequency. The resulting frequency trace is then forwarded over a communication interface (network) to an
attacker device, which handles the message decoding off-line. By doing the message decoding off-line, we
can minimize the interference between the snk application and the communication channel and also minimize
the complexity of snk. Further, we assume that the attacked device is idle or only lightly utilized during the
attack, e.g., a hand-held device like a smartphone during the night sitting on a table or a laptop in an empty
office during a weekend. Therefore, the source application src and the sink application snk can wait until the
average system utilization is low and will presumably stay low for some time.
The target platforms for this work are mobile devices with shared frequency domains among multiple cores.
This architectural feature is present in almost all current processor architectures that are used in computing
devices such as mobile phones, tablet computers, laptops or servers. For instance, today’s Intel Core mobile
processors, e. g. based on the Haswell architecture, feature one frequency domain for all physical cores. As
another example, big.LITTLE architectures in mobile phones typically feature one frequency domain for all
LITTLE and one frequency domain for all big cores, e. g. the Samsung Exynos 5422 Octa.
Cores in the same frequency domain can inspect the shared frequency with two methods: (i) reading system
files, or (ii) timing measurements. On Linux, method (i) can easily be blocked by requiring elevated privilege
levels to read the appropriate system file5. In subsubsection 2.3.4.2 we show the performance of a frequency
covert channel implementation using timing measurements, without the need for elevated privileges.

2.3.3.1 Frequency Covert Channel Model

The proposed system abstraction model is composed of three parts: the Input Stage, the Frequency Channel
and the Output Stage.
Input Stage: In this stage, the input bitstream is converted to a symbol stream.
Frequency Channel : The Frequency Channel has three characteristics:

• It is time-discrete, as the governor is supposedly called periodically.

• It is value-discrete, as there is only a limited set of discrete frequencies which can be used.

• It is noise-free, as the frequencies are taken from a discrete set and cannot be changed continuously.

Output Stage: Here the measured frequency trace is converted into an output bitstream.
Our model enables us to better understand the frequency covert channel and to determine a capacity bound.
We also refer to this model when we design our test environment and the experiments to evaluate the channel.

3
/sys/devices/system/cpu/cpufreq/policy$i/ in Ubuntu OSs, where i is the frequency domain number.

4
/sys/devices/system/cpu/cpufreq/[governorname]/ in Ubuntu OSs

5I.e. with the acpi-cpufreq drivers
/sys/devices/system/cpu/cpu$i/cpufreq/scaling cur freq
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Param. Value Param. Laptop Hand-Held

∆frel 5% Ts 80 ms 100 ms
Ilow 20% fmin 0.8 GHz 0.2 GHz
Ihigh 80% fmax 2.4 GHz 2.0 GHz
f-levels in 0.1 GHz steps w/o {1.2, 2.0}GHz all

Table 2.1: Parameters of the conservative governor and the characteristics of the platforms Laptop
and Hand-Held .

2.3.4 Threat Potential Indicators

To quantify the threat potential of the frequency covert channel we need to first find a capacity bound. As
a second step, we show an implementation of the channel to empirically evaluate the performance. Our
experiments are carried out on two diverse hardware platforms that are representative for two kinds of mobile
devices:

1. A Lenovo ThinkPad T440p laptop, based on a 4th generation Intel Core i7-4710MQ quad-core processor.
It can be clocked at frequencies in the range from 800 MHz to 2.4 GHz in 15 frequency levels, excluding
the Intel Turbo Boost;

2. An Odroid-XU3 board, featuring a Samsung Exynos 5422 System-on-Chip (SoC) with an ARM big.LITTLE
processor with two quad-core clusters of Cortex-A7 and Cortex-A15 cores, respectively. The LITTLE
cluster is clocked at frequencies in the range of 200 MHz to 1.4 GHz in 13 frequency levels; the big cluster
in a range of 200 MHz to 2.0 GHz in 19 levels.

In the rest of the section, we refer to platform 1 as Laptop and to platform 2 as Hand-Held . While Laptop is
representative for current business laptops, Hand-Held is representative for hand-held devices (i.e. tablets or
smartphones). As we expect a similar behaviour across different Ubuntu versions, in this experiment Laptop is
running Ubuntu 16.04.1 LTS and Hand-Held is operating on Ubuntu 14.04.4 LTS.
Source and sink application are not executed on the same core, but on two separate cores which share a
frequency domain. Finally we note that during all the experiments the systems are only running the source,
the sink and the default system services of Ubuntu. Furthermore, we do not alter the standard settings of the
governor, which are presented in Table 2.1.

2.3.4.1 Determining the Capacity Bound

MacKay [59, Chapter 17] presents Equation 2.20, which shows how to calculate an upper bound C for the
capacity per channel use of a noise-free channel.

C = lim
N→∞

1

N
logMN [bit] (2.20)

Here, N denotes the number of uses of the channel, and MN denotes the number of distinct and feasible
symbol series that could be sent by using the channel N times.
Inserting the parameters for the Laptop platform yields an upper bound on the channel capacity of C = 0.972
bits per channel use. If we apply this scheme to our second platform, Hand-Held , we get a capacity of C =
0.982 bits per channel use.
Knowing the capacity bound and the sampling period Ts of the governor, we can calculate the theoretical
bandwidth of the channel as shown in Equation 2.21.

B =
C

Ts
(2.21)

As outlined in Table 2.1, Laptop has a sampling period Ts = 80 ms by default and Hand-Held Ts = 100 ms,
which yields a maximum bandwidth Bmax = 12.15 bps and 9.82 bps, respectively. As we are considering the
frequency covert channel to be noiseless, at the same time, this also equals the maximum throughput.
Finally, note that these calculated upper capacity bounds cannot be achieved in a practical setting, as they
are based on idealized conditions. The bounds assume a perfect transmission scheme, no errors due to
interferences of other processes, a perfect synchronization between the source and sink applications and no
implementation artifacts of the governor.
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Packet Payload Payload Bits per Trace Laptop Ref. Hand-Held Ref.

8 bit 1600 bit 1.79 bps 1.43 bps
16 bit 3200 bit 2.27 bps 1.82 bps
32 bit 6400 bit 2.63 bps 2.11 bps
64 bit 12800 bit 2.86 bps 2.29 bps

Table 2.2: Experiment packet payload, the corresponding number of bits per experiment trace and
the throughput on the reference platforms.
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Figure 2.6: Results of the experimental evaluation of both platforms. The upper diagram sows the
achieved throughput in bps for both platform, depending on the packet size. The middle diagram

shows the percentage of throughput degradation compared to a reference platform, and the bottom
diagram presents the packet error rate (PER).

2.3.4.2 Experimental Evaluation

Our transmission implementation is, similar to the final implementation of the thermal covert channel, based on
dividing the input bitstream into packets with a preamble and a postamble. We evaluate the robustness of our
implementation for different payload length of the packets, i. e. 8, 16, 32 and 64 bit, for the two platforms Laptop
and Hand-Held . For every packet length we send 5 traces of 200 packets each with random payload bits, which
means that every trace could contain multiple transmissions of a 512 bit elliptic-curve cryptography key [7], see
Table 2.2.
We compare the results of our experiments with two theoretical reference platforms. These reference platforms
have the same parameters as the real platforms, but we assume that no frequency covert channel and governor
implementation artifacts occur.

Bref =
payload

Ts · (CUPRE + CUBIT · payload+ CUPOST )
(2.22)

Therefore, we calculate the throughput of these reference platforms using Equation 2.22, in which the payload
is the number of bits in the packet. CUPRE is the number of channel uses for the preamble and CUPOST for
the postamble. The number of channel uses per bit is denoted as CUBIT . The respective bandwidth for each
packet length, and therefore the throughput, is given in Table 2.2 for the two reference platforms.
Figure 2.6 illustrates the results of the experimental evaluation. The upper diagram shows the achieved
throughput in bps, calculated as an average of each single packet throughput for all packets that have been
transmitted without error. The packet throughput is calculated by dividing the number of payload bits in a
packet by the time needed to send the whole packet, including preamble and postamble. The middle diagram
presents the degradation of the throughput between the reference and the real platform, i. e. the percentage of
throughput loss. The packet error rate (PER) in per cent is illustrated in the bottom diagram.
For Laptop we can observe that the throughput increases by 0.45 bps with increasing packet length, the
throughput degradation only increases marginally by about 6%. The increase in throughput degradation is
caused by the higher number of bits per packet, as this also increases the likelihood for problematic frequency
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scaling behaviour to occur in a given packet. Non-ideal governor behaviour has to be compensated by the
source application, which slows down the transmission. The higher likelihood for non-ideal governor behaviour
also increases the likelihood for errors during the transmission of a given packet, which we observe in the rising
PER in respect to packet length.
The results for Hand-Held show a similar trend. The throughput increases with the number of payload bits
per packet, similarly to Laptop. However, there is less throughput degradation for Hand-Held than for Laptop,
which means that the transmission throughput on Hand-Held suffers less from the compensation measures the
source application needs to apply due to non-ideal governor behaviour. Last, we can observe that the PER on
Hand-Held does not increase significantly with the length of the packets. We chalk the lower packet error rate
increase up to a combination of two reasons: (i) different kernel version of Hand-Held and Laptop, and (ii) the
architecture of the processor of Hand-Held . Hand-Held is operated on kernel version 3.10.96 while Laptop
uses 4.4.0-59-generic. Different kernel versions can cause differences in the behaviour of the governor due to
implementation artifacts. Furthermore, on Laptop all cores share one frequency domain, whereas the LITTLE
and the big cores in Hand-Held have separate frequency domain. Due to the fact that the Hand-Held will try to
utilize the LITTLE cores as much as possible and only migrate processes into the big cluster if necessary, we
experience less interferences for our transmission.
Interference by other processes: In our scenario, we assume that the attacked device is idle, which is a
valid expectation considering the usage pattern of mobile devices. Nonetheless, other processes could still
increase the core utilization and interfere with the channel. While short utilization bursts caused by background
processes and idle applications can be handled easily, a high utilization floor would cause more problems.
Short utilization bursts would cause a single problematic frequency scaling. We show with our implementation
that single problematic frequency scalings can already be handled with very simple measures like a back
channel and an appropriate transmission scheme. In contrast, if the interfering utilization is constant and
high enough to force the governor to scale to a frequency higher than the lowest possible frequency, the
number of reachable frequency levels is reduced. The reduction of frequency levels can only be compensated
in the design of the transmission scheme or by a smart source application. Furthermore, a high utilization
floor can lead to additional measurement artifacts. In conclusion, we can state that burst interference by
other processes can be compensated during an attack, while permanent interference might make an attack
impossible. Therefore, only by launching an attack while the device is idle maximizes the chance of a success.

2.4 Thermal Task Inference

In this section, we cover the feasibility of temperature side-channel attacks that could compromise confiden-
tiality/security. For a use case, we profile on-chip thermal sensors while a video is being played on a smart
phone platform (Dragonboard 810). The resulting thermal trace is then used to infer the video being played.
High inference success rate indicates that thermal traces include sufficient information about the video and a
side-channel attack is possible.
The rationale behind how and why videos can influence temperature is the following: fast video transitions
(large number of scene cuts or fast moving scenes) require more decoding power, resulting in higher processor
temperature. Therefore we expect to see temperature increase at specific points in time for different videos. To
increase temperature variations, the .mkv video codec is used, which is not supported by the hardware video
decoding unit in Dragonboard 810.
For the analysis presented here, two video inference strategies were developed: 1) Correlation based approach
2) Neural Network based approach.

2.4.1 Thermal Data Preprocessing

In both of the schemes, we always work with thermal traces. These traces are preprocessed before analysis
on them is performed. The preprocessing performs three functions:

1. Converts the raw thermal profile into a csv file format
2. Remove temperature peaks caused by context switches. These peaks are at the beginning and end of

every trace (at the start and end of every video run).
3. Traces are high-pass-filtered. This is done to remove any temperature offsets and global temperature

trends. The resultant trace is a zero-mean trace.

The whole preprocessing flow is shown in Figure 2.7.

SAFURE D3.2 Page 19 of 90



D3.2 - Final Analysis of Integrity Algorithms

FindContextChanges.m equalize.pyCreateCSVFile.m

Data

Analysis

Raw data

Figure 2.7: Preprocessing applied on thermal traces

2.4.2 Correlation Based Approach

There are two types of traces for the correlation based approach, the reference traces and the test traces.

2.4.2.1 Reference Traces

The reference trace of a given video (e.g. video1) is generated by running video1 multiple times and recording
the corresponding thermal traces. All thermal traces are then preprocessed (formatted, context switches re-
moved, and high-pass-filtered). After preprocessing, all the traces are averaged to compose a single reference
trace for video1. By averaging, we make sure that the reference trace does not contain peaks which are caused
by random fluctuations in a single trace. The reference trace is used to identify/label the test traces.

2.4.2.2 Test Traces

A test trace is the temperature profile for a single run of a given video. Like the reference traces, test traces
are also preprocessed. A given test trace is compared with existing reference traces to identify the video which
was being played when the test trace was recorded.

2.4.2.3 Video inference algorithm

The test traces are labeled using reference traces. The algorithm has two stages: 1) Correlation block genera-
tion, 2) cross-correlation based scoring.
Block Generation: In this phase, we identify sections of the reference trace which have high temperature
variations. We call these sections high-entropy blocks. The rationale here is that the high-entropy blocks and
the temporal distance between successive high-entropy blocks will be unique for a given video. We find these
blocks by sliding a window over the reference trace and compressing the content of the window. An entropy-like
measure is computed by determining the number of bits which are needed to represent the data in this block
with no information loss. Using this entropy-like measurement, the algorithm selects the blocks with the highest
entropy according to a configurable threshold. These blocks are used in the next phase of the algorithm.
Scoring: We use cross-correlation to identify the videos. However, the cross-correlation is only performed on
the high-entropy blocks. Specifically, the cross-correlation is computed by shifting the previously determined
high-entropy blocks with the right time offsets over a test trace and calculating the Pearson correlation. The
final score of a trace is the maximum correlation value.

2.4.2.4 Results

The algorithm described in subsubsection 2.4.2.3 yields the results shown in Figure 2.8 using multiple traces
of several different videos. As the maximal score of a test video, which is not video 1, is always lower than
the minimum score of all video 1 trace, all video 1 traces get the right label. A drawback is that the correlation
values are in a varying range for different reference videos. Therefore, choosing the appropriate threshold
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Figure 2.8: Result of the initial version of the thermal classifier, where the videos with the same
content as the reference video have a higher score than the other videos.

value is crucial for this scheme. Furthermore, this approach is inflexible as the distance of the high-entropy
blocks are essential, which makes it difficult to extend it on classifying non-video applications.

2.4.3 Neural Network Approach

In this subsection, the outline of a NN-based approach, which first learns the feature and then classifies full
traces, is presented. For this preliminary study, we use two types of videos.

1. Black video: Three minutes of a black screen. The thermal trace has low temperature variations.
2. Alternating video: Five seconds of black screen followed by five seconds of a noise screen. This pattern

is repeated for three minutes. As the noise screen has a high entropy, the processor needs more com-
putations to decode this, and this causes the temperature to increase. Therefore, the temperature trace
has a periodic oscillating pattern.

2.4.3.1 Used Layers

The following paragraphs introduce all used NN layers and give a high level description of the functionality and
the meaning of the parameters.

2.4.3.1.1 Convolutional Layer

Convolution layers are often used to find patterns in data-sets. Convolutional layers are trained on the weights
which are contained in the filters. To train a convolution layer, a data vector is applied to the input and convoluted
with all filters. As the weights are initialized randomly at the beginning, they do not fit the input data in anyway
and therefore the difference between the output and the right label is large. This difference is called the loss
and it is the measure which should be minimized during the training. This is done with a gradient descent
based back-propagation algorithm which adapts all weights to better fit the input. When the back-propagation
is finished, a new data vector is applied to the input and the procedure is repeated, but now with already better
fitting weights. In this way, the algorithm converges to the filter weights with minimal loss.
There are three parameters which need to be specified in the convolution layer:

1. Kernel or window size: This determines how many samples are taken into account to calculate one filter
output.

2. Stride length: This defines the number of skipped samples between two consecutive kernels.
3. Number of filters: This determines the number of different kernels which are trained in one window. This

value can be considered the complexity of the layer.

The three parameters of the convolution layer are illustrated in Figure 2.9.

SAFURE D3.2 Page 21 of 90



D3.2 - Final Analysis of Integrity Algorithms

0 2000 4000 6000 8000 10000 12000 14000

kernel size

stride length

......

...

...

...

number of
filters

Figure 2.9: A one dimensional convolution layer showing all the parameters

2.4.3.1.2 Dense Layer

The dense or also called fully connected layer is the most basic layer in artificial NNs. It computes the output
according to the scheme in Equation 2.23 and 2.24, where ~x is the input vector with dimension n, wi,i are the
weights, ~y is the output vector with dimension m and f(~a) is the activation function. Similar to the convolution
layer, the output is then compared to the true label and the loss is minimized by back-propagation.

~aT =

w1,1 · · · w1,n

...
. . .

...
wm,1 · · · wm,n

 ~x (2.23)

~y = f(~a) (2.24)

2.4.3.1.3 Long Short Term Memory

The LSTM was first proposed by Hochreiter and Schmidhuber in 1997 [44]. LSTM belong to the recurrent NN
layers. Recurrent NN layers have, in contrast to standard NN layers, feedback connections. This creates a
memory cell for each node, which allow the NNs to establish a temporal connection between the samples.
What distinguishes a LSTM layer from other recurrent layers is that the architecture enforces constant error flow,
which solves the problem of vanishing or exploding back-propagation errors. With the ability of remembering
previous samples, a LSTM is very well suited to detect temporal dependencies in a data stream. The only
mandatory parameter which has to be specified is the dimension of the output space.

2.4.3.2 Implementation

The implementation of the NN is done in Python using the deep learning library Keras [23] with a Tensorflow [3]
back end. We now explain the model of our NN and the two approaches used to identify videos.

2.4.3.2.1 Model

The first part of the NN consists of a one-dimensional convolution layer followed by a fully connected (dense)
layer to extract the features from the thermal traces. The convolution layer takes as input a full trace of length
14 000 samples or 140 seconds. With a kernel size and a stride length of 1000 samples or 10 seconds each
and an output dimension (number of filters) of 150, one trace gives 14 vectors with 150 elements. The output
dimension is 150, since we empirically observed that for smaller dimensions, the network is not capable of
learning the shape of the temperature trace. Higher dimension was not chosen to limit model complexity. The
dense layer is then trained on labeling each vector with black or alternating video thermal traces. To make sure
the convolution layer learns useful features, it is trained beforehand together with the dense layer on the traces
shown in Figure 2.12 (a) and (b). Furthermore, to enforce normalized output vectors, a softmax activation
function is applied to the output of the dense layer. After training this part of the network, the weights are fixed
while training the second part.
The second part of the network can be realized in the following two ways:
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Figure 2.10: Two possibilities for the structure of the NN, where the dashed square shows which
part is pretrained on the features. Afterwards the weights are fixed while training the LSTM (a) or the

second dense layer (b).

1. LSTM based approach.
2. Flattening the vector space and using another dense layer.

Both approaches are trained on mixed traces of alternating and black video like the two examples shown in
Figure 2.12 (c) and (d). The advantages of both approaches are described in the following two subsubsections.

2.4.3.2.1.1 LSTM Based Approach With a LSTM, the output of the pretrained part can directly be con-
nected. The LSTM then computes the final labels. As the goal is to classify data with temporal dependencies,
the LSTM is intuitively the right choice, but as the tests in subsection 2.4.4 show it has some serious disadvan-
tages in our setting. The LSTM trains slower, as the internal structure is much more complex then the one of a
dense layer. As we train it on short sequences of 14 features, the advantage of the memory cell does not take
effect.

2.4.3.2.1.2 Dense Layer Approach For the dense layer approach the two-dimensional output gener-
ated by the first dense layer is converted into a one-dimensional vector using a flatten layer. This flattened
vector is fed into another dense layer which computes then the labels of the mixed traces. The model is de-
picted in Figure 2.10 (a). One advantage of this approach is that it reaches a higher accuracy for the test set
(difference of nearly 8 %) and converges faster than the LSTM.

2.4.3.3 Data Augmentation

For our initial tests we generate artificial traces from recorded thermal sequences to generate a large amount
of data artificially. As stated in paragraph 2.4.3.2.1, the LSTM is trained on concatenated sequences consisting
of 10 seconds snippets of the black and the alternating video. To generate these traces the algorithm randomly
picks snippets from the original data set and places them in the right order. An illustration of this process is
shown in Figure 2.11.
Finally, the convolution layer is trained on approximately 7000 traces of each video and the LSTM on 1000 traces
each. Two sample traces for both training sets are shown in Figure 2.12. Both training sets have one-hot
encoded labels, which means n labels are encoded in a vector with n rows and the only legal combination is
one 1 entry and all the others 0.
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Figure 2.11: The procedure to generate the sequences for training the second part of the NN.
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Figure 2.12: Traces to train the network. Sub-figures (a) and (b) are randomly shifted versions of the
originally collected data. Sub-figures (c) and (d) are concatenated ten seconds snippets of the black

and the alternating video in two different orderings, which serve as training data for the LSTM.
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# Labels # Parameters Relative Time to Train Accuracy

LSTM

2 344 1.00 94.8%
3 376 1.53 93.9%
4 416 2.28 92.5%
5 464 2.63 91.1%

Dense

2 362 0.23 99.6%
3 391 0.34 98.9%
4 420 0.47 98.8%
5 449 0.63 98.7%

Table 2.3: The results of the two model types with two to five different sequences to classify. The
time column is normalized on the time to train the two sequence LSTM.

# Features Model size # Parameters

LSTM

2 632 kB 160
5 633 kB 220
20 644 kB 520
100 700 kB 2120
500 980 kB 10 120
2000 2003 kB 40 120

Dense

2 633 kB 145
5 636 kB 355
20 648 kB 1405
100 721 kB 7005
500 1103 kB 55 005
2000 2403 kB 140 005

Table 2.4: With increasing number of features computed by part 1, the number of parameters to train
rises faster for the dense layer approach.

2.4.4 Results

Using the two models described in subsubsection 2.4.3.2, an accuracy of over 90% can be reached. With
a rising number of different sequences the accuracy decreases, whereby the difference in accuracy for the
compared approaches rises on nearly 8% for the more complex models. Also, the model complexity increases
with the number of labels, which can be seen on the amount of trainable parameters and the needed time to
train the models, again the LSTM has a steeper slope than the dense layer. As the LSTM needs more epochs
to converge, the time to train it is drastically higher. To take into account that the time to train varies strongly for
different machines and setups, it is normalized on the time of the two sequence LSTM, which took 321 seconds.
The accuracy results are listed in Table 2.3. The second test focuses on how the complexity develops for more
than two features. As expected, the number of trainable parameters rises faster for the dense layer approach
which is caused by flattening the input matrix, but this does not seem to have a huge influence on the model
size, as it is mostly 20% higher for the dense layer than for the LSTM. Due to the fact that there is not enough
data to test a model on more than two features, it is not clear what effect this has on the accuracy of the two
approaches. Table 2.4 shows all calculated model sizes.

2.4.5 Conclusion

The analysis presented in this section is preliminary; however, it is sufficient to make the determination that
side-channel attacks (inferring platform activity based on temperature traces) is possible. Furthermore, it has
been shown that basic video recognition based on temperature traces is possible using both the correlation
based scheme presented in section 2.4.2 and the neural network based schemes presented in section 2.4.3.
The extent/limit of these schemes has so far not been determined.
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Chapter 3 Data Integrity

This chapter focuses on data integrity measures and their application in the domain of cyber-physical systems.
It contains an introduction to the recently standardized KMAC algorithm and evaluation results for several data
integrity algorithms. Furthermore, key management issues are described. Finally, design guidelines aimed at
embedded developers and system designers are given. For an overview of current state-of-the-art techniques
in data integrity, please refer to chapter 3 in D3.1.

3.1 Message Authentication Codes

Since the publication of D3.1, a new standard [50] for MACs based on SHA-3 (Keccak) has been released. In
order to motivate the benefits of Keccak MAC (KMAC) compared to Keyed-Hash MAC (HMAC), we first present
a more detailed view on HMAC (including an analysis of the design decision for using an outer and an inner
loop) and continue to describe KMAC in this section.

3.1.1 Hash-based Message Authentication Codes (HMACs)

HMACs use a cryptographic hash function and a secret key to generate the checksum. Generally, the setup of
an HMAC looks as follows [9]:

HMAC(K, m) = H(K⊕ opad || H(K⊕ ipad || m)), (3.1)

where:

• H is a cryptographic hash function (e.g. SHA-256)

• K is a secret key

• m is the message

• opad is the outer padding (i.e., the byte 0x5C repeated until block length is reached)

• ipad is the inner padding (i.e., the byte 0x36 repeated until block length is reached)

• ⊕ indicates an exclusive disjunction (XOR) operation

• || indicates the concatenation of two bit strings

The HMAC construction from equation 3.1 uses two hash computations: firstly the inner loop using the secret
key K with inner padding ipad prepended to the message and secondly the outer loop using K with outer
padding opad prepended to the hash resulting from the inner loop. This construction protects against length-
extension attacks, where the attacker can use H(m) to compute H(m′) of a message m′ that begins with the
contents of m. All hash functions based on a Merkle-Damgård [62, 63, 25] construction (like MD5, SHA-1 and
SHA-2) are prone to this attack.
The strength of the procedure depends on the strength of the underlying hash function. In [34] and [65], the
applications of SHA- and MD5-based HMACs are further described.

3.1.2 Keccak Message Authentication Codes (KMACs)

The KMAC [50] algorithm is a keyed hash function based on the SHA-3 hash function (which is also known as
Keccak). Keccak uses a very different construction compared to traditional hash functions, which are typically
based on a Merkle-Damgård construction. In contrast, Keccak uses a sponge construction, in which data is
”absorbed” into the sponge and then the result is ”squeezed” out.
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Keccak does not have the length-extension weakness and therefore does not need the HMAC construction
from section 3.1.1. Recently, NIST standardized KMAC in [50], where two variants, KMAC128 and KMAC256,
are specified as follows:

KMAC128(K, X, L, S) = cSHAKE128(pad(K, 168) || X || re(L), L, ”KMAC”, S) and (3.2)
KMAC256(K, X, L, S) = cSHAKE256(pad(K, 136) || X || re(L), L, ”KMAC”, S), (3.3)

where

• K is a secret key of any length

• X is the message

• L is the requested output MAC length

• S is a optional customization string

• || indicates the concatenation of two bit strings

• cSHAKE() is the hash function based on Keccak

• pad() is the byte-padding function

• re() is the right-encoding function

This construction allows to generate a MAC value with just one call of the underlying hash function. In con-
trast to other hash functions (including SHA-2, SHA-3), altering the requested output length generates a new,
unrelated hash value. This effectively prevents length-extension attacks.
From an application point of view, KMAC is similar to HMAC, but more efficient. Furthermore, it supports
variable-length output and hence can be used as a pseudo-random function.

3.2 Evaluation of Data Integrity Algorithms

Within SAFURE, we have implemented the following data integrity algorithms:

• AES-CCM (Advanced Encryption Standard in Counter with CBC-MAC mode)

• AES-GCM (Advanced Encryption Standard in Galois/Counter Mode)

• HMAC-SHA256 (Hash-based MAC based on SHA-2 with 256 bits)

• KMAC (Keccak CBC-MAC)

• Poly1305 (MAC based on polynomial 2130 − 5)

• RSA digital signatures (Rivest-Shamir-Adleman cryptosystem)

• ECDSA (Elliptic Curve Digital Signature Algorithm)

We have evaluated these algorithms on the Infineon AURIX TC277T TriCore Microcontroller (see the ”Algo-
rithm” column in 3.1). The ”ROM” column shows the code size, including machine code and static tables. The
”RAM” column shows the memory consumption at run-time (e.g., stack usage). The ”Time” column shows the
performance with respect to speed. A lower value means a faster execution and thus a higher throughput of
data. Finally, there is a brief description of the table.
As can be seen from Table 3.1, MAC algorithms are much faster than digital signatures. HMAC-SHA1 turns
out to be the fastest MAC algorithm. However, if encryption is also desired, AES-GCM is the best choice. For
the digital signature algorithms, RSA is the best choice if there are only a few signature generations and many
signature verifications required. If the same amount of generation and verification is required, than ECDSA
becomes the favourite choice. The memory requirements for all algorithms are quite moderate (less than 15kB
ROM code).
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3.3 Key Management

This section gives an overview of different aspects of key management.

3.3.1 Key Generation

Cryptographic keys should not in any way be predictable for an attacker. Therefore, the key generation process
must include some entropy from a non-deterministic source. Ideally, this could be a True Random Number
Generator (TRNG) that uses a physical noise source to generate random numbers. Another option, if a TRNG
is not always available or has only a limited bandwidth, would be to use a deterministic Pseudo-Random
Number Generator (PRNG) that is seeded by a TRNG before use.
In many embedded scenarios, a TRNG is not available in the embedded device itself. For these, a dedicated
Hardware Security Module (HSM) can be deployed. In this case, the key is generated in the HSM and then
injected into the embedded device, usually at production time. Another option is to write an indivual seed
(generated by a TRNG) into each device and let the device generate the key using a PRNG.
Some digital signature algorithms require a large amount of random data to generate the key (e.g., in the case
of RSA, two large random prime numbers must be found, which requires several candidates to be checked for
primality).
Furthermore, some algorithms (notably RSA with PSS padding) require random numbers during signature
generation.

3.3.2 Key Distribution

In a network scenario with n entities, digital signatures have the advantage to only require each entity to publish
its public key. The same scenario with MACs would require n ∗ (n− 1)/2 keys.
In scenarios that require only a limited amount of parties to communicate, MACs can be used. On embedded
systems, the keys can either be injected at production time or distributed (and regularly updated) by a central
gateway.
For multi-party scenarios, digital signatures almost always are preferred. In client-server computing, public keys
are typically distributed using public key servers. These can also be used for embedded systems that have
an online connection to the key server. However, many embedded systems do not have such a connection.
For these systems, the public keys often are stored into the device at production time (either directly using
hardware features or by using software functions). Renewal of the keys is then possible during maintenance.

3.3.3 Key Lengths

The optimal key length should be selected as a trade-off between security and performance, in the sense that
it still has a sufficient security margin, but also does not sacrifice too much performance.
For symmetric algorithms like MACs, the typical choice for the key length is 128 bits. This is secure against
brute-force attacks for several years.
For asymmetric algorithms like digital signatures, it is harder to classify the strength of a given key length.
For traditional digital signature schemes like RSA and ElGamal, key lengths of at least 2048 bits are required
and give a security margin similar to that of 128 bits for MACs. Algorithms based on elliptic curves, however,
provide sufficient security with key lengths that is double to the respective symmetric algorithm. For example,
ECDSA with a 256 bit key has roughly the same security margin than MACs with 128 bits.

3.3.4 Key Life-Cycle

The choice of key length should also consider the key’s life-cycle (i.e., the time between generation and end of
usage of a key).
Two time spans shall be considered in the evaluation:

• The life-cycle of the device generating the key.

• The usage time of each individual key.

These two time spans should be added in order to get the maximum life-cycle of the whole system. Then, the
key length shall be chosen such that brute-force attacks are not possible within this time (assuming a growth
in computing power of about two times every 18 months, according to Moore’s Law).
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In several applications, especially in embedded systems, the devices have a life-cycle of several years or even
some decades. The usage time of individual keys depends on the application. Hence, the total life-cycle of a
key could easily span two or three decades.
The choice of key management depends on several factors and influences the design of the Data Integrity
solution. The next section on design guidelines summarizes the different design choices and tries to aid
developers in their decisions.

3.4 Design Guidelines

In contrast to classical desktop computing systems (which are dominated by the Intel architecture), for cyber-
physical systems there is a great variety of platforms, each having different properties:

• CPU architecture

• CPU frequency

• Number of cores

• Available memory (RAM and ROM)

Some platforms support cryptographic functions in hardware, e.g. as a cryptographic coprocessor or as an
extension to the instruction set.
Similarly, there are many data integrity algorithms with different properties:

• CPU cycles

• RAM usage (stack and heap usage)

• ROM usage (typically FlashROM)

Unfortunately, there is not one solution that fits all cyber-physical systems. Further aspects that influence the
decision about which algorithm to choose include: (i) use cases and misuse cases, (ii) potential threats, and
(iii) attackers and attack trees.
It is recommended that a security analysis is performed in order to identify the threats with the largest risk.
From these, the security objectives can be derived.

3.4.1 Guidelines

Here, we give some guidelines for the application of data integrity algorithms in the domain of cyber-physical
systems.

1. Symmetric vs. asymmetric: Symmetric algorithms are much faster than their asymmetric counterparts.
Therefore, it should be carefully evaluated whether it is necessary to use asymmetric cryptography. In
cases where key distribution is a problem, asymmetric algorithms should be chosen. In most other
cases, symmetric algorithms are the better choice.

2. Space requirements: If there is only little ROM space left on the device or if stack space (RAM) is very
limited, symmetric algorithms usually better fit to these limitations. Also, it should be considered to use
a space-efficient implementation of the respective algorithm.

3. Speed: Most speed optimizations come at the expense of a larger code size. When several algorithms
are used in combination (e.g., hybrid encryption using AES with a key distributed using RSA), only the
algorithms used for bulk data (AES in this case) should be optimized for speed.

4. Key length: The choice of key length influences the amount of (secure) storage and network traffic
(for key distribution), but it also affects the run-time of algorithms. Therefore, the key length should
be selected in order to offer good performance (speed, ROM and RAM usage) while still being secure
enough for the application.

In the context of WP6, these design guidelines are applied to the SAFURE Use Cases. The results will be
included in D6.4 and D6.6.
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Chapter 4 Timing Integrity and Resource Sharing Integrity

This chapter focuses on timing integrity constraints associated with real-time applications, and the impact of
shared resources on real-time constraints.

4.1 Timing Integrity for Multi-Cores: Challenge & Existing Solutions

In the Chapter 4 of Deliverable D3.1, we pointed out that safety-critical applications were characterized by
stringent real-time constraints, and that time predictability was a major concern for the standards of the safety-
critical industry.
In multi-core architectures, the major source for time variation comes from the timing interferences associated
with concurrent accesses to shared hardware resources [12, 66]. Various Deterministic Platform Software
(DPS) solutions [39] have been proposed to master these interferences and to ensure a deterministic usage
of multi-core architectures: Control solutions aiming at eliminating all interferences and regulation solutions
aiming at keeping the impact of interference below a harmful level.
The evaluation of these DPS solutions presented in Deliverable D3.1 versus different evaluation criteria has
been performed in [39], and is summarized by Figure 4.1.
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Figure 4.1: Evaluation of existing DPS solutions

The first row of Figure 4.1 represents the control-based solutions, while the second row presents the regulation-
based solutions that are more adapted for mixed critical systems and quality-of-service support.
If all solutions are providing a different tradeoff between the different evaluation criteria, none of these solutions
manages to fully exploit the multi-core efficiency (usually because of overprovisioning) nor to fully provide
legacy support (running already certified / qualified application untouched).
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4.2 Timing Integrity for Multi-Cores: SAFURE Solution

In the SAFURE project, we propose a new Deterministic Platform Software (DPS) solution relying on hardware
resource budgeting, especially targeting mixed-critical systems. Both the architecture and the high-critical
applications are characterized with regards to every hardware resources 1) to determine the total available
resource budget; 2) to quantify the resource requirements of the high critical task; 3) to figure out the maximum
level of extra external accesses to the resource before hampering the high critical tasks.
From this characterization information is inferred the maximum number of resource access allowed for non
critical tasks, these tasks being suspended by a Budget-Based RunTime Engine (BB-RTE) once they reach
this maximum number of total access during a given time slot.
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Figure 4.2: Budget-Based RunTime Engine (BB-RTE)

This technique particularly focuses on the ability to not modify neither the high-critical nor the low-critical
applications, therefore not hampering the ability to run legacy applications, while exploiting most of the multi-
core efficiency as depicted by Figure 4.2.

4.2.1 Principles

The principles of the approach consist in determining, per timeslot, a maximum budget to allocate to non critical
applications in terms of resource accesses. When this budget is spent, non critical applications are suspended
until the next timeslot, as depicted in first timeslot of Figure 4.3.
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Figure 4.3: BB-RTE Principles

The budget is computed per timeslot and per hardware resource to ensure that the critical applications are
matching their deadline in each particular timeslot.
During the second timeslot of Figure 4.3, the non-critical application manages to terminate without spending
the whole allocated budget, again guaranteeing that the critical applications will match their deadlines during
this timeslot.
With such a tactic based on budgeting, the major challenge consists in determining the budgets that guarantee
the time behavior of high-critical applications. This way, time isolation principles and time integrity will be
ensured for critical applications, while it will be relaxed for low critical tasks that could be suspended because
of higher critical tasks.
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4.2.2 Support & Tooling

To characterize the application behavior on the target hardware platform, to quantify timing interferences inher-
ent to multi-core platforms, and to determine resource access budgets, we are relying on the METrICS mea-
surement environment that aims at: 1) allowing an accurate estimation of embedded application performance;
2) characterizing the application behavior on the target hardware platform; 3) quantifying timing interference
inherent to mutli-core platforms. This measurement environment is presented in details in Deliverable D3.3,
and depicted by Figure 4.4.
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Figure 4.4: Measure Environment for TIme-Critical Systems (METrICS)

During the characterization phases, allowing us to characterize the critical application and to compute the
budgets, we run the toolsuite together with the collector partition. During the runtime phases, we run the
toolsuite together with the BB-RTE partition that is issuing scheduling decisions based on budget consumption.

4.2.3 Process to determine and ensure budgeting

The process to determine resource budgeting is performed with two major steps: First, an offline character-
ization step, and second a runtime regulation step relying on a runtime engine dedicated for mixed critical
systems, as depicted in Figure 4.5.
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Figure 4.5: Timing integrity process for mixed time-critical systems

Characterization steps involve large-scale experimentation due to the limited monitoring resources of multi-
core architectures. These architectures usually propose from tens to hundreds of hardware events that you
can monitor, but only allow to monitor a few Performance Monitor Counters (PMC) at a given time (6 for ARM-v8
architectures for instance). As a consequence, testing all the countable PMC events involves days of experi-
mentations, and this characterization phases have to be performed off-line. Anyhow this characterization only
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needs to be performed once per critical application for a particular hardware target, and such a characterization
could also provide useful information for the qualification or certification documents.
The second step is performed during the execution and consists in having a regulation system using the set
of budgets extracted during the characterization phases. This regulation system is realized with the BB-RTE
runtime engine described below.

4.2.4 Hardware characterization & budgeting

As introduced in Figure 4.5, in the first sub-step of the offline characterization phase, we perform a character-
ization of the target hardware platform. This hardware characterization consists in defining a set of low level
(assembly code) Stressing Benchmarks (SB). Each of these stressing benchmarks is responsible for stressing
a particular hardware resource of the selected multi-core target, by multiplying the number of accesses to this
particular resource.
By progressively stressing each resource while monitoring both the execution time and the effective number of
accesses to this resource thanks to PMC counters, we are able to determine the maximum available bandwidth
in terms of accesses to this resource, and that corresponds to the total available budget for the resource.
By iterating over all the potentially shared hardware resources, we obtain a vector of such total budgets that
fully characterize the hardware limitations of the selected platform.

4.2.5 Critical application characterization & budgeting

During the second characterization sub-step of Figure 4.5, we are characterizing the usage made by high crit-
ical applications of the shared hardware resources. To do so, we run the critical applications concurrently with
the stressing benchmarks described above, progressively increasing the stressing level, and only monitoring
the effect in terms of runtime on the critical application.
It allows us to extract two different kinds of information: First the required per-resource budget needed by our
critical applications; and second, the level of extra resource access supported by our critical application before
being significantly slowed down. This supported extra accesses is the access budget that can be safely used
by the non-critical applications.
The process to determine the acceptable level of slowdown and the associated extra access budget is depicted
in Figure 4.6. The y-axis represents the maximum observed runtime of the monitored application during the
current timeslot. The x-axis represents the extra access load performed on the associated hardware resource
by the stressing benchmarks.
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Figure 4.6: Determining an acceptable level of slowdown and the associated extra access budget

The leftmost point in the chart corresponds to when the application is running alone in isolation (with a null
stressing benchmark activity). It therefore corresponds to the classical WCET of application running in isolation.
The rightmost point in the chart corresponds to a permanent maximum loads from the stressing benchmark
actually nearly preventing the monitored application to access the required resource (the application being only
protected by anti-starvation features of the hardware arbiter).
Selecting an acceptable level of slowdown and the associated extra access budget is performed by selecting
a point on the chart. The projection of this point on the y-axis then corresponds to the acceptable level of
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slowdown and the projection on the x-axis directly provides the extra access budget available for non-critical
applications with an acceptable impact on critical applications.
We used two different techniques to select this point: First by directly selecting a maximum slowdown, but
doing so for every hardware resource led us to too much overprovisioning, failing to fully exploit the multi-core
efficiency. Second, we defined a maximum slope for the curve. This second solution allowed us to vary the level
of slowdown relatively to the shape of the curve, focusing on the hardware resources the critical application
was the most sensitive to.
By repeating this procedure for each of the shared hardware resources, we obtain again a budget in the form
of a vector of both the required amount of access by the critical application (the leftmost point of the curve) and
the number of supported extra access (the selected point of the curve).

4.2.6 The SAFURE Budget-Based RunTime Engine (BB-RTE)

Once the characterization phases are over and all budgets have been gathered, both high critical and low
critical applications can be deployed on the hardware target together with the runtime engine. As shown in
Figure 4.5, the online regulation phase consists itself into two substeps.
First, using the same process as per the characterization phases, the non critical applications are monitored
with PMC counters, this time not to compute a budget, but to monitor the load in terms of hardware resource
accesses.
Second, the BB-RTE runtime engine compares this load with the maximum extra budgets to decide if, during
the current timeslot, non-critical tasks may continue executing or if they need to be suspended until the next
timeslot. Doing so makes sure the slowdown of critical tasks does not hamper their ability to match their
deadlines.
One of the specific challenges of the BB-RTE runtime engine for time-critical systems is that time intrusivity of
the associated monitoring features has to be kept minimal, not to bias the time characterization results. Also
the BB-RTE itself should make a minimal usage of shared hardware resources to not impact the resource
access budgets. The final intrusivity footprint of both the monitoring features and the BB-RTE engine will be
presented in Deliverable D4.2 (Analysis of runtime and software applications on multicore).

4.2.7 Results

As the characterization phase is performed offline, it does not have to focus on particular hardware resources
nor any particular Performance Monitor Counters (PMC) as the number of experimentation can be freely ex-
panded. During the regulation phase however, we cannot replay the same function several times to test all
the possible PMC and their associated hardware components. As each core of the multi-core architecture is
only allowing us to measure 6 different PMC at a given time plus the cycle timebase, one of the goals of the
characterization phase is also to reduce the design space to identify the most meaningful counters.
Of course, the PMC corresponding to non-shared hardware resources (particularly all the one related to the
core pipeline) could be eliminated, as we focus on those describing the behavior of shared hardware resources
that are responsible from timing interference.
On the ARMv8 based Juno board, we empirically identified that, for our applications, the most meaningful
counters were the ones related to the cache hierarchy (due to the shared L2 cache), and the ones related to
the NoCs connecting the caches to the DDR memory.
More details on the characterization results and the BB-RTE measurements will be presented in Deliverable
D4.2 with the mixed-critical applications composing the WP4 prototype. The specification of this prototype has
been provided in Chapter 5 of Deliverable D4.1.
Also, the process described in this Section relies on budgeting hardware resource accesses. It can be easily
extended to energy consumption or temperature as long as the hardware target provides the adhoc probes
to be used in lieu of PMC counters. This way power or temperature can similarly be kept below a predefined
threshold by suspending some non critical applications during over-spending time slots.

4.3 Timing Integrity in Overload Conditions

Many automotive systems, such as those in Safure, do not comply with the typical assumptions of hard real-
time systems, that is where a single deadline miss has catastrophic consequences. However, in these systems,
timing integrity should be still verified by guaranteeing an upper bound on the number of deadlines that can be
missed.
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Several control systems (including for example fule injection in automotive) are tolerant to individual deadline
misses and treating them as hard real-time would result in unnecessary pessimism and possibly overprovision-
ing of resources. Of course, uncontrolled response times are also not desirable and even in case of deadline
misses the designer may require some guarantees on the timing behavior of the system.
Since the seminal work of Liu and Layland [55], an overwhelming effort in real-time scheduling research has
been dedicated to the question on whether there can be a possible deadline miss in the system according to the
hard real-time analysis model. It is hard to completely identify the reasons for this disproportionate interest in
hard analysis techniques. It is probably because of the simplicity of the model, its easier understandability and
analyzability, the seemingly natural fit to safety-critical systems and, quite possibly, some incorrect judgement
on the part of some researchers that believe most real-world systems are of hard type. The success of hard
schedulability analysis also benefits from the existence of the critical instant, an activation scenario where all
tasks are simultaneously activated, that leads to the worst-case response time for every task in the system.
As a result, in a hard real-time system it is sufficient to investigate the particular task activation pattern that
originates from the critical instant. More details on classic hard real-time schedulability analysis can be found
in textbooks and surveys like [19] and [77].
While it is true that some safety-critical systems are vulnerable to a single violation of the temporal constraints,
there are many more that can tolerate timing violations. In these cases, the hard schedulability analysis is
too strict for a system’s safety analysis. The weakly hard real-time schedulability analysis targets the problem
of bounding the maximum number of deadline misses over a number of task activations. A dynamic priority
assignment of priority for streams with m-k requirements was proposed originally by Hamdaoui et al. [58] to
reduce the probability of m-K violations in time-sensitive applications. Hard real-time schedulability analysis
can be traced back to the work of Bernat et al. [10] on the m-K model, in which no more than m deadline
misses shall occur for any K consecutive activations of a task. The analysis in [10] and in other works assumes
that there is an explicit initial state of the system, in which the initial offset of each task in the system is known.
By restricting the analysis to a periodic task activation pattern, the weakly hard analysis can be conducted
by checking task activations and interleavings within a large enough time span from the system initialization,
so as to verify the m-K assumption. Periodic tasksets are quite common in real world applications, but the
requirement of knowing all activation offsets may be too strict and undermine the robustness of the analysis:
given a periodic task system with explicit initial offsets that passes the (weakly) hard test, a slightly change of
the initial offset of some task may result in an unexpected time failure. The analysis is also very sensitive to a
drift of the task periods. Some other techniques (in the next paragraph) and the work in this paper are more
robust.
Another more recent direction on the research of weakly hard real-time analysis relaxes the requirement of
knowing the initial state of the system. The approach consists in the application of typical worst-case analysis
[69] to a system model represented as the superposition of a typical behavior (e.g., of periodic task activations)
that is assumed feasible, and a sporadic overload (i.e., rare events). Under such an assumption, [42] and
[91] proposed methods for weakly hard analysis that is composed by two phases: 1) the system is verified to
be schedulable under the typical scenario (this can be done by the classical hard analysis), and 2) when the
system is overloaded, it can be guaranteed that out of K successive activations of a task, at most m of them
will miss the deadline. The sporadic behavior can be abstracted by observing and analyzing the system in
runtime, and is regarded as rare events. A similar approach is considered in [52], where real-time calculus is
used to analyze the worst-case busy period (in duration and lateness) that results from a temporary overload
because of an error in the timing assumptions on the task worst-case execution times. Both these methods
require the definition of a task model that may be in several cases artificial, since it requires the identification
and separation of possible causes of overload. This line of works and the method in this paper are orthogonal
and the two extend the weakly hard real-time system analysis at different directions. Combined use of the two
(in the future) can make the safety analysis and system design more comprehensive.
Among the possible options, the weakly hard scheduling model has been proposed by several authors (Ham-
daoui et al. [58] and Bernat et al. [10]) to check for a relaxed condition, that is, to analyze the number of
temporal constraints violations given a time window or a sequence of task activations. This is also called m-K
model, since a typical formulation consists in checking that no more than m deadlines are missed over a set
of K activations. The rationale behind this model is that each deadline miss will bring the system closer to a
faulty condition or state, and each completion in time will move the system back towards a safe working state.
The weakly hard model can be analyzed under several scheduling options, but due to its simplicity and ef-
fectiveness, fixed-priority scheduling is nowadays the de-facto standard for industrial real-time systems. Our
analysis focuses on real-time systems consisting of periodic tasks scheduled with fixed priority.
The main problem with the existing analysis methods is that for a weakly hard system, as for any system that
can be (at least temporarily) overloaded, the critical instant theorem does not hold and the system becomes
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much more difficult to analyze. In the original work, this limitation has been overcome by restricting the study
to offset-determined systems, that is, systems in which tasks are scheduled with a known initial offset.
This is a possibly serious limitation, not only because the designer may not be able to enforce or determine
the system initial activation offsets, but especially because the analysis of all offset-determined systems is very
sensitive to time drifts and errors in the task activation times, which are extremely hard to avoid in real systems.
As a result of the work in Safure, we provide a generalized framework for offset-free systems scheduled on
uniprocessors. Our formulation is based on a MILP encoding and the problem of the critical instant determina-
tion is addressed by letting a variable represent the beginning of the busy period. The MILP formulation can be
easily reused to check the system for a large set of m and K values, allowing the designer to explore a wide
design range. The developed MILP model serves as an over-approximate analysis, that is, if our weakly hard
analysis confirms the m-K property, it is guaranteed that there will be no more than m deadline misses out of
any K successive job activations (of the target task), however, if the m-K property is not confirmed, we cannot
conclude the opposite.
The result is the first weakly hard schedulability analysis for offset-free periodic real-time tasks. The analysis
method includes the consideration of resource sharing and the task jitter. To solve the possible issues with
the large number of integer variables counting the number of task interferences (as used, for example, in
[13, 88, 51]), we relaxed these variables to real values, but we added binary variables expressing the possibility
of job interferences for reducing or possibly eliminating the introduced pessimism. Surprisingly, there is no
existing work that can cope with the weakly hard analysis of general (offset-free) periodic tasks, and this
prevents a fair comparison between our solution and other relevant works. Thus, we evaluate our analysis
method through extensive experiments to show its efficiency (expected runtime) and precision. In the special
case in which m = 1, the analysis is always accurate as long as it validates the m-K property. With respect
to accuracy, despite the relaxation to real valued job interference counters, the MILP analysis can still return
exact results for a very high percentage of the tests.
The technical details of the work will be presented at the EMSOFT Conference in Seoul.

4.3.1 The System Model

A periodic real-time task is characterized by a tuple τi = (Ci, Di, Ti) with Ci ≤ Di ≤ Ti such that Ci is its
Worst-Case Execution Time (WCET), Di is the relative deadline and Ti is the period for the activation of τi. A
task’s utilization is defined as Ui = Ci

Ti
.

Each activation (instance) of τi is denoted by a job Ji,k with k = 1, 2, . . . representing the job index (of its
activations in time). A job Ji,k can be further represented by its activation (or arrival) time ai,k, its absolute
deadline di,k = ai,k +Di, and its finish time fi,k.
A job is schedulable if it can finish its execution before its deadline, i.e., fi,k ≤ di,k; and a task τi is schedulable if
all its jobs are schedulable. The elapsed time between a job finish time and its activation time (i.e., fi,k−ai,k) is
its response time. By definition, a task τi is schedulable if and only if the Worst-Case Response Time (WCRT)
Ri = max

k
{fi,k − ai,k} among all its jobs is not larger than its relative deadline Di. A task Best-Case Response

Time (BCRT) ri = min
k
{fi,k − ai,k} is the minimum time that it takes to complete the execution of the task.

In the periodic activation pattern ak+1 − ak = Ti for any two successive jobs of a task. As we do not require a
specific initial offset for a task, the first job activation time ai,1 of τi is unknown. A job (and the corresponding
task) is said to be active if it has been activated but has not completed its execution.
The periodic taskset T = {τ1, . . . , τn} executes upon a uniprocessor platform. Each task in T is assigned a
unique and static priority, and tasks are scheduled by a fixed priority preemptive scheduler. Tasks are ordered
in T from higher to lower priority. That is, τj has a higher priority than τi, if j < i. If a task does not always finish
before its deadline, it can have multiple active jobs at the same time. In such cases, these jobs are served in
FIFO order, meaning that the latter job cannot execute until all its predecessors are completed.
A level-i busy period is defined as a time interval during which the processor is always occupied by the exe-
cution of tasks with priority higher than or equal to τi. For example, in Figure 4.7, [s0, f2) and [a3, f3) are two
level-3 busy periods: Because the focus of this paper is not the single task WCRT, our definition of a busy
period does not strictly follow its original meaning in [53], where a busy period corresponds to the maximal
level-i busy period in this paper.
The execution of any job of τi can only be affected by the workload of interfering tasks (including τi itself) within
the same level-i busy period. According to [53], the WCRT Ri of a task τi is found within the longest level-i
busy period, which starts at the critical instant (i.e., when all tasks are activated at the same time). In case a
task always completes before its next activation, the task schedulability can be easily checked by computing
the response time of the first task instance inside it.
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However, this condition does not hold for weakly hard real-time systems when deadlines can be missed and
multiple instances can be active at the same time. In this case, the WCRT of a task τi does not necessarily
happen for the first job in a level-i busy period. However, the BCRT is still occurring for the last job in a level-i
busy period. Algorithms to compute the BCRT can be found in [72, 18]. In this work, we trivially assume that
the BCRT of a task does not exceed its period: ri ≤ Ti. Otherwise, the task simply misses all its deadlines.
Also, we assume that the BCRT ri and the WCRT Ri of each task are computed in advance using established
techniques such as in [53]. Once computed, these values can be used as parameters in the MILP formulation.
The analysis of weakly hard systems is performed by analyzing each individual (arbitrary) task τi ∈ T , also
defined as target task.
An arbitrary sequence of K successive activations of τi is considered, with the objective of checking whether
there are more than m deadline misses for τi in this sequence.
For simplicity, the jobs of τi in the activation sequence are denoted by J1, . . . , Jk, . . . , JK (without the task
index). Given a job Jk, its activation time and finish time are defined as ak and fk, respectively. The time
interval [ak, ak+1[ is called the kth job window of τi, and the problem window for the analysis is [s0, fK [, where
s0 (also considered as the time reference s0 = 0) is the earliest time instant such that the processor is fully
occupied by the execution of higher priority tasks from s0 to a1.
As an example, consider a system of 3 tasks: (C1 = 1, D1 = 3, T1 = 3), (C2 = 3, D2 = 5, T2 = 15) and
(C3 = 2, D3 = 6, T3 = 6), with K = 3 and τ3 is the target task. Figure 4.7 shows a scenario where 2 (J1 and J3)
out of 3 jobs in the problem window [s0, f3[ miss the deadline. In this case, s0 = 0 and a1 = 0.5. If the problem
window starts at the critical instant, that is, when all tasks are synchronously activated in s0, only J1 misses its
deadline.

Figure 4.7: A problem window with 3 job windows

4.3.2 The Solution Model

We provide a Mixed Integer Linear Programming (MILP) formulation for the weakly hard analysis of a set of
offset-free periodic tasks under fixed priority scheduling. Two observations allow to reduce the problem space
by considering only the problem windows that maximize the number of deadline misses for τi.
(O1) The worst-case number of deadline misses occurs for problem windows such that the last job of τi before
the beginning of the problem window (indicated as J0) is schedulable.
If J0 is not schedulable, any problem window of k instances starting with J0 has at least as many misses as
the window starting with the first job J1. The two windows have all the jobs from J1 to Jk−1 in common, but J0

misses its deadline, therefore, in the best case the two windows have the same number of misses if also Jk is
a deadline miss. In Figure 4.7, consider the problem window with J2, J3 and the following instance (not shown)
J4. Depending on the schedulability of J4, there will be 1 or 2 deadline misses in this window. However, since
J1 is non-schedulable, there are 2 deadline misses for the problem window including J1, J2 and J3.
(O2) The worst-case number of deadline misses occurs for problem windows such that the the first job is
non-schedulable.
Consider a window of K instances that starts with a set of schedulable jobs of arbitrary length J1, . . . Jn (with
n < K; if n = K the proof is trivial) and the window that starts with Jn+1; the latter has at least as many
deadlines misses as the window starting with J1 (the proof is similar to the previous case).
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Figure 4.8: Notation for the definition of a problem window

4.3.2.1 Variables and basic constraints

In this subsection, we introduce the (real and Boolean) variables defined in our MILP model, together with
some basic constraints on them. Real valued variables are labeled by R and Boolean variables by B. M is a
big enough constant value used to encode conditional constraints (a standard technique known as big-M ). A
brief summary of all the optimization variables is in Table 4.1.

Type Variables Annotations

R

Lk

Segment of busy execution of
higher priority tasks in front of
(before) a job window, when
fk−1 ≤ ak.

αj

Activation time of the 1st job
of each higher priority task τi
with respect to the start time
s0 of the analysis.

fk Finish time of Jk.

ιk
Processor idle time inside the
job window.

Ifj,k
#jobs of τj within the time in-
terval [0, fk[.

ILj,k #job of τj inside [0, ak − Lk[.

B

bk

bk = 0 if Jk is schedulable;
bk = 1 if Jk misses its dead-
line. The number of deadline
misses is

∑
k bk.

βk

βk = 0 if Jk completes before
ak+1; otherwise βk = 1 and Jk
interferes with Jk+1.

Γfj,k,p

∑
p Γfj,k,p is #jobs of τj in-

side: 1) [ak − Lk, fk[ when
k = 1 or βk−1 = 0; 2) [fk−1, fk[
when k > 1 and βk−1 = 1.

ΓLj,k,p′

∑
p′ ΓLj,k,p′ is #jobs of τj in-

side [fk−1, ak −Lk[, if it exists.
Table 4.1: A summary of variables defined

4.3.2.2 Busy periods

Each job of τi inside the problem window can be interfered by pending executions of higher priority tasks that
are requested before its activation but have not completed. The real valued Lk (as in Figure 4.8) indicates the
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portion of the level-i busy period for job Jk that extends to the earliest such activation, when fk−1 ≤ ak. That
is, if Jk−1 finishes execution not later than ak (that is, Jk−1 does not interfere with the execution of Jk), ak − Lk
is the earliest time instant such that the processor in [ak − Lk, ak) is fully occupied by higher priority tasks.
The start time s0 = 0 of our problem window is a1−L1, and the arrival time ak of the kth job of τi in the problem
window is ak = L1 + (k − 1) · Ti. A trivial constraint that applies to all Lk is

∀k 0 ≤ Lk ≤ Ti − ri (4.1)

Throughout our analysis, we only use the value of Lk, when fk−1 ≤ ak. If Lk is larger than Ti − ri then
fk−1 > ak (any job of τi needs at least ri to complete). In Figure 4.7, L1 = 0.5 and L3 = 0. Because J1

interferes with the execution of J2, L2 is not relevant to our analysis.

4.3.2.3 Offsets

The offset of a higher priority task within the problem window refers to its first job activation time with respect
to the start time s0. The first job activation that happens no earlier than s0 for each higher priority task τj is
denoted by αj ∈ R

∀j < i 0 ≤ αj ≤ Tj − rj (4.2)

Assume that the first job Jj,1 of τj in the window arrives at time s0 + Tj − rj + ε with ε > 0. This implies that the
previous job Jj,0 is activated at time s0 − rj + ε. Because any job of τj needs at least rj time to finish, Jj,0 will
be still active at time instant s0, which contradicts the hypothesis that s0 is the earliest time instant such that
from s0 to a1 the processor is fully occupied by higher priority tasks. Hence, the upper bound for αj is Tj − rj .

4.3.2.4 Finish times

For each job Jk of τi, its finish time is denoted by fk ∈ R

∀k ri ≤ fk − ak ≤ Ri

Because jobs from the same task are executed sequentially, for any two consecutive jobs of τi, this precedence
constraint is encoded as

∀k Ci ≤ fk+1 − fk ≤ Ri + (Ti − ri) (4.3)

4.3.2.5 Level-i idle time inside a job window

The level-i processor idle time refers to the time when the processor is not occupied for execution by τi or any
other higher priority task (in a given time interval). Given an arbitrary job window [ak, ak+1[ of Jk, we define
ιk ∈ R as the amount of processor idle time inside this kth job window

∀k 0 ≤ ιk ≤ ak+1 − ak − ri

4.3.2.6 Schedulability of each job of τi

For each job Jk of τi inside the problem window, a Boolean variable bk ∈ B indicates whether the job misses
its deadline:

• bk = 0 if Jk finishes its execution no later than its deadline;

• bk = 1 otherwise.

The value of bk is defined by the comparison between the finish time fk of Jk and its absolute deadline ak+Di:
bk = 0⇔ fk ≤ ak +Di, which is encoded by the following linear constraint.

∀k −M · bk ≤ ak +Di − fk < M · (1− bk) (4.4)

Being M a very large value, the conditional constraint in (4.4) forces bk = 0 if the job Jk meets its deadline (i.e.,
fk ≤ ak +Di) and bk = 1 otherwise. As in observation O2 at the beginning of Section 4.3.2, we require that J1

misses its deadline, that is, b1 = 1 (schedulable tasks can be ruled out by simply performing a traditional hard
schedulability test in advance).
The total number of deadline misses of τi inside the problem window is denoted by

∑
k bk.
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4.3.2.7 Interference from the previous jobs of the same task

A job Jk of τi interferes with the execution of the next job Jk+1 in case fk > ak+1. The Boolean variable βk
encodes this condition.

• βk = 0 if Jk finishes its execution within its own job window;

• βk = 1 if Jk completes after ak+1.

Similarly as in (4.4), the constraint βk = 0⇔ fk ≤ ak+1 over βk, fk and ak+1 can be formulated as

∀k −M · βk ≤ ak+1 − fk < M · (1− βk) (4.5)

If there is idle processor time inside the job window [ak, ak+1[ of Jk, then Jk must terminate within its window
and does not interfere with Jk+1 (i.e., βk = 1⇒ ιk = 0).

∀k ιk ≤M · (1− βk)

4.3.2.8 Number of interfering jobs from higher priority tasks

When modeling a schedulability problem in MILP, the major complexity comes from computing the interference
from higher priority tasks. A common approach (as in [13, 88, 51]) is to count the number of jobs from each
higher priority task that interfere with the execution of the task under analysis. Different from previous works,
we explore the relaxation of this integer count to a real value. Table 4.2 summarizes the variables defined for
counting the higher priority interferences for the example system in Figure 4.7
Given a job Jk of τi and a higher priority task τj , Ifj,k is the number of job instances of τj within the time
interval [0, fk[. By definition, Ifj,k = d fk−αj

Tj
e is an integer number. However, we relax the definition of Ifj,k

allowing it to be a real value and we linearize the constraint on Ifj,k as (by the definition in [53])

∀j < i 0 ≤ Ifj,k −
fk − αj
Tj

< 1 (4.6)

Moreover, we define ILj,k ∈ R as the number of jobs of τj (∀j < i) within the time interval [0, ak − Lk[, when
βk−1 = 0. In this case, If Jk is not interfered by its predecessor Jk−1, then the number of jobs from τj that
interfere with the execution of Jk is Ifj,k − ILj,k. We remind that we only use the value of Lk, and thus the
interval [0, ak − Lk[, when βk−1 = 0.
Formally, if Jk−1 completes before the activation of Jk (i.e., βk−1 = 0), then ILj,k = dak−Lk−αj

Tj
e. That is,

βk−1 = 0⇒ 0 ≤ ILj,k − ak−Lk−αj

Tj
< 1. In other words, ∀j < i

−M · βk−1 ≤ ILj,k −
ak − Lk − αj

Tj
< 1 +M · βk−1 (4.7)

In case k = 1, by the definition of the starting time instant s0 = 0, it must be ∀j < i : ILj,1 = 0.
For simplicity, when βk−1 = 1, we force ILj,k = Ifj,k−1:

∀j < i −M · (1− βk−1) ≤ ILj,k − Ifj,k−1 ≤M · (1− βk−1) (4.8)

j = 1 j = 2
k = 1 k = 2 k = 3 k = 1 k = 2 k = 3

Ifj,k 3 4 7 1 1 2
ILj,k 0 3 4 0 1 1
∆j,k 3 1 3 1 0 1
Γj,k 0 0 0 0 0 0

Table 4.2: The counting of higher priority jobs
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4.3.2.9 Refining the interferences from higher priority tasks

Both Ifj,k and ILj,k are real variables. This is efficient but inaccurate. To restore a correct formulation, we
define two classes of Boolean variables to constrain the values of Ifj,k and ILj,k.
Given a job Jk of τi and a higher priority task τj , an array of Boolean variables Γfj,k[p] ∈ B counts the number
of jobs (i.e., job releases) of τj inside the time interval (p indexes these jobs).

• [ak − Lk, fk[ if Jk−1 does not interfere with Jk, i.e., βk−1 = 0;

• [fk−1, fk[ if Jk−1 does interfere with Jk, i.e., βk−1 = 1.

A rough bound for the size of Γfj,k[·] (the number of instances of τj in the interval) is

dRi + Ti − ri
Tj

e (4.9)

Γfj,k[p] = 1 indicates that the pth job activation of τj in the specified time interval can interfere with the execution
of Jk (the pth job is activated before Jk completes, otherwise, Γfj,k[p] = 0). The total number of activations of
jobs of τj , interfering with the execution of Jk in the specified time interval is

∆j,k :=
∑
p

Γfj,k[p]

As shown in Table 4.2, for the example in Figure 4.7, when j = 1 and k = 3 it is L3 = 0 and ∆1,3 jobs from τ1
within the time interval [a3 − L3, f3[. As β1 = 1, from f1 to f2, ∆1,2 = 1.
In case Jk−1 does not delay the execution of Jk, it is ILj,k+∆j,k = Ifj,k. In the other case (i.e., when βk−1 = 1)
Ifj,k−1 + ∆j,k = Ifj,k and (4.8) enforces ILj,k = Ifj,k−1. Consequently,

∀j < i ILj,k + ∆j,k = Ifj,k (4.10)

If a higher priority job Jj,p does not interfere with the job Jk of the target task (i.e., Γfj,k[p] = 0), this implies that
Jk completes before Jj,p, then no later job Jj,p′ (p′ > p) can interfere with Jk. This results in the precedence
constraint between elements in Γfj,k.

∀j < i Γfj,k[p+ 1] ≤ Γfj,k[p]

Similarly, given a job Jk and a higher priority task τj , we define an array of Boolean variables ΓLj,k[·] to count
the number of job instances of τj inside the time interval [fk−1, ak − Lk). The size of ΓLj,k[·] can also be
bounded (e.g., by dTi−ri

Tj
e), and the total number can be computed as

Λj,k :=
∑
p

ΓLj,k[p]

Λj,k counts the number of jobs from a higher priority task τj that are guaranteed not to interfere with Jk−1 or Jk
since they are activated after Jk−1 finishes and are not in the same busy period with Jk. For instance, during
the interval [f2, a3 − L3[ in Figure 4.7, no higher priority jobs are released: Γ1,3 = Γ2,3 = 0.
When βk−1 = 0, it is Ifj,k−1 + Λj,k = ILj,k:

∀j < i −M · βk−1 ≤ ILj,k − Λj,k − Ifj,k−1 ≤M · βk−1 (4.11)

In case βk−1 = 1, the interval [fk−1, ak − Lk[ is not relevant to our analysis and we force Λj,k = 0. Using the
big-M formulation.

∀j < i −M · (1− βk−1) ≤ ΓLj,k[p] ≤M · (1− βk−1) (4.12)

The constraint between variables in ΓLj,k[·] resulting from the execution in FIFO order of the jobs from the
same task can be encoded as

∀j < i ΓLj,k[p+ 1] ≤ ΓLj,k[p]

4.3.2.10 Constraints on the idle time and workload

In this subsection, we present the constraints that bound the processor idle times and the time spent executing
by the tasks (i.e., workload) inside the problem window and its sub parts (e.g., one or multiple job windows).
For short, we first define several terms: ρk = fk − ak, λk = fk − (ak −Lk) and λ′k = fk − fk−1. As an example,
in Figure 4.7, ρ1 = 7.5, λ1 = 7 and λ′2 = 3.
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4.3.2.11 Minimum level-i idle time

To analyze the target task τi under fixed priority scheduling, it is sufficient to consider the taskset composed
by τi and its higher priority tasks: Ti = {τ1, . . . , τi}. Given an arbitrary time interval of length X, we use
minIdle(Ti, X) to denote the minimum amount of (level-i) processor idle time that is available within it (left
unused by the tasks in Ti).
Then, for any number x of consecutive job windows inside the problem window (of length x · Ti), the total
amount of idle time is lower bounded by minIdle(Ti, x · Ti). That is, ∀1 ≤ x ≤ K, 1 ≤ y ≤ K − x+ 1 :

minIdle(Ti, x · Ti) ≤
∑

y≤k≤y+x−1

ιk (C1)

To compute minIdle(Ti, X), we define a virtual task τ∗ = (−, X,X) that has relative deadline and period equal
to the interval length X and lowest priority. minIdle(Ti, X) is estimated as the maximum execution time C
of τ∗ that still guarantees its schedulability: if C is not the minimum level-i idle time, then there should exist
a combination of job activations for tasks in Ti that leads to a deadline miss for τ∗ (easily demonstrated by
contradiction; slack stealing algorithms [26] provide methods to estimate the processor idle time).

4.3.2.12 Idle time inside a job window

Consider the job window [ak, ak+1[ of Jk, if βk = 0, ιk is in fact the idle time the interval [fk, ak+1 − Lk+1[, as
exemplified by the 2nd job window in Figure 4.7. The total amount of higher priority workload in [fk, ak+1−Lk+1[
can be represented as

Θk :=
∑
j<i

(ILj,k+1 − Ifj,k) · Cj

As a result, the idle time in the kth job window is ιk = (ak+1 − ak) − ρk − Lk+1 − Θk. This equivalence only
applies when βk = 0 and can be encoded in a MILP formulation with the following constraint (trivially true for
βk = 1).

∀k −M · βk ≤ ιk + Θk − (ak+1 − ak − ρk − Lk+1) ≤M · βk (C2)

4.3.2.13 Formulation of the busy period [ak − Lk, fk) when βk−1 = 0

If βk−1 = 0, Jk−1 does not interfere with the execution of Jk, and [ak − Lk, fk[ is a busy period with length λk.
The total amount of workload from higher priority tasks inside [ak − Lk, fk[ is

Φk :=
∑
j<i

(Ifj,k − ILj,k) · Cj

For the first instance k = 1, it is
Φ1 + Ci − λ1 = 0 (C3)

Otherwise, βk−1 = 0 implies that Φk + Ci = λk. To apply the constraint only to the case βk−1 = 0, the
formulation is

∀k −M · βk−1 ≤ Φk + Ci − λk ≤M · βk−1 (C4)

4.3.2.14 Formulation of the busy period [fk−1, fk[ when βk−1 = 1

If βk−1 = 1, the interval between fk−1 and fk is a busy period with length λ′k. The total amount of workload
from higher priority tasks inside [fk−1, fk[ is

Φ′k :=
∑
j<i

(Ifj,k − Ifj,k−1) · Cj

Thus, the length λ′k of busy period [fk−1, fk[ can be represented as Φ′k + Ci and the MILP constraint becomes

∀k −M · (1− βk−1) ≤ Φ′k + Ci − λ′k ≤M · (1− βk−1) (C5)
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4.3.2.15 Formulation of fk by accumulating the idle time and workload

If we consider each job Jk, from s0 = 0 to its finish time fk, the time interval [0, fk[ consists of multiple busy
periods and processor idle times, which can be summed up as in

∀k
∑
j<i

Ifj,k · Cj + k · Ci +
∑
k′<k

ιk′ = fk (C6)

4.3.2.15.1 Refining the arrival time of a higher priority job before the beginning or the end of
a busy period

At the beginning or the end of a level-i busy period, a higher priority task must have completed any previously
requested execution time. As a result, it must be

∀k, j < i αj + (ILj,k − 1) · Tj + rj −M · βk−1 < ak − Lk (C7)

The latest activation time of a higher priority job (from τj) before the beginning of a busy period starting in
ak−Lk is αj+(ILj,k−1) ·Tj . This job must complete before the start of the busy period in ak−Lk after at least
rj time units. The term −M · βk−1 is used in the constraint (C7) because Lk is only relevant when βk−1 = 0.
Likewise, at the end of a busy period

∀k, j < i αj + (Ifj,k − 1) · Tj + rj < fk (C8)

4.3.2.16 Length of a busy period

We use BP to denote the length of longest level-i busy period, and Ni = dBPTi
e is the number of jobs of τi

within that busy period. As long as there is a busy period that spans Ni jobs of τi, the total task execution
within it cannot exceed BP . Therefore, ∀1 ≤ x ≤ K −Ni + 1 :

Lx + (ax+1 − ax)−M · (1− βx)+∑
x<k<x+Ni−1

(ak+1 − ak −M · (1− βk)) + ρx+Ni−1 ≤ BP (C9)

For arbitrarily Ni successive jobs inide an arbitrary problem window, we do not know if they are inside the
same busy period, however, βk = 1 is a sufficient condition for two jobs Jk and Jk+1 to be in the same busy
period (the same for βx = 1) and this explains the big-M terms in (C9). For the scenario in Figure 4.7 where
BP = 11 and N3 = 2, there is a busy period [s0, f2) that spans two jobs J1 and J2: L1 + (a2 − a1) + ρ2 ≤ BP .

4.3.3 Weakly hard schedulability analysis

Given an arbitrary sequence of K successive jobs of τi inside the problem window, the weakly hard property
specifies that the maximum number of deadline misses (among these K jobs) should be bounded by m (< K).
The total number of deadline misses can be computed as

nDmiss :=
∑
k

bk (C10)

The number of deadline misses of τi within the problem window is bounded by m, if the addition of the
constraint

m+ 1 ≤ nDmiss (C11)

makes the formulation non feasible.
Another option is to use the formulation of the number of deadline misses in (C10) as an optimization (max-
imization) function, and check what is the maximum number of misses for a given number of activations, or
even the other way around, to find what is the minimum value of K given a number of deadline misses.
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4.4 Extensions of the Solution Model

The weakly-hard analysis framework proposed in Section 4.3.2 can be easily adapted to a more general task
model. In particular, to shared resources and tasks with jitter.

4.4.1 Shared resources

In this part, we show an extension to the case of resource sharing using the Immediate Priority Ceiling Protocol
(PCP) [76] as used in the OSEK and AUTOSAR operating system standards.
A set of shared resources R1, . . . ,RG are accessed by tasks in mutual exclusive mode. For any task τi and
for any resource Rg, Si,g = {csi,g,1, csi,j,2, . . . } is a finite multiset (a set that allows multiple instances of its
elements) of worst case execution times for the critical sections executed by τi on Rg.
The priority ceiling pc(Rg) := min{i : Si,g 6= ∅} ofRg is defined as the highest priority of any task that accesses
it. Every time a task accesses Rg, its priority is boosted to the priority ceiling of Rg. In this way, any job of τi
can be blocked at most once by one lower priority job executing a critical section on a resource with priority
ceiling pc(Rg) ≤ i. This guarantees a predictable worst-case blocking time.
For simplicity, in the following, we will assume the Rate Monotonic (RM) system such that τi has a higher
priority than τj if Ti < Tj and for any τi, Di = Ti.
An arbitrary sequence of x consecutive job activations of τi, can be (directly or indirectly) blocked by at most x
critical section executions on resources with ceiling higher than or equal to the priority of the job.

Sxi :=
⋃

pc(Rg)≤i

⋃
i≤j

dBP+x·Ti
Tj

e times︷ ︸︸ ︷
Sj,g ∪ · · · ∪ Sj,g

Hence, for any x consecutive job windows of τi, the maximum blocking time is defined as the sum of the x
largest elements in the multiset Sxi :

Bxi :=
∑

the x largest
Sxi

To apply these blocking times to the MILP model in Section 4.3.2, we follow the common approach that adds
the blocking time to the execution time when considering the possible interference.
For any 1 ≤ k ≤ K, the real variable ci,k indicates the execution time which includes the blocking time that the
kth job of τi, within the problem window, can suffer.

Ci ≤ ci,k ≤ Ci + B1
i (4.13)

For any number of consecutive job windows, we can bound the sum of all these execution variables: ∀1 < x ≤
K ∀1 ≤ y ≤ K − x+ 1 ∑

y≤k≤y+x−1

ci,k − x · Ci ≤ Bxi (C12)

To extend the original problem formulation to the case of resource sharing, all instances of Ci in constraints
(C3)∼(C6) should be replaced by the corresponding variable ci,k Also the definition of the minimum processor
idle time needs to be modified and the constraint (C1) is then updated as follows

minIdle(Ti, x · Ti)− Bxi ≤
∑

y≤k≤y+x−1

ιk (C1∗)

4.4.2 Jitter

The jitter [18] of a periodic task represents the maximum possible delay of the task actual activation times with
respect to the ideal periodic activations. Given a periodic task τl = (Cl, Dl, Tl), we denote its jitter as Jl with
Jl + Cl ≤ Dl.
Because of jitter, the distance between the activation times of two jobs Jk and Jk+1 of the target task τi inside
the problem window is not a fixed value Ti, but can be any value within the range [Ti − Ji, Ti + Ji]. More
generally, there is ∀1 ≤ k < K, 1 ≤ N ≤ K − k,

N · Ti − Ji ≤ ak+N − ak ≤ N · Ti + Ji
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The jitter of a higher priority task τj also affects its interference upon the task under analysis. For example, the
number of jobs of τj that arrive before the finish time of the kth job of τi within the problem window becomes:
d fk−αj−Jj

Tj
e ≤ Ifj,k ≤ d fk−αj+Jj

Tj
e. This is encoded by the constraint below, as a replacement of (4.6).

∀j < i
fk − αj − Jj

Tj
≤ Ifj,k <

fk − αj + Jj
Tj

+ 1 (4.14)

For ILj,k, when βk = 0, it is now dak−Lk−αj−Jj

Tj
e ≤ ILj,k ≤ dak−Lk−αj+Jj

Tj
e, and the big-M constraint in (4.7)

is updated to ∀j < i
ak − Lk − αj − Jj

Tj
−M · βk−1 ≤ ILj,k (4.15)

ILj,k <
ak − Lk − αj + Jj

Tj
+ 1 +M · βk−1 (4.16)

To take into account jitter, several equations in the MILP formulation also need to be updated (the jitter mostly
result in a modifier applied to periods). Summarizing (the full justification is omitted for space reasons), Equa-
tions (4.1), (4.2), (4.3), (4.4), (4.9), (C1) (C7), (C8) are replaced with the following

∀k 0 ≤ Lk ≤ Ti − ri + Ji (4.17)
∀j < i 0 ≤ αj ≤ Tj − rj + Jj (4.18)

∀k Ci ≤ fk+1 − fk ≤ Ri + (Ti − ri) + Ji (4.19)
∀k −M · bk ≤ ak +Di − fk − Ji < M · (1− bk) (4.20)

dRi + Ti − ri + Jj
Tj

e (4.21)

minIdle(Ti, x · Ti − Ji) ≤
∑

y≤k≤y+x−1

ιk (4.22)

∀k, j < i αj + (ILj,k − 1) · Tj + rj −M · βk−1 − Jj < ak − Lk (4.23)
∀k, j < i αj + (Ifj,k − 1) · Tj + rj − Jj < fk (4.24)

4.4.3 Experiments

In the section, we apply the proposed weakly hard schedulability analysis to an automotive engine control ap-
plication and a set of randomly generated system configurations. All experiments are conducted on a machine
with 8 GB memory and 8 cores: Intel(R) Xeon(R) CPU X3460 @ 2.80GHz, using CPLEX 12.6.3 as the MILP
solver. The MILP formulation is encoded in C++ using the CPLEX library and is available for download1.
The fuel injection case study At first, we apply the MILP weakly hard schedulability analysis with the shared
resource extension (Section 4.4), to the fuel injection application described in [15].
According to the AUTOSAR standard, an automotive application is composed by a set of functions called
runnables, which are executed by tasks scheduled by fixed priority. The runnable-to-task mapping and the task
scheduling are defined at the system integration phase.
For the fuel injection application in [15], a heuristic strategy is applied to allocate approximately 1000 runnables
to tasks with 280 critical sections. The resulting taskset has 15 tasks with priorities assigned according to the
Rate Monotonic rule (all times in microseconds)

Due to the blocking from τ15, τ14 is not (hard real-time) schedulable.
To verify the weakly hard schedulability property, we tested a series of m-K parameters: {(1, 5), (2, 5), (2, 10),
(3, 10), (3, 15), (4, 15)}. According to our weakly hard schedulability analysis, it is guaranteed that there will be
at most m = 2 (resp. 3 and 4) deadline misses out of any K = 5 (resp. 10 and 15) consecutive jobs of τ14.
Regarding the runtime cost, except for the case m = 3 and K = 15, all tests complete within 2 minutes. It takes
the CPLEX solver almost 30 minutes to make a decision when m = 3 and K = 15. Runtime performance In
this subsection, we apply the weakly hard real-time analysis in Section 4.3.2 to a set of randomly generated
tasksets for an empirical evaluation of the runtime performance, with a large variety of configurations: n ∈
{10 ∼ 15, 20, 30, 50}, U ∈ {0.8, 0.85, 0.9, 0.95}, m ∈ {1, 2, 3} and K ∈ {5, 10 ∼ 15, 20}. Each configuration in

1https://github.com/m-k-wsa/
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Task Ci Ti Task Ci Ti
τ1 1015.83 2 · 104 τ8 5296.84 1 · 105

τ2 2309.5 2 · 104 τ9 325.64 2 · 105

τ3 1148.64 2.5 · 104 τ10 3285.24 2 · 105

τ4 2419.6 3 · 104 τ11 208.67 5 · 105

τ5 287.5 5 · 104 τ12 539.5 5 · 105

τ6 51.072 6 · 104 τ13 47616.3 1 · 106

τ7 2318.42 1 · 105 τ14 799006 2 · 106

τ15 1.0005 · 106 1 · 107

Table 4.3: An automotive case study

the experiment is specified by a tuple (n,U,m,K), where n is the taskset size, U is the taskset utilization, and
m-K is the weakly hard property to be checked.
Overall, 6253 task systems are tested. For each taskset with a pair n and U : 1) the utilization Ui of tasks is
generated using the Randfixedsum algorithm in [35]; 2) the task period Ti is uniformly sampled in the range
[10, 1000]; each task has an implicit deadline, i.e., Di = Ti; 3) and each task WCET is computed as Ci = Ti ·Ui.
Tasks are assigned priorities according to the Rate Monotonic rule. If the lowest priority task τn in the taskset
is schedulable, the taskset is abandoned; otherwise, we proceed with the weakly hard real-time analysis on
τn. This configuration is designed to stress the weakly hard analysis, since even if the lowest priority task τn
is schedulable there may exist other non-schedulable tasks with a smaller number of interfering higher priority
tasks for the m-K analysis.
In the analysis of each taskset we defined a runtime limit of 1800 seconds: if the analysis takes more than
1800 seconds without terminating, we stop and report a failure of the m-K analysis.
Deadline misses in a row
The m-K model discussed so far concerns the upper bound on the number of deadline misses (m) out of any
K consecutive task activations. Another popular pattern for weakly hard schedulability analysis is to check
if there are more than m deadline misses in a row, which is equivalent to analyze the m-K model with
K = m+ 1.
In the following, we evaluate the number of cases in which there are K = 2 and K = 3 consecutive deadline
misses, when U = 0.95 and n ∈ {10, 20, 30, 50}. Results are shown in Table 4.4 and for every test case, the
MILP solver returns its decision in less than a minute. Consecutive deadline misses seldom happen even
when the total utilization is as high as 0.95. Another observation is that the fraction of cases with consecutive
deadline misses is not sensitive with respect to the number of tasks in the set.

K = 2 K = 3 K = 2 K = 3

n = 10 80.3% 98.6% n = 30 85.1% 99.9%
n = 20 84.8% 99.6% n = 50 84.9% 99.9%

Table 4.4: Percentage of sets with K consecutive deadline misses

Varying the taskset size
Table 4.5 and Figure 4.9 show the experimental results with a variable taskset size, when U = 0.85. The weakly
hard analysis confirms that a large portion of these non-schedulable tasks will never miss more than 1 deadline
out of any 5 its consecutive activations. For example, when the taskset size is 20 or 30, the percentage of 1-5
feasible sets is around 50%. When m is increased to 2, more than 90% of the tested tasksets satisfy the
specified m-K property in all cases.
On the other side, when the taskset size is very large (n = 50), for m = 1 a significant amount of tests exceed
the runtime limit of 1800 seconds, which implies that a longer runtime is needed for such cases. Figure 4.9
depicts the time spent on the weakly hard analysis of each taskset: Yes labels that the corresponding m-K
property is verified (No in the other case). The majority of analyses return the decision within 10 minutes.
Varying the problem window size
Table 4.6 contains the experiment results when varying the problem window size K, with n = 10 and U = 0.85.
The problem window size K is a dominant factor with respect to the complexity of the analysis. Still, the results
are promising and for more than one third of the tasksets, the number of deadline misses is bounded by at
most m = 2.
Varying taskset utilization.
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m = 1,K = 5 m = 2,K = 5
confirmed n/a confirmed n/a

n = 10 42.8% 0% 90.6% 0%
n = 20 49.0% 0% 91.9% 0%
n = 30 54.4% 6.5% 92.9% 1.2%
n = 50 42.7% 41.9% 94.0% 6.0%

Table 4.5: Experiments that confirm the m-K property and run out of time limit (n/a) with variable n
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(b) m = 2Figure 4.9: Runtime results for K = 5

m = 2 m = 3 m = 2 m = 3

K = 11 54.4% 84.8% K = 14 47.0% 73.6%
K = 12 51.3% 81.5% K = 15 45.8% 66.4%
K = 13 49.2% 76.5% K = 20 33.6% 56.1%

Table 4.6: Percentage of valid m-K property with variable K

m = 2,K = 10 m = 3,K = 10

U = 0.80 90.8% 99.1%
U = 0.85 60.8% 86.1%
U = 0.90 30.2% 50.6%
U = 0.95 6.8% 17.6%

Table 4.7: Percentage of valid m-K property with variable U

Table 4.7 shows the percentage of tasksets that satisfy the m-K property with variable taskset utilization levels
and a fixed taskset size n = 10.
Even when the taskset utilization is very high (U = 0.90), more than 30% of the non-schedulable tasks will not
miss more than m = 2 deadlines within any sequence of K = 10 successive task activations. If we further
increase m to 3, the tasksets satisfying the weakly hard property become half of the generated sets.

4.5 Optimizing the placement of time-critical automotive tasks in mul-
ticores

Several application developers are currently faced with the problem of moving a complex system from a single-
core to a multicore platform. The problem encompasses several issues that go from modeling issues (the need
to represent the system features of interest with sufficient accuracy) to analysis and optimization techniques,
to the selection of the right formulations for constraints that relate to time. We report on the initial findings
in a case study in which the application of interest is a fuel injection system. We provide an analysis on the
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limitations of AUTOSAR and the existing modeling tools with respect to the representation of the parameters
of interest for timing analysis, and we discuss applicable optimization methods and analysis algorithms.
Several application developers are currently faced with the problem of moving a complex system from a single-
core to a multicore platform. The problem encompasses several issues that go from modeling issues (the need
to represent the system features of interest with sufficient accuracy) to analysis and optimization techniques,
to the selection of the right formulations for constraints that relate to time. We report on the initial findings
in a case study in which the application of interest is a fuel injection system. We provide an analysis on the
limitations of AUTOSAR and the existing modeling tools with respect to the representation of the parameters
of interest for timing analysis, and we discuss applicable optimization methods and analysis algorithms.
The problem of partitioning a real-time application onto a multicore platform is very well studied. For most
metric and constraints of interest, finding an optimal allocation is an NP-hard problem in the strong sense,
and solutions derived based on (often bin-packing) heuristics are proposed [54, 29, 67]. In the case of our
application of interest, the constraint that we consider for the partitioning objective is time. With respect to
real-time schedulability, most available results assume tasks as the units of placement and scheduling [64, 36].
When the partitioning problem is addressed at the task level, the variables that need to be determined are the
placement and the assignment of priorities, and the decision is based on considerations on the worst case
completion times of tasks, which are affected by preemption and the possible blocking on shared resources.
Shared resources can be physical (such as I/O devices) or logical (such as communication buffers). In both
cases, the critical sections runtimes are additional possible blocking times to be considered. Since the cost of
intercore sharing is typically much more than the intracore blocking time, tasks are often clustered based on
their resource and communication dependencies. Automotive applications use the AUTomotive Open System
ARchitecture (AUTOSAR) [81], standard for the representation of the application architecture and the execution
platform. In AUTOSAR, applications and threads are composed by a set of functions, called runnables, that
are executed periodically or in response to an event (physical, such as an interrupt, or logical). Runnables are
grouped into tasks, which are the unit of scheduling of the AUTOSAR Operating System [81]. The runnable-to-
task mapping and the task scheduling of an application is defined as application configuration, to be performed
statically, at system integration time. Ideally, all dependent runnables should be grouped into a single task,
reducing as much as possible the inter-task communications and resource dependencies. This is the ap-
proach that is recommended by AUTOSAR for multi-core systems [81]. Following this model, Monot et al. [64]
presented a scheduling algorithm for AUTOSAR applications on multi-core ECUs.
However, in a fuel injection application separation is not possible because of the large number of interdepen-
dencies, and a task-driven allocation using the tasks defined for the legacy single-core application is clearly
ineffective, because of the large number of runnables mapped onto the same task and the limited degree of
freedom for the placement. Faragardi et al. [36] presented a scheduler for AUTOSAR applications on multi-
core ECUs having as scheduling criteria to minimize the worst-case communication delays among runnables
scheduled in different cores. This solution assumes that the runnable-to-task mapping that minimizes the com-
munication among cores is already given, and so it focuses only on the task scheduling. In our approach,
we start from the runnables model and the construction of the set of tasks is one of the objectives of the
procedure. To evaluate the impact of shared resource on the timing properties, we will assume a lock-based
and spin-based resource locking mechanism, based on MSRP [38], which provides a predictable worst-case
blocking time. As mandated by AUTOSAR, MSRP uses non-preemptive spin locks for managing the access to
global resources, but it also enforces FIFO waiting queues to obtain tighter worst-case blocking times. Other
mechanisms for resource sharing that are suitable for implementation on AUTOSAR systems are discussed in
[16] and [16, 17].
Our approach builds on optimization approaches for task partitioning that consider MSRP blocking times such
as the algorithm proposed in [89], which works at the task level and introduces a mixed-integer programming
solution to the problem. Also, for priority assignment, we build on the results of the optimization algorithm
presented in [89].
The algorithms proposed in these papers assume a task characterization based on a periodic or sporadic (i.e.
with minimum interarrival time) activation. Control tasks for fuel injection applications are not only composed
of periodic tasks since some of them are activated in correspondence with the phase of the crankshaft and are
often implemented to adapt their execution time to the engine speed [20]. This model, denominated Adaptive
Variable Rate (AVR) is challenging for the objective of timing analysis, and recent works present algorithm for
accurate analysis [28, 14]]. Finally, the timing properties of tasks executing on multicores are also dependent
on the architecture features of the execution platform, including caches and communication architectures. The
impact of these features on time predictability is treated as part of the project for the definition of Single Core
Equivalent Virtual Machines [75, 74].
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4.5.1 Modeling the Functionality and the Platform

The objective of our work is to build models that allow to analyze the partitioning solutions with respect to time
and then to define optimization algorithms that can find possible partitioning options for further manual refine-
ment by the designers. Application and BSW models have been constructed by extending existing AUTOSAR
models of the legacy application with the description of all the runnables in the application model, as well as
in the BSW, together with a model of the other BSW components, including the drivers and the OS, their time
characteristics and the structure of the target microcontroller with sufficient detail to analyze the impact on the
response time of the tasks of the sharing of physical resources.

Figure 4.10: The main characteristics of the mapping problem.

The model of the fuel injection application and its BSW has been defined in Rhapsody (with its AUTOSAR 4.0
modeling extensions) and consists of approximately 200 application-level runnables plus 200 BSW runnables
and functions (Figure 4.10). The entities that need to be considered for the mapping problem are the runnables
(application and BSW) and the allocation of the BSW device driver (DD) functions, which are in turn dependent
on the use of the microcontroller peripheral devices by the runnables executing on them. The objective of the
mapping is to

• define the set of tasks to be executed on each core;

• assign a priority to each task;

• define the sequence of runnables to be executed by each task;

• define the allocation of the device driver functions to the cores;

with the following constraints:

• each runnable is executed by a task with a period that is the same of its trigger event, in case it is a
timed event, or it is executed by a task activated by the same event. Both constraints are actually more
restrictive than needed, in order to avoid pessimism in the following timing analysis;

• each task must complete before it is activated again (implicit deadline).

In the definition of our problem, we also made use of the following approximations:

• the execution time of each task is simply computed as the sum of the execution time of all runnables
mapped onto it;

• the execution time of a runnable does not depend on where it is allocated and each access to memory
globally shared requires the same time as access to local memory.

In essence, the partitioning algorithm requires knowledge of all dependencies among runnables because of
communication and synchronization, as well as all the dependencies between runnables and logical and physi-
cal resources. Communication and synchronization dependencies can be extracted from the AUTOSAR model
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by identifying the data dependencies on send-receive ports and the calls on client-server ports. The commu-
nication dependencies between runnables on data ports are characterized by the size (type) of the data item
flowing on these ports. Dependencies on logical and physical resources can be found by tracing the chain
of calls from runnables to BSW runnable to device drivers and the type of HW resources that each device
driver needs or accesses. Finally, we need a time characterization of each runnable in terms of its worst-case
execution time and the event that triggers it (for application runnables) and the set of order of execution depen-
dencies among runnables (when defined). Given all the approximations and assumptions, the final result of the
algorithm is not meant to be guaranteed as optimal, neither are the estimated response times guaranteed to be
safe with sufficient accuracy. Neverthless, the purpose of the evaluation is not the evaluation of the solutions in
absolute terms, but rather the comparative evaluation and the selection of a mapping of good quality for a first
exploration and possible further manual improvement.

4.5.2 Fuel injection applications and AVR tasks

The application tasks of the legacy application (and the runnables mapped onto them) are of two types: periodic
tasks, activated at different rates, and tasks activated at specific angles of the engine crankshaft (with respect
to the Top Dead Center -TDC- of a reference cylinder). The timing analysis of the crankshaft tasks is especially
challenging. Traditional schedulability theory deals with the periodic or sporadic execution model, in which any
two task activations must be separated by a minimum time interval. In this case, for each periodic or sporadic
task τi having priority i, its worst-case response time can be computed using [38]:

Ri = C∗i +Bi +
∑

j∈hp(i)

⌈
Ri
Tj

⌉
C∗j (4.25)

Where C∗i is the worst-case execution time of the task τi (obtained as the sum of the runnables executed by
it plus it worst-case spin time, as explained in the following), j ∈ hp(i) indicates the set of all the tasks τj
with priority j higher than or equal to i allocated on the same core of τi, Tj indicates the period (or minimum
interarrival time) of τj , and Bi is the worst-case blocking time. A blocking time is defined as the time spent by
a higher priority task waiting on a resource (such as waiting a critical section for accessing a shared port or
inside a device driver) that is currently locked by a lower priority task. In the case of MSRP, the term Bi can be
computed as

Bi = max(Bli, Bgi).

Bli is the worst-case local blocking time computed as the longest local critical section (shared device driver or
data access functions) that can be executed by a (runnable of a) task with priority lower than τi on a resource
with a ceiling higher than or equal to i, where the ceiling of a resource is the highest priority of any task that
can possibly use it. Global resources are assigned with a ceiling that is higher than that of any local resource.
A task that fails to lock a global resource (in use by another task) spins on the resource lock until it is freed,
keeping the processor busy. Bgi is the global blocking time and it is bound in the worst case to be no larger
than the sum of the spin time Lk,i plus that worst case length of any possible blocking critical section CSj,k
executed by a task τj allocated on the same core as τi on a global resource (with index k).

Bgi = max
j,k
{CSj,k + Lk,c(i)} (4.26)

The spin time Lk,c is computed for each global resource and core c as the sum of the maximum length of any
critical section using the resource executed by any task τw on a different core (at most one term of the sum for
each core).

Lk,c =
∑

w,c(w)6=c

max
w,k
{CSw,k}

For a dual core system, the sum only consists of one element (relative to the other core). The sum of all the
spin times for all the resources accessed by τi (indicated with the notation k ∈ R(i)) needs to be computed as
part of C∗i , that is

C∗i = Ci +
∑
k∈R(i)

Lk,c(i)

A more accurate blocking analysis has been presented in [88]. The sporadic model is quite pessimistic in
the case of tasks activated by the crankshaft and would practically consist in the evaluation of the maximum
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worst-case execution time at the largest rotation speed (highest rpm) only. In addition, several fuel injection
applications are programmed for a behavior that is adaptive with respect to the execution rate (and the available
computation time). This means that these tasks are executed in different modes according to the speed of
the crankshaft. At lower rpm, when more time is available between any two activations, a more complex
control algorithm may be executed. At higher rpm, a simplified implementatio n is used to avoid overloading
the processor and trespassing the deadlines. The worst case response time analysis of AVR tasks can be
performed using the model in [14]. Because of space limitations, we do not explain the algorithm here, the
interested reader can refer to the reference. However, the exact analysis is not expressed in closed form as
the analysis in (1), but requires the execution of an algorithm.

4.5.3 Analysis Models

The objective of our analysis have been defined in the Introduction. In the following, we outline the choices
that we made with respect to the analysis algorithm, and the customized extensions that we added to the
AUTOSAR model of the application in Rhapsody to represent the custom application with higher accuracy.
Approximating the AVR behavior with modes The available real-time analysis methods (both exact and with a
good degree of approximation) for a set of AVR tasks cannot be expressed in closed form. For the purpose of
our early analysis we chose to evaluate the mapping for 6 different ranges of speeds, from 500 to 6500 rpm,
assigning the mid-value of the speed range to the AVR tasks and treating them as sporadic. This means that
in the formulation of the optimization problem, the analysis is performed using (1). AUTOSAR extensions The
analysis of the application for the purpose of partitioning requires several extensions to the modeling elements
currently available in AUTOSAR. Among the extensions that are required, we found that

• worst case execution times should be associated with runnables, not tasks. In addition, many application
and BSW runnables are executed in response to multiple events or invoked for different services and their
execution time varies in a significant way according to the trigger event, the type of service or even the
execution mode;

• the type of I/O device that is accessed by a DD function (a runnable in a BSW component) must be
represented to address the partitioning of the runnables on the basis of the HW resources available at
each core (and the possible contention/blocking on their DD functions).

Modeling entities to represent these features are not available in AUTOSAR (and therefore are not found in
the corresponding profile offered by Rhapsody). However, the AUTOSAR modeling concept are available in
Rhapsody as stereotyped UML elements. This allows to define a custom profile and additional stereotypes to
provide the needed attributes to our elements of interest. For example, to add mode-dependent worst-case
execution times (WCET) to runnables the stereotype shown in 4.11 has been defined with three values to
define the WCET value, it units and the mode (trace id) where it is measured. In addition, to identify exactly
the dependencies for shared hardware resources and shared DD functions, we had to define stereotypes for
all types of devices that are needed from the platform (typically later mapped onto microcontroller pins). Each
runnable call of a BSW or DD service was then associated with the stereotype identifying the device type for
which the call was issued. This stereotype �IDN� has a single property of type itemized that describes the
physical IO type that is requested. Figures 4.11 and 4.12 show Rhapsody screenshots of the stereotypes
and itemized types for the specification of hardware resources and for the assignment of execution time to
runnables.
Another limitation of AUTOSAR models is the lack of sufficient accuracy to model cache and options for the
placement of code in the cache. In the real-time execution of runnables in multicores, the impact of caches
(or scratchpads) is going to be very important. However, in our preliminary analysis we skipped considerations
about the placement of code in cache and caching effects. With the exception of the previous extensions, all
the required information for our synthesis problem was encoded using standard AUTOSAR features (ports,
interfaces, data values and their types, call dependencies and so on). The AUTOSAR model has been con-
structed in part manually, in part by automatic analysis of the program features and its timing characteristics
using static code analysis and trace analysis tools. The data has been loaded in the AUTOSAR model using
the Rhapsody Java API and scripts. The model has been then reviewed and completed manually. The AU-
TOSAR model contains the input data for the analysis but does not contain the definition of the optimization
constraints or the analysis algorithm. The optimization problem is encoded and solved by an external tool.
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Figure 4.11: Stereotypes in Rhapsody for modeling hardware (IO) resources in AUTOSAR.

Figure 4.12: Stereotypes in Rhapsody for the representation of the execution time of runnables (extracted
from traces) as a function of the activation event and the execution mode.

4.5.4 Optimization Algorithms

Our analysis draws input data from the AUTOSAR model and then passes the data to an optimization engine
that computes possible solutions. The input data is extracted from AUTOSAR using the Rhapsody API and
saving the features of interest in a custom format. The first optimization engine that we tried is a simulated
annealing function. The next step will consists of exploring a formulation and an optimization algorithm based
on mathematical optimization using a MILP encoding. Simulated Annealing The initial approach to the problem
is to analyze each range of crankshaft speeds separately and to detect whether there are significant differ-
ences in the computed allocation solutions for each mode. The algorithm that has been selected for this initial
investigation is a simple Simulated Annealing solution (a stochastic optimization method). The method draws
its name from the way liquid metals anneal and reach a configuration with low energy content (close to optimal)
when the temperature is lowered and they go back to the solid state. Simulated annealing is in essence a local
optimization method that is modified to improve the chances of escaping from local optima. The modification
consists in the selective acceptance of higher cost and possibly even infeasible solution during the search. At
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each point in time in the algorithm maintains a current solution, the best solution found up to that point, and a
temperature parameter T that is slowly lowered with time. The algorithm uses a transition operator to compute
a new solution starting from the current one, and a cost evaluation function to compute the cost C of each
solution. At each iteration, the newly computed solution is always accepted if it has lower cost (it improves
upon) the existing solution and it is also accepted with probability

p = e−
∆C
T

if its cost is higher than the existing solution. The probability tends to zero when T approaches zero and is
lower for higher cost differences ∆C. A pseudocode implementation of the main algorithm is shown in Figure
4.13.

Figure 4.13: Pseudo-code of the Simulated Annealing routine.

The algorithm requires the definition of the transition operator that generates a new allocation solution from an
existing one and a metric to evaluate the quality of solutions. The transition operator consists in the random
selection of one of the following operations:

• a runnable is extracted from an existing task, and a destination task with the same period is selected on
a randomly selected core. If there is no possible destination task, a new one is created and a random
priority level is assigned to it. The position of the runnable is selected in accordance with the order of
execution.

• Two tasks are randomly selected (on the same core) and their priorities are swapped;

• Two tasks are randomly selected (on different cores) and their allocation is swapped.

• A task is randomly selected. A partition of its runnables is randomly selected and moved to a different
core as a new task with a randomly assigned priority

The evaluation (performance) function is quite simple. It consists of computing the worst case response time of
all tasks on the cores and then the laxity, defined as the difference between the deadline and the response time.
The minimum laxity among all the tasks is the performance function and the cost function is simply obtained
by changing its sign.

C = max
i

(Ri −Di)

where the index i spans over all the tasks. This definition allows to select also non-feasible solutions in the
intermediate steps of the algorithm. The application of the simulated annealing algorithm to our problem was
indeed able to find a solution, at least within the limitations of our approximations.

4.5.5 Linear Optimization

The main problems with most stochastic optimization approaches are the need to trade-off execution time
with the quality of (or even the chance of finding) solutions, and especially the lack of any measure of the
quality of the solution that is returned by the algorithm. Optimization algorithms based on linear or convex
formal mathematical formulations offer several advantages. At each step in the algorithm, the duality theorem
provides an upper bound on the distance of the current solution from the optimal one, and when optimality
is achieved, it can be formally guaranteed. In addition, and probably most important, once the problem is
formulated as a linear or convex optimization, it can be solved using one of the solver programs that are widely
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available as commercial or open source, such as CPLEX from IBM [45]. These programs have been finely
tuned to achieve extremely good performance and leverage a great amount of research work in the field of
mathematical optimization. For the allocation problem at the level of tasks, a formulation that accounts for the
effect of blocking times has been proposed in [89] and quickly discarded in favor of a heuristic, given that the
authors in [89] found that for four cores, the MILP formulation could not be solved for more than 20 or 30 tasks.
When shifting the problem to the optimization of runnables, clearly 20 or 30 is too small a number, even if the
platform that needs to be optimized is a simpler dual core.

Figure 4.14: Runtime of the MILP Optimization problem.

However, our preliminary findings on the formulation in [89] reveal that it is most likely quite pessimistic. By
removing unnecessary variables and simplifying the formulation (for priority encoding, using the approach in
[92] and [30]), by adding very simple constraints on the utilization of each core (trivially forced to be less than
100%) and improving the definition of other constraints, we were able to speed up the solution to more than two
orders of magnitude. Initial results on the allocation problem on four cores show the average runtimes (on 50
runs) shown in Figure 4.14. The runtimes (in seconds) are plot against the number of runnables/tasks and the
overall utilization on the cores. The experiment setting is the same as in [89]. Sets of 50 runnables/tasks can
be handled in less than one hour for utilizations of 2.6 or less. Considering that the load of the truly time critical
tasks may be in the same range (60 to 70%) and that the two core optimization problem is significantly simpler
(the number of many variables is proportionally reduced), we expect to be close to the practical applicability to
our problem.

4.6 Vulnerability Detection for Multi-Cores

The target platform for multicore contention modelling was the one of the Telecom use case . However, finally
this methodology will be ported to the Telecom use case through extrapolation in WP4 and to the Automotive
multicore use case in WP4 and WP6. In WP4 the relevant platform for the Telecom use case and an internal
avionics prototype is the ARM Juno board, which is a complex multicore processor, whereas the Automotive
multicore use case uses a simpler Infineon AURIX TC27x board. Therefore, methods in WP3 will target the
ARM Juno board platform given that the AURIX one just poses a subset of the challenges posed by the Juno
board. Thus, solutions valid for the latter are a superset of the solutions needed for the former.
Hence, this section identifies the main hardware shared resources in the Juno board and how their sharing can
affect execution time of the different tasks running. This challenges the estimation of execution time bounds,
which is a form of vulnerability since safety real-time tasks need reliable execution time bounds for being
properly scheduled. Therefore, a methodology is provided to upper bound the impact in execution time of
contention when accessing hardware shared resources.
Note that Sections 4.6.1 and 4.6.2 have been only slightly modified w.r.t. the contents reported in D3.1 to reflect
the shift from the DragonBoard to the Juno board. Instead, Section 4.6.3 is a completely new contribution not
reported before.
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4.6.1 Shared Hardware Resources in the Juno board

The hardware architecture of the ARM Juno board is depicted in Figure 4.15. It is composed of two clusters.
The first one is a high-performance A57 dual-core cluster, with a 2MB L2 cache shared between the 2 cores,
and private L1 caches. The second one is a low energy A53 quad-core cluster sharing a smaller 512KB
L2 cache between the cores, also encompassing private L1 caches (though being smaller than for the other
cluster).

Figure 4.15: Shared Hardware resources alongside the memory path on the ARM Juno board. As shown
each of the two clusters includes a shared L2 cache and communication channels towards the DDR memory

controllers.

The clusters are connected to the main memory through a shared CCI400 AMBA bus and then through an
Application Fabric interconnect, itself connected to a dual port 32-bit DDR controller.
These interconnect shared hardware resources are also shared by other hardware resources, like some low-
level peripherals for the AMBA bus, the multi-media subsystem for the Application Fabric, as well as the System
Bus connecting all the peripherals (PCI-X, UART, SPI, ...).

4.6.2 On-Chip Cacheless Resource Sharing

The research on timing analysis for multi-core processors is still in its infancy. Especially so for Commercial
off-the-shelf (COTS) multi-cores, whose timing analysis is a complex challenge that needs to be solved before
their adoption in safety-critical real-time systems industry may become viable. Deriving an Execution Time
Bound (ETB)2 for tasks running on multi-cores is challenged by the contention, also known as inter-task inter-
ference, occurring on access to hardware shared resources. Unless otherwise restrained, contention causes
the execution time of any one task, hence its ETB, to depend on its co-runners. This has a severe impact
on system design and validation, as it conflicts with the incremental development and verification model that
industry pursues to contain qualification costs and development risks. This industrial goal is solved by allowing
individual subsystems to be developed in parallel, qualified in isolation, and incrementally integrated, with great
reduction in the risk of functional regression at system level. In the timing domain, incremental integration and
qualification postulate composability in the timing behavior of individual parts, whereby the ETB derived for a
task determined in isolation, should not change on composition with other tasks.
Two main approaches have been followed so far to deal with contention for multi-core on-chip resources,
which place at the opposite ends of a conceptual spectrum of solutions. On the one end, some authors
propose computing ETBs so that they upper bound the effect of any possible inter-task interference a task
may suffer on access to hardware shared resources. ETBs computed this way are fully time composable
and enable incremental integration and qualification, but at the cost of pessimism that may cause untenable
over-provisioning, as the timing behavior occurring in operation may fall much below the level determined
considering the worst-case interference possible in theory [70, 66, 37]. On the opposite end, other authors [22]
propose – currently only for research platforms – to determine ETBs simultaneously for multiple tasks in specific
configurations. Those ETBs are non-time composable, as they only hold valid for the tasks being analyzed and

2Due to the lack of definitive Worst-Case Execution Time (WCET) estimation methods for COTS multi-cores, we use the
term ”execution time bound” (ETB) instead of WCET.
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for their specific configuration. If any such parameter changes, all ETBs become invalid and the entire analysis
has to be repeated.
In this study we tackle resource contention in multi-cores by proposing the new concepts of resource usage
signature (RUs or S) and template (RUl or L). A task τ is exposed to contention in the access to the
hardware shared resources because co-runner tasks can interfere τ ’s execution. The usage of the hardware
shared resources made by co-runner tasks is referred to as u. RUs and RUl aim at making the ETB derived
for τ , time composable with respect to u. The tasks’ ETBs are derived for a particular set of utilizations U
such that the ETB derived for any u ∈ U upper bounds τ ’s execution time under any workload so long as the
co-runners of τ make a resource usage smaller than u. We explain later what “smaller” means and how this
can be determined. This abstraction allows deriving time-composable ETBs for individual tasks in isolation
for each u ∈ U , so that the system integrator can safely pull those (interfering) tasks together as long as the
resource usage made by their individual set of co-runners is upper-bounded by some u. All that the system
integrator has to care in that regard is to characterize the tasks’ accesses to hardware shared resources (a
low-cost abstraction of the task execution time), ignoring any finer-grained detail of that access behavior. In this
section we present an approach to produce ETBs in that manner, using measurement-based timing analysis
techniques.
RUs and RUl are devised to be agnostic to the particular timing distribution of the resource access requests
to be considered. Hence, two tasks generating the same number of accesses to a resource, though with
different patterns, have the same signature. The challenge in the proposed method is in determining an effect
on the interfered task that upper bounds the interference caused by contending accesses, regardless of the
time distribution of those accesses as made by the interfered and the interfering tasks. In this work we make
the following main contributions:

1. We develop the novel concepts of RUs and RUl for the timing analysis of COTS multi-cores and sketch
an algebra of operators over RUs/RUl to enable their practical use.

2. We provide exemplary RUs and RUl for the cases when requests accessing shared resources incur
either fixed or variable response latency.

3. We present a strategy to implement RUs and RUl for the ARM Juno processor representative for the
Telecom use case focusing on the bus and the memory controller as exemplars of on-chip shared re-
sources.

4.6.2.1 Formalization of RUs and RUl

RUs and RUl allow analyzing, for the most part in isolation, the timing behavior of tasks, by abstracting the
interference that they may suffer due to contention when accessing hardware shared resources on a multi-core
caused by co-runner tasks.

4.6.2.1.1 Resource usage signature (RUs)

Given an interfered task, τA, a RUs abstracts its use of the hardware shared resources. Once computed, it will
be used for τA’s multi-core timing analysis instead of τA itself.
We describe the use of a hardware shared resource through a set of features, which correspond to quantitative
values. A RUs for task τA, is a vector SA = (a1, a2, ..., an) that contains the list of relevant features that charac-
terize all the hardware shared resources, for the evaluation of contention effects. Since RUs are quantitative,
the RUs of distinct tasks are comparable and can also be combined together to form a joint RUs. How to
operate and compare multiple RUs is explained later.
Consider the reference multi-core architecture shown in Figure 4.15, where the bus and the memory are
shared. Further consider two types of accesses to those shared resources, for read and write operations
respectively. In this case, RUs have at most 4 features: bus reads (nbusrd ) and writes (nbuswr ); memory reads
(nmemrd ) and writes (nmemwr ). RUs are thus defined as SA = (nbusrd , n

bus
wr , n

mem
rd , nmemwr ) = (a1, a2, a3, a4).

If the bus was the only shared resource, the RUs of a task τA would be abstracted as a RUs with two features:
nbusrd and nbuswr . If both types of requests hold the bus for the same duration, the RUs would consist of a single
feature corresponding to the sum of nbusrd and nbuswr , i.e., SA = (nbusrd + nbuswr ) = (a1 + a2). The addition of SB to
SA is given by SA+SB = (a1 +a2 + b1 + b2). For comparison, instead, we say that SA dominates SB , SA % SB ,
if the interference by the former is greater than that by the latter: a1 + a2 ≥ b1 + b2.
This reasoning easily extends to the more realistic scenario in which the bus holding times are asymmetric;
for example, with reads holding the bus longer than writes. In that case, the RUs for τA could be either single-
feature, considering all accesses as “long” accesses (counting writes as reads in the example), or multi-feature
(two, in the example), i.e., SA = (a1, a2) = (nbusrd , n

bus
wr ). In the latter formulation, addition and comparison
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Figure 4.16: Main steps in the RUs and RUl methodology.

change as follows: addition is defined as vector addition, i.e., SA + SB = (a1 + b1, a2 + b2); for comparison, SA
dominates SB , SA % SB if (a1 ≥ b1) ∧ (a2 ≥ b2).
Note that it can be the case that neither SA dominates SB nor SB dominates SA if, for instance, (a1 > b1) ∧
(a2 < b2). In that case one should resort either to single-feature RUs or to having a new multi-feature RUs
SC = (max(a1, b1),max(a2, b2)) so that SC dominates both SA and SB .

4.6.2.1.2 Resource usage template (RUl)

RUl have the same form as RUs, namely, a vector of features LK = (k1, k2, ...kn), but with a different use. RUs
abstracts tasks according to their use of the shared resources while RUl upper bounds the use of the shared
resources made by co-runner tasks. A RUl is a true upper bound if LK % Si, where Si is the RUs for any task
τi that can be a co-runner of the task under analysis (i.e. Si is dominated by LK).
Tasks are made time composable against some RUl LK so that the ETB derived for a given task τA and for
that RUl, denoted ETBKA , upper bounds τA’s execution time inclusive of the interference that the contenders
of τA, whose RUs do not exceed LK , may cause.
Returning to the example in which the bus is the sole shared resource with all accesses to it incurring the same
contention effect: for a LK that captures a given number of accesses to the shared bus, we want to determine
the highest impact by LK on ETBA, so that ETBKA can be regarded as a time-composable bound for τA in
any workload in which LK %

∑
i Si for all co-runner tasks τi of interest.

A maximally time-composable template LTC exists, which is an upper bound for all potential workloads (i.e.
including the worst possible workload). LTC corresponds to the case in which all accesses from the signature
suffer the highest contention from the Nc − 1 contending cores3. In that case, every access from SA contends
with Nc − 1 other accesses, i.e., LTC = (Nc − 1)× SA. Any LK % LTC would produce exactly the same result
as LTC , since τA cannot be interfered more than the accesses in its signature SA.

4.6.2.1.3 RUs and RUl through an example

In this section we return to the case in which the bus is the sole shared resource and all accesses to it incur
the same contention effect. For now we limit our attention to two cores. The task under analysis, τA, runs in
one of the two cores. The contending requests from the two cores are arbitrated with the round-robin policy.
Figure 4.16 depicts the process we follow when the proposed approach is applied to this case. First, we obtain
the RUs of τA, denoted SA. In the example architecture, the RUs of tasks using the shared resource is the
number of accesses they make, a for τA, hence SA = (a). Our approach treats contention such that the ETB of
τA can be derived by upper bounding τA’s execution time considering the interfering effect that it incurs when
its co-runner task makes up to k contending accesses to the shared resource. To this end we define a RUl
LK , which is the system integration parameter that defines the inter-task interference to be considered in the
determination of τA’s ETB. The abstraction captured by LK with LK = (k) is a RUl.
Once the SA and LK are defined, we determine ∆K

A , the increment to be applied to the execution time that
τA may incur, to capture the contention effect from LK . This corresponds to step 3 in Figure 4.16. More
precisely, ∆K

A upper bounds the increment that the execution time of a task τA with at most a accesses to

3Note that the highest contention for a given access can be upper-bounded in modern embedded processors [70, 66,
37], so such highest contention can be computed in general. If, for instance, one core had priority over the others on the
access to hardware shared resources, then the highest contention possible would be infinite and an ETB would not exist.
Then such hardware platform would not allow running any critical task in the low-priority cores and our analysis would be
valid only for the high-priority cores.
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a shared resource may suffer from k contending requests. ETBKA (i.e τA’s ETB determined under the RUl
LK) is computed as the summation of ET isolA , the execution time of τA when running in isolation, without
contention, and ∆K

A , the increment that upper bounds the contention effects from any k interfering accesses.
This corresponds to step 4 in Figure 4.16. Overall, ETBKA is time composable against any co-runner task τB
with signature SB = (b), as long as LK dominates the RUs of the co-runner, which means that τB makes b ≤ k
contending accesses. We denote this as tc(ETBKA , τB), which holds if b ≤ k.
RUs abstract the distribution of requests over time. Taking into account the exact distribution of requests over
time, for instance in the form of requests arrival curves [68], would potentially enable deriving tighter ETB.
However, deriving such distributions is complex, as programs normally have multiple paths of execution, each
with its own access pattern (distribution). And, paradoxically, considering these particular distributions would
decrease timing composability. Instead, our approach only requires the tasks’ access count for every individual
shared resource, as well as ET isoli (execution time in isolation) for each individual task τi. Notably, both can be
obtained with high accuracy by state-of-the-art technology, e.g., [71]. With our approach, the ability to abstract
away from the need to know the exact points in time at which requests would be made to shared resources
releases the system integrator from the obligation of adopting rigid and inflexible scheduling decisions (which
fares poorly with the development unknowns of novel systems) or from the labour-intensive cost of exact
analysis.
Our approach requires the user to set the RUl to capture the potential co-runner tasks precisely. The spectrum
of this capture has two ends. On one extreme we find the time-composable templates, LTC , which represent
an upper bound for RUl. However, if RUl is close to that template, the ETB of tasks might be unnecessarily
increased. On the opposite extreme, if RUl is too small, it constrains the choice of tasks that may be allowed
to run in parallel. A simple solution consists in deriving for each task an ETB under different RUl, such that at
integration time, the smallest RUl that upper bounds the signature of the actual co-runner tasks is used. With
this, the residual part of the timing verification at system integration is small and simple. Selecting the proper
number of RUl represents a trade-off between effort and accuracy: the higher the number of RUl the lower
the over-estimation of ETB and the greater the analysis time, and vice-versa. Finding appropriate RUl is a
standard optimization problem that is part of our future work.
In the example considered in this section we have made several simplifications to facilitate understanding: two
cores, one single type of access, synchronous accesses (i.e. the core stalls when the access occurs until
served) and a single shared resource. In real processors we have different types of accesses to the shared
resource (synchronous and asynchronous), each with a distinct access latency. Hence, simply bounding the
effect of contention by adding access counts is not enough.

4.6.2.2 RUs & RUl for Measurement-Based Timing Analysis

Next we present one concrete realization of RUs and RUl for use with measurement-based timing analysis,
specifically for a processor with those shared resources in the ARM Juno board.

4.6.2.2.1 Methodology

Our approach uses micro-benchmarks [70, 66, 37], a set of single-phase user-level programs with a sin-
gle execution behavior designed so that all their operations access a given shared resource, e.g. the bus.
Micro-benchmarks consist of a main loop whose body includes a substantial number (e.g. 256) of instructions
designed to generate a steady stress load on target resources. The fact that the loop body executes repeat-
edly the same instruction causes the target resource to be continuously accessed. Moreover, placing a high
number of identical instructions in the loop body drastically reduces the impact of control instructions (down to
2-4%) [37]. For the architecture in Figure 4.15, a loop body including load instructions that hit in the L2 cache
stresses the bus. We consider two types of micro-benchmarks:
Resource stressing benchmarks, RStB, place a configurable load on a given shared resource, so that running
a task against a RStB may represent contention scenarios of interest.
In theory, one could design a worst-contender benchmark that generates the maximum contention that a
task τi can suffer. However, such benchmark would be specific for the task to be interfered and for the target
processor [70]. Consider for example, a single shared resource arbitrated by a least-recently-used policy, where
the task that accessed the resource last gets the least priority. In that case, the worst-contender benchmark
should generate a request in exactly the same cycle as the task of interest, so that every request from that task
gets delayed by the contender, and for the next round of arbitration the task has the lowest priority again. The
level of control required on the application behavior and the granularity of intervention are too fine-grained and
laborious to be used in practice [70].
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Resource sensitive benchmarks, RSeB, are designed to upper bound the execution time increase suffered
by any other task, with a smaller or equal signature, owing to the interference from a given template LK .
Consider a scenario in which bus accesses hold the bus for a constant duration. Further assume that we want
to determine ∆K

A for τA, i.e its ETB increment due to a template LK with k accesses. Intuitively, one could
get an estimate of it by running τA several times against a RStB that makes k accesses. However, in order to
gain confidence in the ETB obtained, the experiment should be repeated with different alignments of the RStB,
so that the interleaving of accesses varies enough and the worst case can be observed in a measurement.
In practice, this may require excessive experimentation effort. The need for repeating the experiments with
different alignments stems from the uncertainty on the time distribution of accesses, which is hard, if at all
possible, to measure and control by timing analysis technology. We can therefore conclude that studying the
task under analysis against micro-benchmarks is not viable. Instead, we use micro-benchmarks to model both
the interfered and the (set of) interfering tasks: RStB and RSeB are designed to account for bad alignments
of requests: RSeB is made of instructions that cause accesses to the shared resource and that continuously
contend with RStB requests.
We define ∆RStB

RSeB = ETRStBRSeB − ET isolRSeB , where ETRStBRSeB is the execution time when a given RSeB with the
same signature as task τA runs against a RStB implementing a template LK with k accesses; and ET isolRSeB the
execution time when the RSeB runs in isolation. For task τA, let ∆K

A = ETKA − ET isolA be the execution time
increase τA suffers when it runs against LK . RSeB and RStB are designed so that ∆RStB

RSeB ≥ ∆K
A holds for

any request alignment of τA under LK contention. To that end, we run the RSeB in isolation and then against
Nc − 1 copies of RStB so that all RSeB’s accesses to the shared resource suffer high contention, causing a
measurable ∆RStB

RSeB to emerge. In the next section we show how to derive the number of accesses of the RSeB
and the RStB, based on the number of accesses of the template and signature under consideration.
∆RStB
RSeB is used to compute the ETB estimate for τA as follows: ETBKA = ET isolA +∆RStB

RSeB . ETBKA is composable
with any set of interfering tasks against which τA runs in parallel, if their total number of accesses is lower or
equal to k. That is, the addition of the signatures of the interfering tasks is dominated by LK : (Si+Sj+...+Sl) -
LK . Interestingly, given a task τB whose signature is dominated by τA, i.e. SB - SA, the obtained ∆RStB

RSeB for
τA can be used to upper bound τB ’s execution time: ETBKB = ET isolB + ∆RStB

RSeB .
Overall, RUs and RUl provide powerful abstractions for the interfered and the interfering tasks, which simplify
the integration of multiple tasks by combining their signatures.

4.6.2.2.2 The case of a ARM big.LITTLE (Juno) architecture

Our reference multi-core architecture comprises Nc = 2 and Nc = 4 symmetric cores in each of the 2 mul-
ticores (ARM Cortex-A57 and ARM Cortex-A53 respectively), see Figure 4.15, each equipped with private
instruction cache (IC) and data cache (DC). Some of the hardware characteristics described next are derived
from the manuals while others are inferred from limited information in those manuals. Those that may affect
the methodology and cannot be obtained unambiguously from the processor manual will be studied empirically
as part of BSC work in T4.1.

Relevant hardware characteristics
ARM Cortex-A57 and ARM Cortex-A53 multi-cores differ. However, the ARM Cortex-A57 is more powerful
than the Cortex-A53 one, so the features of the Cortex-A57 are a superset of those in the Cortex-A53. Hence,
we refer to the particular hardware characteristics of the Cortex-A57 multi-core given that they already include
those of the Cortex-A53 one. IC and DC can be used in many different ways including write-allocate, write-
no-allocate, write-through, etc. This has a direct influence on the number of accesses issued to the L2 cache,
and so on the contention suffered. Analogously, speculation on branches and prefetch operations may issue
further requests to the shared resources that may also suffer contention (or increase the contention suffered
by non-speculative requests). The L2 cache can process up to 2 requests simultaneously if they access
different tag/data Random Access Memory (RAM) arrays. L2 is accessed through an Advanced Microcontroller
Bus Architecture (AMBA) AXI interface which, in principle, may receive requests from the different cores and
process them in parallel. Therefore, it is the L2 cache the resource serializing requests, not the AMBA AXI
interface.
It is, therefore, unclear what type of network is implemented. We will assume that core-to-L2 networks are also
implemented using AMBA buses, as it is the case for the L2-to-memory network, since this is the worst case
because requests are fully serialized and so contention is the highest. As the work in the project progresses we
will confirm or reject our assumption. However, if it is rejected, our methodology should be flexible enough to
adapt to any common network available in small multi-cores such as the 4-core ARM Cortex-A57 and Cortex-
A53.

Bus
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Figure 4.17: Hypothetical impact (in cycles) from/to the different access types to the bus. l2h, l2m and st refer
to L2 load hits, L2 load misses and stores respectively.

For the sake of this discussion we assume that our target processor implements round-robin bus arbitration so
that if, in a given round, core ci, i ∈ {1, .., Nc} is granted access to the bus, the priority ordering in the next round
is: ci+1, ci+2, ..., cNc

, c1, c2, ..., ci. A lower priority core can use the bus when all higher priority cores do not use
it. Due to the incomplete documentation available for the Juno processor (and for the previously targeted
SnapDragon 810), it turns out to be almost impossible determining with enough confidence the arbitration
policy. In any case, as part of the work in T4.1, BSC has developed a method that, among others, is able to
identify whether the arbitration policy in shared resources is round-robin or FIFO.
The bus access jitter that a task incurs on access to the bus, depends not only on the number of co-runners
but also on the way their requests interleave. The worst contention situation happens when a task τB assigned
to core ci requests the bus in a given round of arbitration, simultaneously with tasks in all other cores and the
previous round was assigned to ci.

L2 cache
A shared L2 cache poses many difficulties to upper-bound the impact of contenders since the amount of
contention depends on many fine-grain parameters such as: amount of data accessed, time elapsed between
accesses to the same cache line, frequency of access, cache sets accessed, etc. Therefore, shared L2 caches
do not fit well within the concept of signatures and templates, so alternative approaches are needed to quantify
the contention due to shared L2 caches. Such approach is later detailed in Section 4.6.3.

Memory controller
The L2 sends a request to a memory controller on every L2 miss. Requests are stored in a FIFO request
queue, with one entry per core. Whether only one memory controller is in place or each multi-core has a
separate one needs to be investigated. For the sake of this discussion we will assume that each multi-core
uses one different memory controller. In future enhancements of our methodology we will relax this constraint.

4.6.2.2.3 Bus

The AMBA bus handles three distinct request types, which differ in the contention they induce and suffer.
Stores (st) regardless of whether they hit or miss on the L2, are served immediately by the L2 and hold the
bus for few cycles (e.g. 2 cycles). L2 load hits (l2h) hold the bus for few more cycles (e.g., 7 cycles) because
the bus is retained while retrieving the data from L2. L2 load misses (l2m) release the bus once the request
reaches L2, and perform a new arbitration whenever the L2 responds to the miss, holding the bus for as many
cycles as L2 store accesses (e.g., 2 cycles) in each arbitration. Figure 4.17 shows the contention suffered by
a source (interfered) request by another (interfering) request for all request types assuming some hypothetical
latencies of 2 cycles for short L2 stores and L2 load misses, and 7 cycles for L2 load hits. l2h generate the
highest contention and l2m are the most affected since they suffer two rounds of arbitration: l2m can therefore
be interfered twice by two concurrent contending requests, one round of arbitration per each such request.
Our approach based on RUs and RUl does not require knowing the exact time of request issue, but whether
they have asymmetric timing behavior in the impact they suffer and they cause to other request types so that
RStB and RSeB can be designed with the appropriate request types. The RStB and RSeB for the bus are
called BStB and BSeB:

BSeB (abstracting interfered task bus usage). The signature of a task τA running in this architecture may
take different forms, with different levels of tightness and experimentation effort. The canonical signature for
the bus contains the number of accesses of each type made by the task. That is: SbusA = (ast, al2h, al2m). This
can be simplified by realizing that l2h and st access the bus once whereas l2m do it twice. Moreover, the delay
suffered by an access does not vary whether the access was generated by a l2h, st or l2m. Hence, signatures
have the form: SbusA = (ast + al2h + 2× al2m).
BSeB can be implemented with either l2h or st. Conversely, l2m are not appropriate as it is not possible to
place high pressure on the bus with l2m since they miss in cache and take long to be served from memory,
leaving the bus idle in the meantime. Instead, l2h and st can place very high pressure on the bus. Our
approach considers BSeB to only have st operations.
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BStB (abstracting interfering task(s) bus usage). Templates can be mono- (L1D) or bi-dimensional (L2D).
L2D. Accesses of type st and l2h generate different impact on the bus (recall that l2m are equated to 2 st). In
particular, l2h produces the highest impact and st the lowest. This allows generating bi-dimensional templates:
L2D = (kl2h, k2×l2m+st), whereby BStBs comprises load L2 hit accesses and store accesses to generate each
respective type of interference.
L1D templates comprise only l2h, which generate the highest interference. A given L1D = (kl2h) with k l2h
accesses upper bounds the impact that one or several tasks, whose bus access count is lesser or equal to k,
can generate on any other interfered task. L1D are easier to generate and simplify experimentation, but they
increase the pessimism of ETBs, since st are considered to generate the same impact as l2h.

Putting it all together. Deriving the access count for BSeB and BStB varies for L1D or L2D as we show next.
SA − L1D. Let a and k be the number of accesses in the signature SA and the template LK respectively.
Running BSeB and BStB concurrently, we derive an upper bound to the increase in execution time (∆BStB

BSeB)
that k accesses of the template can have on the a accesses of the signature. If k ≥ (Nc − 1) × a then each
request of SA suffers the impact of Nc−1 contenting requests. If this is not the case, only dk/(Nc−1)e requests
from SA suffer the impact of Nc − 1 contenting requests.
The number of request accesses generated by the BSeB is given by N = min(a, dk/(Nc−1)e). By running this
BSeB against Nc − 1 BStB copies, each having a number of accesses largely above N , we derive an upper
bound to the impact that LK has on SA. The impact that a task can suffer due to a template LK with k l2h is
upper bounded as: ∆BStB

BSeB = ETBStBBSeB − ET isolBSeB . The ETB derived for a given task τA and template LK is:
ETBKA = ET isolA + ∆BStB

BSeB .
SA − L2D. In the case of 2-dimensional signatures and templates we account for the fact that requests sent
by the interfered task, τA, suffer different interference by the l2h and l2m/st sent by the interfering tasks,
abstracted in L2D. In this approach we pair up every request in τA with Nc − 1 requests in L2D causing the
highest interference (l2h) on the former. If the number of those requests in L2D is exhausted, we pair up τA
requests with those in L2D causing the second worst interference (st).
We generate two BSeB and BStB pairs to capture the impact that accesses in SA suffer from l2h and l2m/st in
L2D so that:

∆BStB
BSeB =

(
∆BStBl

BSeB1
+ ∆BStBs

BSeB2

)
(4.27)

BSeB1/BStBl and BSeB2/BStBs capture the interference on τA’s accesses caused by the l2h and l2m/st in
L2D respectively. BSeB1 and BSeB2 have different number of st operations, N1 and N2. BStBl comprises l2h
operations whereas BStBs comprises st operations.
Let us assume for example a = 30, kl2h = 60, and kst = 80. In this case, BSeB1 hasN1 = min(30, d60/3e) = 20
st, which we pair up with 20 accesses in SA; and BSeB2 has the rest of accesses in SA, N2 = 30− 20 = 10 st,
which we pair up with 3 × 10 requests out of the 80 accesses in kst. The remaining 50 st in kst are not paired
since they will not cause further impact on SA. Overall, an upper bound to the impact that an application can
suffer due to L2D is given by:

ETBKA = ET isolA +
(

∆BStBl

BSeB1
+ ∆BStBs

BSeB2

)
(4.28)

For the memory controller we follow the same principles as for the bus, with the particularity that the impact
from/to the read/write request types is homogeneous. Hence we only need L1D templates. The RStB and
RSeB for the memory are called MStB and MSeB.

4.6.2.2.4 Multi-resource signatures

In the presence of several shared resources, the signatures and templates must cover the features to upper
bound contention in each of them. For the reference architecture considered in this work, signatures and
templates are as follows: Sbus+mcA = (ast + al2h + 2al2m, amem) and Lbus+mcK = (kst + 2kl2m, kl2h, kmem).
It is possible that a task suffers contention in several shared resources simultaneously, so that the impact of the
contention does not accumulate but rather overlaps. However, determining trustworthy bounds to the degree
of overlap in the contention suffered on requests to different resources is hard. Signatures and templates are
intentionally made agnostic to the distribution of requests over time. As we focus on the number of requests
to each resource rather than on their timing, it is difficult to determine how contending requests overlap. Our
current approach assumes no overlap in contention, which in a time-anomaly free processor design [57] is a
safe assumption on the maximum impact of contention. It needs to be investigated to what extent the ARM Juno
processor is subject to timing anomalies and to what extent those timing anomalies break our assumptions.
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1 2 3 4 5 6 7 8 9 10 11 12 13
Isolation A∞1 B∞1 C∞1 D∞1 A3

2 A0
3 D1

2 C2
2 B3

2 C1
3

Task A h/m miss miss miss miss miss hit hit miss miss hit
Multicore A∞1 B∞1 C∞1 D∞1 A3

2 X∞1 Y∞1 A2
3 D3

2 C4
2 B5

2 Y 4
1 C2

3

Task A h/m miss miss miss miss miss MISS MISS miss miss MISS
Table 4.8: Illustrative example of how stack distance helps capturing misses due to contention

Overall, in the presence of a template for the bus Lbus and the memory Lmc (a.k.a. Lbus+mc), a task is assumed
to suffer the sum of the contention generated by both templates:
ETB

Lbus
K +Lmc

K

A = ET isolA + ∆BStB
BSeB + ∆MStB

MSeB

4.6.3 OnChip Cache Sharing

Given two applications, A and B, executed concurrently in a processor with a shared L2 cache, how the latter
impacts the former due to shared cache interference depends on several parameters. These include:

1. The L2 cache access frequency that, in turn, is determined by the miss rate in DL1 and IL1. In the case
of a write-through DL1, the number of stores also affects the access frequency to the L2, since they are
forwarded to L2 regardless of whether they hit or miss in DL1. Note that, since DL1 and IL1 are private
to each core, their behavior is essentially unaffected by contender tasks.

2. The L2 cache miss frequency, which serves as a proxy metric of the cache requirements of the applica-
tions. In general, the more an application misses in L2, the higher its L2 cache requirements are.

3. How applications’ L2 accesses interleave, that is, the particular order in which accesses occur to the L2
which affects A an B behavior in cache.

4. The memory mapping, aka the memory addresses where their code/data are mapped. With modulo
cache placement this determines the cache sets that A and B use.

Capturing all these low-level factors is challenging due to the high frequency at which they occur. In the extreme
case, one would need the sequence of addresses accessed by each application, as well as the cycle in which
L2 accesses occur. However, such sequence is not only time consuming to collect, but also hard to reproduce
automatically with surrogate applications. Mimicking their access times of individual accesses further difficults
the creation of surrogate applications.
A more workable approach requires better balancing the accuracy it can be obtained when mimicking the cache
events of a given task, and the information to be extracted from the application to do so. In the remaining of
this section, we propose such an approach based on the stack distance.

4.6.3.1 Introduction to Stack Distance

Common eviction cache policies such as least-recently used (LRU) have the stack property [61]. Each set in a
cache can be seen as a LRU stack, where lines are sorted by their last access cycle: the first line of the LRU
stack is the most recently used (MRU) line, whereas the last line is the LRU. The position of a line in the LRU
stack defines its stack distance. Further, those accesses with a stack distance smaller than or equal to the
number of cache ways (w) result in a hit and vice versa, as shown in Equation 4.29 and Equation 4.30, where
sdi is the number of accesses with stack distance i.

hits =

w−1∑
i=0

sdi (4.29)

misses =

+∞∑
i=w

sdi (4.30)

Overall, in the context of LRU, the stack distance of an access @Ak is the number of unique (i.e. non-repeated)
addresses mapped to the same set where @Ak is mapped and that are accessed between @Ak and the
previous access to it, @Ak−1. Note that stack distance is similar to the concept of reuse distance, though the
latter does not break down accesses per set.
While we focus on LRU, a similar analysis could be conducted in other replacement policies such as, for
instance, First-In First-Out (FIFO). In the case of FIFO, the stack distance is defined w.r.t. the last access
fetching an address rather than the absolute last access to that address.
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4.6.3.2 Stack Distance as Proxy for Cache Contention

In our baseline platform, hit accesses in IL1 and DL1 are not affected by cache contention since both IL1
and DL1 are private and non-inclusive, thus meaning that a L2 eviction cannot create a cascade effect in L1
caches. With respect to the L2, L2 misses are not affected either by contention. Since we focus on independent
applications that do not share data or instructions, if an access of a given application results in a miss when the
application runs in isolation, it will also result in a miss in any workload in which the application runs. Hence,
only hit accesses can change their behavior. In particular hits to the L2 can become misses due to evictions of
contender tasks.
Building on stack distance, we can formulate the case where an access (e.g. @Ak) that hits in L2 when the
application runs in isolation, becomes a miss when the application runs in multicore mode as follows. The stack
distance of @Ak when the application runs in isolation is smaller than w and in multicore it becomes equal or
larger than w, see Equation 4.31. sdisol(@X) defines the stack distance of an access @X when the application
runs in isolation, and sdmuc(@X) when the application runs in multicore under a given workload.

sdisol(@Ak) ≤ w and sdmuc(@Ak) > w (4.31)

The increase in the stack distance occurs due to the accesses performed by contender tasks to the same set
where @Ak is mapped to. This is better illustrated with the simple example presented in Table 4.8. The first
row corresponds to the sequence of accesses of a given task T1 to an arbitrary set. The second row shows
the sequence of accesses to the same set when task T1 runs simultaneously with another task T2. Note that
application T1 accesses addresses @A, @B, @C, and @D whereas application T2 accesses addresses @X,
@Y , @Z. For the sake of simplicity all addresses are assumed to belong to different cache lines. For each
address the super index shows its stack distance. For each address the subindex describes its stack index and
the superindex the number of times that access has repeated. Assuming a 2-way cache we observe that T2

accesses increase T1 accesses’ stack distance making that some of them become miss, marked as ‘MISS’ in
the table.

4.6.3.3 sdki

From the previous analysis it follows that mimicking stack distances of the accesses of a given application is
critically important to accurately reproduce the impact that such application can have on other applications.
While this is not necessarily the only parameter that needs to be mimicked, as shown in our evaluation section
it is enough to achieve high accuracy in the applications evaluated.
In our approach we define stack distance k per thousand (kilo) of instructions or sdkik as the number of
accesses with stack distance k every 1,000 executed instructions. Note that the normalization to thousands
of accesses is just done since stack distance values per instruction are naturally very low (below 1). For each
application we collect the stack distance vector (SDV ) that has w entries as shown in Equation 4.32.

SDV = [sdki0, sdki1, sdki2, ..., sdkiw] (4.32)

Note that under sdkiw we count all values with stack distance ≥ w, since all them result in misses.
Interestingly, with the sdki formulation we can derive other well-known cache parameters, such as accesses
per kilo instruction and misses per kilo instruction, apki and mpki respectively.

apki =

w∑
i=0

sdkii (4.33)

mpki = sdkiw (4.34)

While the sdki provides a powerful abstraction of an application’s cache utilization, it misses some parame-
ters that also affect cache contention. Burstiness covers whether cache accesses (and/or misses) occur in
bursts during execution or, on the contrary, distribute quite evenly over time. Set distribution covers whether
accesses/misses spread across few or many cache sets. While both can be taken into account with our ap-
proach, with the aim of maintaining the SurApp generator simple, in this work we assume homogeneity in
both parameters and provide some guidelines on how both could be factored in when generating SurApp. Our
results show that the accuracy achieved is very high, thus proving the effectiveness of our approach without ac-
counting for those parameters. However, as part of our future work we plan to identify applications particularly
sensitive to those parameters and extend our generation of SurApps accordingly.
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Parameter Definition
il1 size Number of instructions that fit in L1
w Number of ways
w size way size in bytes
inst Number of desired executed instructions
SDV Vector that represents the proportion of the accesses

that has certain SD
otype Type of accesses to memory, this parameter can be

”LOAD” or ”STORE”
Nnops Number of nop instructions to inject in each burst
str Stride among accesses to dvec[]

Table 4.9: Parameters used by SurAppGen

4.6.3.4 Obtaining sdki

The SurApp approach requires deriving sdkik values from target applications when run in isolation. To that
end we can make use of standard tracing facilities existing on many architectures. For instance, the LEON
processor family allows collecting instruction and data addresses, opcode and timestamp of all instructions.
This information is dumped via the debug interface (DSU). Other processors provide similar support, e.g. the
Nexus Interface Nexus Interface [2] for NXP (formerly Freescale) or the Coresight [1] for ARM, which are
increasingly being considered for measurement-based and static timing analysis solutions [32, 33].
Overall, obtaining the information needed to compute sdkik values is doable in many architectures using ex-
isting tracing capabilities. When those capabilities do not exist, emulation or simulation tools can be used
instead.

4.6.3.5 Surrogate Cache Application Generator

The Surrogate Cache Application Generator (SurAppGen) generates applications in C code. When those
applications are compiled and executed they mimic the cache behavior of the target applications described
with the input parameters passed to the SurAppGen. In this section we describe the main structure of a
SurApp as well as the parameters that the SurAppGen uses to control its behavior.
The main data structure of the SurApp is a vector (dvec[]) whose size is given by dvec size = (w + 1)× wsize,
where w is the number of ways and wsize the size of a cache way. For instance, for a 32KB 4-way cache
dvec size = (4 + 1)× 8KB = 40KB. SurApp accesses this vector appropriately so that those accesses match
the sdki described in SDV .
A SurApp contains two well differentiated phases: an initialization phase and an execution phase. While during
the initialization phase some internal parameters are updated based on the input parameters, most of the
initializations are carried out by the SurAppGen reducing as much as possible the code in the initialization of
the SurApp. For instance dvec[] size is initialized before the SurApp is compiled, thus avoiding the execution of
memory allocation operations.
For accessing cache, the SurApp can be configured to use either loads or stores. SurApp generates activity in
the L2 via data accesses, which are easier to control explicitly than instruction accesses. On the other hand,
its code is specifically designed to fit in the IL1 cache so that it does not create uncontrolled interferences.

4.6.3.5.1 Initialization and Pre-Initialization phases

The input parameter otype determines whether the type of accesses used by the SurApp are loads or stores,
which in fact, affects the initialization phase.
When otype = load, we follow a pointer chasing approach in which in each entry of the vector we store the
address of the next element to access, see Figure 4.18. This allows traversing the vector during the execution
phase without additional control instructions to compute the address of the next element to access. The
elements of the vector that are accessed are str bytes apart. By playing with the dvec size and str we can
force all accesses to hit/miss in a desired cache level and be accessed with specific stack distances in the
range [0,w].
When otype = store, we cannot follow the same pointer-chaising approach. In this case, the vector is just
initialized to zero leaving the computation of the addresses of the elements to access to the execution phase.
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Figure 4.18: Block Diagram of the pointer chaising approach followed for loads.

4.6.3.5.2 Execution Phase

The execution phase works with different sub-phases for each stack distance, meaning that different code is
generated for each stack distance. These code blocks are defined by the block-operation() function that is in-
voked once per stack distance as shown Algorithm 1. As input parameters,
block-operation() has the stack distance sd, the number of nops4 Nnops to generate and the total num-
ber of instructions to generate inst. Note that sdki is an input parameter to the SurAppGen, whereas the
number of instructions to execute for each stack distance value is computed by SurAppGen.

Algorithm 1 Baseline structure of the generated SurApp.
1: procedure EXECUTE

2: for (i = 0; i <= w; i+ +; ) do
3: block-operation(i, iter, Nnops);
4: end for
5: end procedure

The function block-operation(), see Algorithm 2, executes memory operations with a stack distance i and
also core operations – in particular nop operations. The number of nop operations Nnops to execute and the
number of iterations of the main loop in block-operation() is computed by the SurAppGen so that the desired
sdki is achieved: (iter,Nnops) = compute params(sdki, inst), where inst defines the number of operations to
execute. The reset() function properly resets the access pointer to dvec[] as needed.
The main body of block-operation() invokes memory operations and nop operations (line 6 and 7). For the
former, the memory operation(addr) is invoked and for the latter, nop operation(Nnops) is invoked.

Algorithm 2 Code executed for each stack distance

1: procedure BLOCK OPERATION(sd,iter, Nnops)
2: reset(addr);
3: for (i = 0; i < iter; i+ +; ) do
4: for (j = 0; j <= sd; j + +; ) do
5: for (k = 0; k < w size; k + +; ) do
6: memory operation(addr);
7: nop operation(Nnops);
8: end for
9: end for

10: end for
11: end procedure

The code of memory operation(addr) varies for loads and stores, while the functionality is roughly the same.
In particular, the first (sd+ 1)× w size bytes of dvec[] are accessed so that after the first iteration all accesses
have the desired stack distance. Note that in the first invocation of memory operation(addr) all accesses to
dvec[] have sd = w, which is accounted by the SurAppGen when computing the number of memory operations
with sd = w.
When the memory operations to be generate are loads, the body of memory operation(addr), as shown in
Algorithm 3, basically loads in a variable the current position in dvec[]. The contents of this variable is, in fact,
the address of the next address to be accessed, since it dvec[] has been initialized following a pointer chaising
approach by the SurAppGen.

4A nop (not operation) is an instruction type existing in most architectures, which has no functional effect and executes
typically in a single cycle. If nops do not exist in a given architecture, alternatives can be used such as performing simple
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Algorithm 3 Algorithm for memory operations with loads

1: procedure MEMORY-OPERATION(addr)
2: addr = dvec[addr];
3: end procedure

When the type of memory operations to be generated is store, the body of memory operation(addr) has some
differences w.r.t. the case of loads. In particular, after storing a value in the target address some control
operations are needed to compute the next address to access, see Algorithm 4.

Algorithm 4 Algorithm for memory operations with stores

1: procedure MEMORY OPERATION(addr)
2: dvec[addr] = 0;
3: addr+ = stride;
4: end procedure

Finally, the code of the core-operation() function is given in Algorithm 5. It basically executes Nnops nop
operations.

Algorithm 5 Algorithm for core operations

1: procedure CORE OPERATION(Nnops)
2: for (i = 0; i < Nnops; i+ +; ) do
3: nop;
4: end for
5: end procedure

Note that for sake of clarity in the explanations we have encapsulated all code in functions, which can be
however inlined to reduce the overhead of control operations (i.e. call and return).
In the same line, some loops can be simply removed unrolling the body as many times as needed – keeping
in mind the restriction that the SurApp code must fit in IL1. If loops are used, the number of control (core)
operations they generate is factored in by the SurAppGen to achieve the desired sdki defined in the SDV .
It is also the case that we generate the code in C since this improves portability, though it requires certain
control on compiler flags so the assembly code actually reaches the desired goal. Alternatively, SurApp can be
generated directly in assembly code, which needs however the use of specific assembler instructions for the
target architecture.

4.7 Timing Integrity for Network: SAFURE Solution

4.7.1 Timing Integrity for Network: Challenges & Existing Solutions

Ethernet has long been identified as the replacement for Flexray as the communication backbone in the au-
tomotive domain. On the one hand, Ethernet can provide the bandwidth and flexibilty required for modern
high-througput applications which Flexray is lacking. On the other hand, Ethernet was originally not devel-
oped with any real-time constrains in mind and hence lacks any inherent real-time properties. Embedded
applications, however, are often required to comply with strict real-time constraints. This becomes especially
challenging when certified high critical data and low critical data have to share a medium, such as the commu-
nication network. With a limited number of priorites, standard Ethernet offers only a limited inherint isolation.
However, for these mixed-critical networks, sufficient isolation between data streams of different criticalies has
to be ensured.
In the context of SAFURE, we focused on Time-Sensitive Networking, a set of upcoming Ethernet extensions
aimed at providing methods to integrate aspects of saftey and timinig criticality into Ethernet. Older standards,
such as switched Ethernet (IEEE802.1Q)[86, 85, 31], Ethernet Audio-Video Bridging (AVB) (IEEE802.1Qav)[49,

arithmetic operations and storing results in innocuous destinations such as the always-zero register or an unused one.
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31] or Avionics Full-Duplex Switched Ethernet (AFDX) [41, 4] have been covered by several analyses, see sec-
tion 4.3 in D3.1. Additionally to switch-level frame transmission schemes, network management techniques
were evaluted. Modern embedded systems need to be capable to adapt to the ever changing environment, be
it a change in the system objective, or simply to adapt to unforeseen events. One possible candidate for such
a real-time supporting network managment is the Software Defined Networking (SDN).
In the following, we present the work performed on real-time Ethernet standards, as well as SDN, in the context
of SAFURE.
TSN is utilising its underlying Ethernet structure. Therefore, we also provide analysis methods for standard
switched Ethernet (IEEE802.1Q) as a reference. All models and analyses are build on the compositional
performance analysis (CPA) approach.

4.7.2 Compositional Performance Analysis for Ethernet

In this section we give a brief overview of the compositional performance analsis (CPA), which is used to derive
the worst-case timing behaviour of the Ethernet switches and, therefore, end-to-end delays of frames sent
through a network. A more detailled description of CPA can be found in [43].
The CPA model consists of three elemental parts: resources, tasks and event models. Resources provide
an abstract service according to a specified scheduling policy which is consumed by tasks being executed
on these resources. The tasks are activated according to their input event models and produce an output
event model, which describes their termination behaviour. In contrast to a single event trace, event models
only consider the best- and worst-case behavior, which is bounded by the set of arrival functions η−(∆t) and
η+(∆t), bounding the minimum and maximum number of task activations within the given, half-open, time
interval [t, t + ∆t]. There also exist the pseudo-inverse functions δ−(n) and δ+(n), which yield the minimum
and maximum (time) distance between any n consecute events.
Tasks can form a linked path, if the output event model of one task is utilised as the input event model for
another.
For Ethernet, CPA resources represent switch output ports which provide transmission time for frames, whose
frame transmissions are modelled as tasks. An Ethernet stream is defined as a sequence of frames being
transmitted via a defined path, and is hence modelled as chain of tasks as described above. The frame
transmission duration, i.e. the amount of consumed service, depends on the the port speed (rTX )of the output
port and length of the frame, determined by its payload (pi):

C
−/+
i =

(
42byte + max{42byte, p−/+i }

)
/rTX . (4.35)

The longest transmission time (C+
i ) is needed, if the largest payload (p+

i ) is transmitted.
We need to add the protocol overhead for our Ethernet frames of 42 byte for the Ethernet frame, as well as
UDP/IP packaging. Additionally, we consider the minimum valid Ethernet frame length and add padding if
necessary.
The analysis in CPA [43] is performed in two steps: 1) A local analysis is performed which derives the best-and
worst case frame latencies on each indivial switch output port. 2) A global propagation of the resulting output
event models from the first step. Event models are propagated by a loop, which terminates if all event models
have converged and become stable, otherwise, the cycle is repeated.
In order to determine the worst-case end-to-end latencies for the path of Ethernet frames, the local worst-case
transmission latencies on each switch port are accumulated.
In the following sections, we concentrate on the local analysis of switch ports, since they are dependent on the
scheduling policy of the respective switch.

4.7.3 Switched Ethernet

The goal of the local analysis is to determine the worst-case transmission latency of a frame at a particular
switch. The transmission latency of a frame is the duration from when the frame has been received at the switch
input port until it has been fully transmitted via an output port. Within each switch the transmission of a frame is
affected by several stages: contention at the input port, forwarding delay in the switching fabric, queueing delay
at the output port buffers, and transmission delay on the link. The first two are impelementation dependent and
typically in the order of a few clock cycles, i.e. they are significantly lower than actual transmission latencies.
The transmission delay on the wire can be considered constant, e.g. a 10m copper wire causes a delay of
roughly 50 ns. Therefore, we assume that the transmission latency of a frame consists only of the output port’s
queueing delay, as the other delays only have negligible impact on the transmission latency or can be added as
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constants to the other delays. The output port queueing delay accounts for all delays caused by an output port
scheduler (including the various delays and shaper effects of Time Sensitive Networking (TSN) in the following
sections).
Ethernet frames are generally transmitted non-preemptivley. Therefore, the worst-case transmisssion latency
R+
i of a frame for stream i can be computed via its worst-case queueing delay within its corresponding output

port. The worst case queueing delay of the q-th frame is computed via the busy period:

Definition 1. The worst-case queueing delay wi(q, a
q
i ) of frame q of stream i arriving at aqi at the output port,

is the the time interval from the beginning of the level-i busy period [27] (the arrival of the first frame within i)
until the transmission of frame q starts.

Note that aqi is measured relatively to the start of the busy period and that wi(q, a
q
i ) depends on the arrival time

aqi of the q-th frame, which will be addressed below.
Frames of different traffic streams interfere at the switch output ports. There, different blocking effects can
occur:
Lower-priority blocking: If a lower priority frame can block a higher priority frame. This can happen at most
once, if the lower priorty frame started transmissing just before the higher priority one arrives:

ILPBi = max
j∈lp(i)

{C+
j } (4.36)

where lp(i) is the set of all traffic streams with a priority lower than that of stream i.
Higher-priority blocking: In any time interval ∆t, a frame of stream i can be blocked by all higher-priority
frames arriving before this frame can start its transmission:

IHPBi (∆t) =
∑

j∈hp(i)

η+
j (∆t)C+

j (4.37)

where hp(i) is the set of all traffic streams with a priority higher than that of stream i.
Same-priority blocking: A frame of stream i suffers also from blocking of frames with the same priority FIFO
queue. The q-th arrival of a frame of stream i, arriving at aqi , is queued behind q − 1 predecessors of its own
stream and for all frames of other same-priority streams, which have been queued previous to its arrival.

ISPBi (q, aqi ) = (q − 1)C+
i +

∑
j∈sp(i)

η+](aqi )C
+
j (4.38)

Here sp(i) is the set of all traffic streams with a priority equal to that of stream i (excluding stream i). The
function η+](∆t) conservatively covers the worst-case order of frame arrivals and returns the number of frame
arrivals in any closed time interval [t, t+∆t] . As Ethernet typically serves frames of equal priority in FIFO order,
a candidate search is required to compute the worst-case blocking [31]. If a frame arrives as early as possible,
it might have to wait longer for a currently transmitted frame to finish. If it, however, arrives as late as possible,
more frames of the same priority might have been queued before its arrival, increasing the blocking. In [31]
the authors have shown, that the candidates which need to be considered, can be reduced to the instances,
where aqi coincides with arrivals of interfering same-priority frames.

Aqi =
⋃

j∈sp(i)

{
δ−j (n)|δ−i (q) ≤ δ−j (n) < δi(q + 1)

}
n≥1

(4.39)

With this, the worst-case queueing delay wi(q, a
q
i ) for the q-th arrival of a frame of stream i, arriving at time aqi ,

can be computed with:

wi(q, a
q
i ) = ILPBi + ISPBi (q, aqi ) + IHPBi (wi(q, a

q
i )) (4.40)

This equation represents a fixed-point problem, which can be solved by iteration, as all terms are monotonically
increasing. As a starting point, a conservative lower bound can be chosen, e.g. wi(q, a

q
i ) = (q − 1)C+

i .
The largest transmission latency Ri(q) of frame q can be derived from its queueling delay, transmission latency
and taking the arrival time of the frame into account, as shown in Fig. 4.19:

Ri(q) = max
aqi∈A

q
i

{
wi(q, a

q
i ) + C+

i − a
q
i

}
(4.41)
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Figure 4.19: Example queuing delay

The worst-case frame transmission latency for all frames within stream i can therefore obtained with:

R+
i = max

1≤q≤q̂i
{Ri(q)} (4.42)

where q̂i is the largest number of frame arrivals of stream i which have to be evaluated. This value is equal to
the largest number of frame tranmsisions of stream i in the longest level-i buy period for non-preemptive static
priority (SPNP) scheduling [27]. For the SPNP transmission in IEEE802.1Q, this upper bounds for the longest
level-i busy period can be computed - similar to the queueing delay - with:

ŵi = ILPBi + ÎSPBi (ŵi) + IHPBi (ŵi) (4.43)

This equation is again a fixed point problem to be solved iteratively.
In contrast to Eq. 4.38, we do not need to distinguish between individual frames arrivals q. Therefore, ÎSPBi (δt)
is defined as:

ÎSPBi (δt) =
∑

j∈sp(i)∪{i}

η+
j (∆t)C+

j (4.44)

The maximum number of frame arrivals of stream i, which have to be considered in Eq. 4.42, is q̂i = η+(ŵi).

4.7.4 Ethernet TSN - Time Sensitive Networking

Ethernet Time-Sensitive Networking is a set of upcoming Ethernet standards, which, among other things, intro-
duces new qualtiy-of-service mechanisms to Ethernet. Among these mechanisms are three traffic shapers and
a mechanism which allows to preempt frames being sent. One basic principle of TSN is that all traffic shapers
use time-driven scheduling. In the scope of SAFURE, analysis methods to evalute the listed mechanisms have
been developed and are presented below.

4.7.4.1 TSN Time-Aware Shaper

In this section, we present a local analysis for TSN’s time-aware shaper (TAS) [48, 87]. In contrast to IEEE802.1Q,
TSN/TAS is a time driven link arbitration scheduler. In order to achieve this, a gate is added to each traffic
class in the output port, which - if open - allows frames to pass through, or - if closed - blocks them. The
programmable gate schedule defines the time intervals during which frames from specific traffic classes are
allowed to pass through. On top of the gate schedule, link access arbitration is performed according to the
class priorities. Guard bands are used to ensure that frames are only transmitted as long as the corresponding
gates are open. These bands define a time period during which frames are not allowed to start transmitting,
but frames already being transmitted are allowed to finish. TSN/TAS suggest to protect critical traffic classes
by only opening their respective gates during special (scheduled) time intervals, gates from other classes are
closed during these periods [48]. We further assume, that these intervals are seperated, i.e. not overlap-
ping, so that link access without interference from higher or lower-priority traffic can be guaranteed. However,
there can still be interference from same-priority traffic. Outside of these scheduled intervals, the other gates
are opened so that (non-critical) traffic classes are allowed to compete for the link access according to their
priorities.
We define T as the set of all Ethernet traffic classes, which receive isolated link access by the time-aware
shaper gate schedule. Further, we define I ∈ T as TAS classes, their corresponding traffic streams TAS
streams and frames TAS frames. Each TAS class is assigned to a TAS interval tTASI which is scheduled with
a period of tCY CI , as shown in Fig. 4.20. While the gate schedule will eventually repeat itself, the TAS intervals
do not necessarily have to be periodic or of equal length. This approach is, however, nevertheless chosen,
as it naturally fits many automotive use cases. We present two analyes for TSN/TAS to derive worst-case
transmission latency bounds for A streams of a TAS class and B streams of non-TAS classes.
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Figure 4.20: TSN/TAS: (a) Common notations. Frame 3 experiences same-priority blocking from Frames 1
and 2. (b) Maximum blocking by a single TAS class.

Analysis of Time-Aware Traffic Streams

Outside of their dedicated TAS interval the frames of all TAS streams i of the TAS class I are blocked and
waiting for their upcoming interval. Within their interval, these streams have exclusive access to the link and
only experience same-priority blocking from other streams j ∈ cl(i), where the function cl(i) maps a traffic
stream i to its corresponding traffic class. Frames concurrently arriving, are assumed to be queued in the
worst-case order, as in the priotiy blocking in IEEE802.1Q. Thus, to compute the worst-case queueing delay
Wi(q, a

q
i ) (see Definition 1 in section 4.7.3) same-priority and what we will call closed-gate blocking has to be

considered.
Same-priority blocking is independent of the number of TAS intervals, hence it can be computed following
eq. 4.38.
Closed-gate blocking: The blocking due to closed gates describes the time the TAS class is blocked as its
gate are not open including the time during which no frame preemption is allowed to start transmitting due to
the guard band. The amount of closed-gate blocking can be derived from the number of TAS intervals required
to serve the accumulated workload requested by TAS class I. Due to the non-preemptive nature of frames this
is a combinatorially complex problem. The worst-case combination of arriving TAS frames has to be found so
that the maximum blocking is found. Each interval is to be utilised so that no additional TAS frame can start its
transmission. This discrete problem is transformed into a continious one:
Theorem 1. The minimum workload, which can be processed in a TAS interval of TAS class cl(i) = I ∈ T is
given by:

s−cl(i) = max

{
tTAScl(i) − max

i∈cl(i)
{C+

i }, min
i∈cl(i)

{C−i }
}

(4.45)

Proof: see [87].
We define the accumulated workload which is requested by TAS class cl(i) as ∆w. The maximum number of
required TAS intervals can then be computed by dividing ∆w by s−cl(i) from eq. 4.45. The longest time interval
between any two consecutive TAS intervals is tCY Ccl(i) −scl(i), i.e. the time interval during which no frames of cl(i)
are transmitted. The maximum closed-gate blocking for any frame of stream i is then given by:

I
CGB(∆w
i =

(⌈
∆w

s−cl(i)

⌉
− 1

)(
tCY Ccl(i) − s

−
cl(i)

)
+ tCY Ccl(i) − t

TAS
cl(i) + max

i∈cl(i)
{C+

i } (4.46)

The last three terms represent an upper bound on the round-trip penalty, i.e. the maximum time a TAS frame
has to wait for its first TAS interval to transfer. It assumes, that the longest frame has just arrived after the guard
band has become active, see Fig. 4.20. This can - for instance - occur if the gate schedules along a path are
not synchronised. For perfectly synchronised networks, this term can be improved for tighter results [87].
With Eqs. 4.38 and 4.46, the worst-case queueing delay of the q-th TAS frame, arriving at aqi , can be computed:

wi(q, a
q
i ) = ISPBi (q, aqi ) + ICGBi

(
ISPBi (q, aqi ) + C+

i

)
(4.47)

For the calculation of ICGBi (∆w) in eq. 4.46 the accumulated workload requested by TAS class cl(i) is required
as its argument and ISPBi (q, aqi ) only considers (q− 1)C+

i . Therefore, we must add one transmission C+
i . The

maximum frame transmission latency can be computed similar to IEEE 802.1Q.

Analysis of Non Time-Aware Traffic Streams

While TAS streams are isolated from other classes by closing their respective gates, frames of non-TAS streams
potentially interfere with all other non-TAS classes. Therefore, non-TAS traffic can be modelled like IEEE
802.1Q and TAS intervals from all classes J ∈ T can be consider as additional periodic blocking terms, when
deriving the worst- case queueing delay.
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The blocking by lower-, same- and higher priority blocking can be modelled as described in Section 4.7.3
for IEEE802.1Q. Note, that for the calculation of these values, only non-TAS traffic classes must be considered
(TAS classes are excluded due to closed gates).
Blocking by TAS classes: We start by bounding the maximum interference a single TAS interval can cause.
Theorem 2. The maximum blocking caused by a single TAS interval tTAS on a non-TAS class I 6∈ T is

t̃TASI,J = max
i∈∪I 6∈T I

{C+
i }+ tTASJ (4.48)

Proof: see [87].
The maximum number of times a TAS class J can interfere with a non-TAS stream i can be computed by
dividing ∆t by tCY CJ . The interference of all TAS classes J ∈ T can be calculated with eq. 4.48 on a non-TAS
stream i as:

ITASBi (∆t) =
∑
J∈T

⌈
∆t

tCY CJ

⌉
t̃TAScl(i),J . (4.49)

This consercatively assumes, that the blocking by different TAS classes does not overlap, i.e. leading to the
worst case interference. We can calculate the worst-case queueing delay of frame q arriving at aqi of a non-TAS
stream with eqs. 4.36, 4.37, 4.38 and 4.49 as:

wi(q, a
q
i ) = ILPBi + ISPBi (q, aqi ) + IHPBi (wi(q, a

q
i )) + ITASBi (wi(q, a

q
i )) (4.50)

The maximum frame transmission latency can be computed equivalently to eq. 4.41 and 4.42 for IEEE802.1Q
by substituting the respective queueing delays with eq. 4.50 or 4.47.

4.7.4.2 TSN Peristaltic Shaper

This section presents a local analysis for the TSN peristaltic shaper (PS) [87]. For the TSN/PS shaper, con-
tinous time is divided into two alternating time intervals of equal length: even and odd. Frames arriving at a
switch are - additionally to their priority - classified via their arrival time, i.e. whether they arrive in an even or
odd interval. Frames received in an even interval are to be transmitted in the next odd interval and vice versa.
Hence, like AVB or TSN/TAS, TSN/PS is not work conserving. If an interval is too short to transmit all frames
scheduled for it, the current interval overlaps into the following ones. Frames scheduled for intervals which are
affected by this transient overloads are delayed until the overload has been subsided. This way the intra-class
frame order is preserved (even) under transient overload.
The motivation for TSN/PS is to provide an easier means to compute latency bounds for the residence time
of frames within a switch. This, however, only works if no interfering traffic exists. In reality, a thorough timing
analysis is required nonetheless.
We define P as the set of PS traffic classes, i.e. the ones being scheduled according to their arrival intervals.
All other streams - or non-PS classes - are scheduled according to IEEE802.1Q. Traffic classes I ∈ P PS
classes and, correspondingly, their traffic streams are called PS streams and frames of these streams PS
frames. We further define the length of a PS interval for a I ∈ P PS class as tPSI .
PS frames are scheduled for the following interval, that means, that a frame cannot be sent during its arrival
interval, even if the port is not busy. The first arriving frame (and its waiting time) marks the beginning of the
busy period and define the PS interval pattern for it. We define this waiting for I ∈ P with φPSI , see Fig. 4.21.
In the following paragraphs, we present the analyses to derive the worst-case transmission latency bounds for
PS frames and for non-PS frames.

4.7.4.2.1 Analysis of Non Peristaltic Traffic Streams

Non-PS traffic classes are scheduled according to IEEE802.1Q. Therefore, the calculation of the blocking from
same-priority streams is equvialent to IEEE802.1Q. The same is true for lower-priority traffic, for which both
PS and non-PS traffic has to be considered. For blocking by higher-priority streams, we have to consider two
different cases:
(a) blocking by higher-priority non-PS classes j, j ∈ hp(i) ∧ cl(j) ∈ P, and (b) the higher-priority blocking is by
frames of PS streams j, j ∈ hp(i) ∧ cl(j) ∈ P.
For (a), the computation is identical to the computation for higher-priority blocking in IEEE802.1Q:

IHPB,nPSi (∆T ) =
∑

j∈{k|k∈hp(i)∧cl(k)6∈P}

η+
j (∆t)C+

j (4.51)
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Figure 4.21: TSN/PS: Frames of PS class I experience interference from higher priority classes K (non-PS)
and J (PS) and one lower-priority frame. It takes more than one PS interval to transmit the first three frames of

PS stream I.

In the case of PS streams (b), we have to take into account that frames of PS streams are delayed until the
next interval before they are scheduled. These frames could be delayed for the length of their PS interval tPSJ
in the worst-case, before they can interfere with the frames of stream i. Hence, interference from PS streams
occurs at the end of their PS intervals. In Fig. 4.21 frames J.1 and J.2 from PS class J are delayed during
their arrival intervals and released at the same time at the end of this interval.
The maximum number of PS intervals of class J in the time interval ∆t can be calculated with

⌈
∆t/tPS

J

⌉
In order

to get the accumulated interference from PS stream J , we multiply this number with the length of the interval:⌈
∆t/tPS

J

⌉
tPSJ . With this, we can calculate the higher-priority blocking for each PS stream j of class J for stream

i:

IHPB,PSi (∆t) =
∑

j∈{k|k∈hp(i)∧cl(k)∈P}

η+
j

(⌈
∆t

tPScl(j)

⌉
tPScl(j)

)
(4.52)

Analysis of Peristaltic Traffic Streams

The analysis of a PS traffic stream i is similar to the analysis of non-PS traffic, with the exception of an
inital offset φPScl(i) which only affects streams of the analysed PS class cl(i). Streams of other traffic classes
are generally allowed to transmit during this time. Therefore, the maximum interference is generated if the
interferering traffic classes arrive just before the end of i’s offset, directly after φPScl(i) at the beginnnig of the
busy period (e.g. at t 0 in Fig. 4.21). Non-PS interferers start interfering with PS stream i directly after φPScl(i)
and the end of the first PS intervals of PS interferers is aligned to the end ofφPScl(i) (e.g. t0 in Fig. 4.21) in the
worst-case.
The calculation of lower-priority blocking is identical to the one for non-PS classes. This blocking starts right
after φPScl(i), but is independant of its value.
Same-priority blocking is independent of φPScl(i) as well, as the amount of same-priority blocking only depends
on the q − 1 preceding frames of stream i itself and additional frames of class cl(i) arrived before the arrival
time aqi of candidate q (see Eq. 4.38).
For blocking caused by higher-priority streams, the reasoning from the non-PS analysis is also valid for the
PS analysis and Eqs. 4.51 and 4.52 can be used. However, frames of interfering streams released before φPScl(i)
cannot interfere during φPScl(i), as argued above. In order to create the worst-case blocking, we align interfering
traffic from higher priorty classes so, that their transmission begins directly after φPScl(i), relative to the beginning
of the busy period, as shown in Fig. 4.21
Lastly, we have to take the initial offset φPScl(i) as an additional blocking term for stream i into account to compute
the worst-case queueuing delay:

wi(q, a
q
i ) = φPScl(i) + ILPBi + IHPB,nPSi

(
wi(q, a

q
i )− φ

PS
cl(i)

)
+ IHPB,PSi

(
wi(q, a

q
i )− φ

PS
cl(i)

)
+ ISPBi (q, aqi ) (4.53)

The additive term φPScl(i) is used to model the initial waiting time that PS stream i and streams of cl(i) experience.
However, interference from other streams affects these streams only after φPScl(i) (relative to the beginning of
wi(q, a

q
i )), not during φPScl(i). Therefore, φPScl(i) must be subtracted from the time intervals which determine the
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blocking by higher-priority streams. This is also shown in Fig. 4.21, where I.4 is not part of the busy period,
even though it arrives within it, as it has to wait for the next interval to be scheduled. The analysis presented
here, accounts for this when computing the set of relevant arrival candidate set Aqi in Eq. 4.39 and the largest
value for q̂, derived from Eq. 4.43 in Section 4.7.3
Note that, if all interval length tPSI approach 0, TSN/PS becomes IEEE 802.1Q.

4.7.4.3 TSN Burst Limiting Shaper

The TSN Burst Limiting Shaper (TSN/BLS)[83] is similar to the Ethernet AVB, as both are utilising a credit-
based shaper to control bandwith consumption. In contrast to AVB which only allows bursts of critical traffic
after previous chargin up credit, TSN/BLS allows bursts of limited size to be transmitted without previous
blocking. The rationale behind this is to allow TSN/BLS to react faster to transient overloads of critical traffic.
TSN/BLS limits the workload, which can be released by a traffic-shaped class in a given time interval, by a
credit- based traffic shaper [40]. We define B as the set of all traffic classes which are shaped by a burst-
limiting shaper. Accordingly, we refer to these classes as BLS classes, streams within these classes as BLS
classes and frames within these streams as BLS frames. Each shaper of a BLS class I is utilising a credit
counter, either allowing the shaper to consider frames of this class I for the arbitration process, or blocking
them. (Other proposals in the case of a blocked traffic stream include frame dropping or reducing the priority
of a stream instead of blocking it; these suggestions are not considered here.) Whenever a frame in class I of
size C+ is sent, ths credit of I is increased following a predefined sendslope sSI > 0, i.e. the value SSIC

+. If
the class I is blocked by frames from other classes, its credit is reduced at the rate sII > 0. A class is allowed
to send until its credit reaches a certain limit HI at which point it becomes blocked. The credit is capped at
HI , i.e. if the limit is reached during the transmission of a frame, this frame is allowed to finish transmitting, but
the credit does not increase beyond HI . While being in the blocked state, the credit of I also increases with
sII . Once the credit has been reduced to LI , class I is allowed to send again. The credit cannot reach values
below 0. Figure 4.22 a) shows an example of credit being consumed and recharging. It also shows in b), how
the credit of the green class is reduced by higher-priority interference during its enable interval.

Figure 4.22: TSN/BLS: (a) Frames of class I are sent at their maximum rate until H I is reached and traffic
from I is blocked for credit replenishment. (b) Frames of class I are interleaved with frames of other classes

and class I’s credit is decremented while these frames are being transmitted. Notice how in (b) more workload
is released in the marked interval t.

In the following we present the local analyis to compute the worst-case transmission latencies of a frame at a
specific switch. We focus again on the delay in the output port. Similarly to IEEE802.1Q and the TSN shaper
presented above, we calculate the worst-case queueing delay of frames of I within their corresponding output
ports. In order to determine w(q, a

q
i ), we need to consider different blocking effects.

Shaper blocking: If the credit counter of a BLS class I ∈ B has reached HI , it is blocked and has to recharge
down to LI before resuming its transmission. The time to recharge is dependant on these limits and the idle
slope sII . If more data has to be sent than fits into one sending interval, this recharging can possibly have to
happen multiple times:
Theorem 1. The maximum credit replenishment interval of a BLS class I ∈ B is:

tR+
I =

⌈
HI − L− I
−sII

⌉
+ max
j∈lp(I)

{C+
j } (4.54)

with lp(I) being the set of streams of all traffic classes with a priority lower than that of class I. Proof: see [83].
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The credit recharging described above is required whenever the upper limit HI is reached for BLS class I.
Here, we present the shortest time interval between any two replenishment cycles, i.e. the shortest time for
I ’s credit to go from LI to HI . The shortest time occurs, when frames are sent back-to-back, as shown in Fig.
4.22 a).
Theorem 2. The shortest service interval of a BLS class I during a busy period is:

tS−I = max

{⌊
HI − LI
sSI

⌋
,min
i∈I
{C+

i }

}
(4.55)

We again define cl(i) as a function that maps a traffic stream i to its corresponding traffic class and ∆w as the
accumulated workload of BLS class cl(i). We then can calculate the number of replenishment cycles required
to transmit the workload ∆w as a quotient of

⌈
∆w/tS−

cl(i)

⌉
. From this, the blocking caused by the shaper ISBi (∆w)

for ∆w can be bound by:

ISBi (∆w) =

⌈
∆w

tS−cl(i)

⌉
tR+
cl(i) (4.56)

Since non-BLS streams i are not shaped by credit shapers, they do not experience any shaper blocking, hence
ISBi (∆w) = 0 if cl(i) 6∈ B.
Lower-priority blocking, occurs if a lower-priority frame has just started transmitting before analysed frame
became ready to send. For BLS streams i, lower-priority blocking, is already covered by the shaper blocking via
Eq. 4.54. Since non-BLS streams do not experience shaper blocking and we have to explicitly include lower-
priority blocking, hence ILPBi for cl(i) ∈ B. This is identical to the calculation of the lower-priority blocking in
IEEE802.1Q, i.e. can be found in eq. 4.36.
Higher-priority blocking: We define hp(i) as a function which gives us the set of all traffic streams with a
priority higher than that of stream i. We have to distinguish between two different types: a) higher priority
non-BLS streams j ∈ hp(i) ∧ cl(j) 6∈ B and b) higher-priority BLS streams j ∈ hp(i) ∧ cl(j) ∈ B.
For non-BLS streams, the calculation is equivalent to the calcuation of IEEE802.1Q higher-priority blocking,
with the restriction, that only the non-BLS classes are included:

IHPB,nBLSi (∆t) =
∑

j∈{k|k∈hp(i)∧cl(k)6∈B}

η+
j (∆t)C+

j (4.57)

For BLS higher-priority streams j, the interference is bounded by J ’s burst-limiting shaper. However, if frames
from j are interleaved with other high-priority frames, J could cause more interference on stream i (see Fig.
4.22 b)) than without these interleaved frames (see Figure 4.22 a)). Therefore, a back-to-back activation of
frames from J might not represent the worst-case activation and not lead to the critical instant. Instead, we
also have to consider BLS class J to arrive interleaved with frames from other traffic classes. To solve this, we
form an integer linear program (ILP) to derive an interleaving pattern that maximizes the interference from BLS
class J on stream i for any given time interval ∆t:

ĨHPB,BLSi,j (∆t) = maximize
∑
j∈J

xJj C
+
j (4.58)

with xJj ∈ N representing how many frames of each stream j ∈ J contribute to J ’s interference.
Firstly, we look at which interfering traffic streams of other priorities (classes) can be interleaved with class J .
As the analysis is considering the stream i, the higher-priotiy BLS class J can be interleaved with frame of any
streams of a traffic class of higher of priority to class cl(i). We define Di

J = hep(i)\J as the set of interleaving
streams, with hep(i) returning the set of all traffic streams with a higher or equal priority to that of stream i,
including i itself. Lower priority frames are considered separately.
At any point, the credit of BLS class J must be positive and smaller than HJ , leading to the following constraint:

0 ≤
∑
j∈J

xJj s
S
JC

+
j +

∑
j∈DJ

i

xDj s
I
JC

+
j + xRsIJ t

R+
J ≤ HJ + sSJ max

j∈J
{C+

j } (4.59)

with xDj representing the number of frames for each interleaved traffic stream j ∈ DJ
i . The equation also

considers, that the credit of J can be reduced by inserting xR ∈ N credit replenishment intervals tR+
J . Each of

these recharging periods decreases the shaper credit of J by sIJ t
R+
J . Since frames of J are non-preemptive, if

a frame of J just started transmitting before J reaches its upper credit limit HJ , the upper bound is extended
by sSJ max

j∈J
{C+

j }.
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The workload a port scheduler can release in a given time interval ∆t is limited, i.e. ∆t plus a frame which
started transmitting just before the end of ∆t. [6]. This holds true for BLS class J and interleaving frames from
DJ
i . The workload is composed of both J and DJ

i parts. Since for J , the accumulated workload amounts to at
most ∆t plus J ’s longest frame, we can formulate the workload constraint:

0 ≤
∑
j∈J

xJj C
+
j +

∑
j∈DJ

i

xDj C
+
j + xRtR−J ≤ ∆t+ max

j∈J
{C+

j } (4.60)

We conservatively model the replenishment intervals with their shortest delays (see Theorem 1).

tR−J =

⌊
HJ − LJ
−sIJ

⌋
(4.61)

The activation event models of J and their interleaving streams bound the number of frames they can issue
with 0 ≤ xJj ≤ η

+
j (∆t),∀j ∈ J and 0 ≤ xDj ≤ η

+
j (∆t),∀j ∈ DJ

i . The number of replenishments intervals can be
bounded by 0 ≤ xR ≤ ηR+

J (∆t).
To cover the worst-case, ηR+

J models that the shortest service interval of BLS class J tS−J , is always followed
by the shortest credit replenishment interval of J :

ηR+
J (∆t) =

⌈
∆t

tS−J + tR−J

⌉
(4.62)

We conservatively bound the higher-priority blocking of BLS classes of a traffic stream i by assuming, that the
interference from different BLS classes J are independent and accumulate them:nterference over all these J.

IHPB,BLSi (∆t) =
∑

J∈{cl(j)|j∈hp(i)}∩B

ĨHPB,BLSi,j (∆t) (4.63)

Same-priority blocking: Frames can experience blocking from frame with the same priority. For the TSN/BLS,
this blocking is identical to IEEE802.1Q and can be found in eq. 4.38.
We, again, have to perform a candidate search in order to determine the proper worst-case of same-priority
blocking. The set of relevant candicates is identical to the one for IEEE802.1Q and can be found in eq. 4.39
With the individual terms, we can compose the worst-case queueing delay for the q-th frame of stream i,
arriving at aqi :

wi(q, a
q
i ) = ISBi (ISPBi (q, aqi ) + C+

i ) + ILPBi + ISPBi (q, aqi ) + IHPB,nBLSi wi(q, a
q
i ) + IHPB,BLSi wi(q, a

q
i ) (4.64)

Note that the shaper blocking ISBi takes the accumulated workload of BLS classes cl(i) as its argument and
the inner function ISPBi only considers q − 1 frames of stream i. Therefore, we need to add an additional C+

i .
As a reminder: ISBi (∆w) = 0 if cl(i) 6∈ B and ILPBi = 0 if cl(i) ∈ B. Since wi(q, a

q
i ) occurs on both sides of

the equation, eq. 4.64 cannot be solved directly, but represents a fixed-point problem. It has to be solved by
iteration, which can be aided by using an appropriate starting point, for example wi(q, a

q
i ) = (q − 1)C+

i

Having the worst-case queueing delay obtained, we can calculate the transmission delay with eq. 4.41. The
worst-case frame transmission latency for a frame of stream i can be calculated equivalently to IEEE802.1Q in
eq. 4.42. The calculation of q̂ is equivalent to the calculation for AVB in [6].

4.7.5 TSN Frame Preemption

Previously, frame transmission - independently of the arbitration mechanism - has been non-preemptively, i.e.
any frame which has started to transmit will finish this transmission [84]. For an Ethernet link working at
100Mbit/s, the longest Ethernet frame can block the link for about 120 µs. This means, that even high-priority
time-critical traffic can be fully blocked by a frame of lower priority at each switch for 120 µs, which might be
problematic for time-critical applications. The upcoming IEEE 802.3br standard for Ethernet addresses this
problem by introducing frame preemption to Ethernet. The frame preemption allows to reduce the aforemen-
tioned blocking of 120 µs in a 100 Mbit/s network to be reduced to about 12 µs, at the price of a preemption
overhead.
For IEEE802.1Q the frame preemption is illustrated in Fig. 4.23, where two frames, LP with a low priority and
HP with a high priority, are transmitted. It shows the comparision between non-preemptive and preemptive
transmission, as well as sketches the preemption overhead.
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Figure 4.23: Example of non-preemptive and preemptive frame transmission.

The frame preemption is introduced for Ethernet in IEEE802.3br [46] and for Ethernet TSN in IEEE802.1Qbu
[47] Here, we focus on how the preemptions affect the timing behaviour for these two.
In IEEE802.3br two MAC interfaces are defined: the express and preemtable MAC interface. Exactly one
level of preemption is supported and only frames from express classes can preempt preemptable classes.
This means, that preemptable frames cannot be preempted by other preemptable frames and express frames
cannot preempt other express frames. The preemption is defined on link-level in IEEE802.3br, i.e. frames
are split into fragments and are reassembled at the MAC interfaces, so that switches (internally) only process
complete frames to make the preemption transparent to the phycial layer of Ethernet. Therefore, each fragment
must appear to the PHY as a valid Ethernet frame and multiple MAC frame formats are defined, shown in Fig.
4.24.

Figure 4.24: Frame preemption introduces new frames, which all have to look like valid Ethernet frames to the
PHY.

In order to represent valid frames, this also means, that even fragmented frames have to satisfy the minimum
Ethernet frame size, being 84 bytes if the inter-frame gap (IFG) is included. If the payload were too small, the
frame is padded. However, preemption is not allowed to add any additional padding to frames, which leads
to a restriction on the preemption and its granularity. A) A frame from the preemptable class can only be
preempted after the transmitted payload is sufficient to represent the minimum frame size, B) a frame from
the preemptable class can only be preempted if both halfs are sufficiently large to satisfy the minimum frame
sizes of both frames. These restrictions limit to the minimum frame size of preemptable frames, leading to the
longest non-preemptable frame size of 143 byte. From the standard, we get that the preemption overhead for
each additional frame fragment is 24 byte.
In the following, we present the local analysis of the effect of frame preemption on IEEE802.1Q and TSN
(IEEE802.1Qbv).

4.7.5.1 Frame preemption in IEEE802.1Q

In this section we present the local analysis of the timing effects of frame preemption in IEEE802.1Q. We
consider both express and preemptable frames and compute their frame transmission latencies. Again, we
only consider the queueing delay in the output ports (see Section 4.7.3) and utilise the level-i busy period
approach. Even though we consider frame preemption fragments themselves are non-preemptive. Hence, we
have to adapt the definition of the queueing delay from above in Section 4.7.4.1.
Definition 1. The worst-case queueing delay wi(q, a

q
i ) is the time interval from the beginning of the level-i busy

period until the last non-preemptable part of said q-th frame can be transmitted for stream i.
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For frames from the express class, this part is the frame itself. For frames from the preemptable class, this is a
non-preemptable, minimum-sized fragment.
We consider the two sets of traffic classes: P the set of preemptable traffic classes and E the set of express
traffic classes. We again define the function cl(i) mapping a stream i to its class, lp(i) to return the set of
all traffic streams with a lower priority than i, hp(i) the set of streams with a higher priority and sp(i) all other
streams with the same priority, respectively. We assume, that all express classes have a higher priority than the
preemptable ones. In order to compute the worst-case queueing delay, we have to take into account several
blocking effects.
Lower-priority blocking: Identical to IEEE802.1Q, for P classes, the worst-case lower priority blocking occurs
if the longest frame of a lower priority stream started sending right before the first frame of stream i gets ready
for transmission. Then, the lower priority blocking for preemptable streams can be computed with:

ILPB,Pi = max
j∈lpl(i)

{
C+
j

}
(4.65)

Before computing the lower-priority blocking of express classes, we define the two functions: lpP (i) which
yields the set of preemptable lower-priority classes and lpE(i) yielding the set of express traffic classes with a
lower priority. With these functions, we can calculate the lower-priority blocking for express traffic with:

ILPB,Ei = max

{
max

j∈lpE(i)
{C+

j },min
{

max{C+
j },

143byte
rTX

}}
(4.66)

Same-priority blocking: A frame of traffic stream i can be blocked by frames from traffic streams of equal
priority [43]. We assume the worst-case ordering for concurrently arriving frames of the same priority. For
frames of the express class, this is identical to the same-priority blocking in IEEE802.1Q, hence can be found
in Eq. 4.38.
For preemptable traffic, we need consider different fragments. As argued above, only the last (non-preemptable)
fragment frame is not part of the queueing delay. Therefore, the last fragment of q has to wait for its preceding
fragments to finish, in addition to frames from streams of its own priority (including its own q − 1 frames). As-
sumting the worst-case fragmentation, the last fragment is left with the mimimum size of 84 bytes, leaving the
rest of q’s size for preemption (C+

i − 84byte/rTX)

ISPB,Pi (q, aqi ) = (q − 1)C+
i + C+

i −
84byte
rTX

+
∑

j∈sp(i)

η
+]
j (aqi )C

+
j (4.67)

Frames are generally processed in FIFO order within the same priority in Ethernet. Therefore, as argued
in Section 4.7.3 we need to perform a candidate search to determine the worst-case same priority blocking.
For IEEE802.1Q with frame preemption, this is identical to IEEE802.1Q without preemption, hence the set of
relevant candidates can be calculated with eq. 4.39
Higher-priority blocking: Frames of stream i can be blocked by traffic streams with higher priority than i.
This is identical to the calculation of the higher-priority blocking in IEEE802.1Q without frame preemption. The
calculation can be found in eq. 4.37. If, however, this blocking occurs due to preemption, we need to consider
additional overhead (see below).
Preemption overhead: In IEEE 802.3br, preemptable frames suffer an overhead when preempted. This
overhead can be modelled as an additional blocking term, if the number of preemptions is known. We bound
the number of preemptions of a single frame of stream i with:

F+
i =

⌊
p+
i − 42byte

60byte

⌋
(4.68)

with p+
i being the maximum payload of i. The maximum number of frame preemptions within the queueing

delay can be calculated by multiplying the number of preemptable frames in this period by their respective F+
i .

A preemptable frame fo i can only be blocked once by a lower-priority frame of j, however, this lower-priority
frame might get preempted, leading to additinal overhead. This overhead depends on the number of preemp-
tions this frame of j can experience. This number is given with:

NLP
i = max

j∈lpP (i)
{F+

j } (4.69)
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Similarly, we have to consider the preemption overhead of frames of preemptable traffic with the same priority
as stream i. The total number of preemptions of a traffic class cl(i) is given by i’s own preemption plus the
preemptions of other classes:

NSP
i (q, aqi ) = qF+

i − 1 +
∑

j∈sp(i)

η+](aqi )F
+
j (4.70)

We again, silimiar to eq. 4.67, the last fragment is not taken into account.
We also need to consider the preemption overhead of higher-priority preemptable frames. The maximium
number frames of a higher priority than i can be preempted is given with:

NHP
i (∆t) =

∑
j∈hpP (i)

η+
j (∆t)F+

j (4.71)

So far, eqs. 4.69, 4.70 and 4.71 have bounded the number of preemptions based on the worst-case way
each frame can theoretically be fragmented. We can, however, also bound this number by the worst-case
preemption pattern of express streams with a higher priority than stream i, which we group in hpE(i). The
preemption overhead in a given time interval ∆t with q frames of stream i can be computed for the arrival time
aqi with:

IPOi (∆t, q, aqi ) =
24byte
rTX

min

 ∑
j∈hpE(i)

η+
j (∆t), NLP

i +NSP
i (q, ai) +NHP

i (∆t)

 (4.72)

The worst-case queueing delay of express traffic streams of the q-frame of stream i arriving at aqi is:

wEi (q, aqi ) = ILPB,Ei + ISPB,Ei (q, aqi ) + IHPBi (wEi (q, aqi )) (4.73)

This equation represents a fixed-point problem as wEi (q, aqi ) occurs on both sides and has to solved iteratively.
As for previous similar fixed-point problems, wEi (q, aqi ) = (q − 1)C+

i could be used as a starting point.
For traffic i of preemptable streams i, we have to consider the additional preemption overhead for the compu-
tation of the worst-case queueing delay:

wPi (q, aqi ) = ILPB,Pi + ISPB,Pi (q, aqi ) + IHPBi (wPi (q, aqi )) + IPOi (wPi (q, aqi ), q, a
q
i ) (4.74)

This, again, is a fixed point problem, to be solved iteratively, with a starting point suggestion of wEi (q, aqi ) =
(q − 1)C+

i .
We can derive the worst-case transmission delay Ri(q) for the q-th frame of stream i from the queueing delay.
For express streams, this is the queueing delay plus its transmission time, relative to the actication time aqi .
For preemptable streams, we have to take into account, that we calculated the queueing delay for the last
fragment of a preempted frame. Therefore, instead of adding the transmission delay of the whole frame, we
only consider the transmission delay of the last fragment:

Ri(q) =


max
aqi∈A

q
i

{
wEi (q, aqi ) + C+

i − a
q
i

}
if cl(i) ∈ E

max
aqi∈A

q
i

{
wPi (q, aqi ) + 84byte

rTX
− aqi

}
if cl(i) ∈ P

(4.75)

With the transmission delay for each frame, we can derive the worst-case delay of a traffic class cl(i), which is
done identical to IEEE802.1Q without frame preemption, see eq. 4.42.
Now we present how to compute the longest level-i busy period from which q̂ can be derived for eq. 4.42. As
mentioned in the description of eq. 4.42, we do not need to distinguish between individual frames. Hence, the
same priority part ÎSPBi can be computed following eq. 4.44.
Similarly, we can calculate the level-i busy period preemption overhead via IPOi (∆t, q, aqi ) from eq.4.80 as
ÎPOi (∆t, q, aqi ) which substitutes NSP

i (q, aqi ) with:

N̂SP
i (∆t) =

∑
j∈sp(i)∪{i}

η+
j (∆t)C+

j (4.76)

With this update, the level-i busy periods can be computed for express (ŵEi ) and preemptable (ŵPi = ILPB,Pi )
traffic classes with:

ŵEi = ILPB,Ei + ÎSPBi (ŵEi ) + IHPBi (ŵEi ) (4.77)
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and

ŵPi = ILPB,Pi + ÎSPBi (ŵPi ) + IHPBi (ŵPi ) + ÎPIOi (ŵPi ) (4.78)

Again, eqs. 4.77 and 4.78 are fixed-point problems, to be solved iteratively, with a starting point suggestion of
ŵPi = C+

i . The values for q̂ can then be derived with q̂i = η+
i (ŵPi ) and q̂i = η+

i (ŵEi ), respectively.

4.7.5.2 Frame preemption in TSN (IEEE802.1Qbv)

In this section we present the effects of frame preemption onto the timing behaviour of the time-aware shaper
(see section 4.7.4.1). In TSN/TAS, traffic is divided into critical and non-critical traffic, which are scheduled in
separate time intervals. These time intervals are protected against overlapping transmission by guard bands,
whose length are dictated by the longest possible frame of its corresponding time interval. This can result in low
link utilization, due to long guard bands. The motivation of frame preemption is to improve the latency of critical
traffic. Therefore, we assume that time-triggered traffic in TSN/TAS is defined of express traffic, hence cannot
be preempted. Since TSN/TAS already guarantees that critical traffic is transmitted without interference from
other traffic classes, the critical traffic can not profit from adding frame transmission to the network. However,
setting the less critical traffic as preemptable allows to reduce guard bands within their respective segments, as
the longest possible blocker can be significantly shortened when preempted, improving the end-to-end latency
for non-critical traffic.

Figure 4.25: Example of non-preemptive and preemptive frame transmission in IEEE 802.1Qbv

This is illustrated in Fig. 4.25. With non-preemptive scheduling, the frame LP would arrive during its guard band
period and not be allowed to start its transmission until after HP ’s time slot. If frame preemption is allowed,
the guard band can be shortened allowing a partial transmission of LP before HP ’s slot reducing its overall
transmission latency. The worst-case blocking a non-TAS class stream I can suffer by the time-triggered
interval with length tTASJ from express classes E , can be computed similar to eq. 4.48, with the reduced guard
band5:

t̃TASI,J = min

{
max

i∈
⋃

I∈P I
{C+

i },
143byte
rTX

}
+ tTASJ (4.79)

Traffic classes of the preemptable MAC interface cannot preempt each other, hence, frame preemption does
not affect the lower-, same- or higher-priority blocking. Their calculation is identical to eqs. 4.36, 4.38 and 4.37
in section 4.7.3.
We can compute the number ITASBi of interrupting time intervals6 by traffic classes E identical to eq. 4.49 by
using t̃TASI,J from 4.79.
Preemption overhead: Less-critical traffic streams cannot preempt frames from the same MAC interface.
Therefore, only one frame preemption can occur per time-triggered slot. Multiplying the number of possible
preemptions with the frame overhead yields the total overhead per time interval:

IPO(∆t) =
24byte
rTX

∑
J∈E

⌈
∆t

tCY CJ

⌉
(4.80)

5Note that in [84] the term t̃TT
I,J was used instead of t̃TAS

I,J
6Note that in [84] the term ICTB

i was used instead of ITASB
i
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The worst-case queuing delay wPi (q, aqi ) for frame q of stream i arriving at time aqi under frame preemption can
then be calculated with:

wPi (q, aqi ) = ILPB,Pi + ISPB,Pi (q, aqi ) + IHPBi (wPi (q, aqi )) + ICTBi (wPi (q, aqi )) + IPO(wPi (q, aqi )) (4.81)

With the worst-case queuing delay, we can calculate the frame transmission delay Ri(q) via eq. 4.41 and the
worst-case transmission delay R+

i of stream i with eq. 4.42, similar to IEEE802.1Q.
Then, the maximum frame transmission latency of the q-th frame of traffic stream i under IEEE 802.1Qbv with
preemption can be computed very similarly to that under IEEE 802.1Q (Eqs. (15) and (16)). As argued before,
the worst-case timing guarantees of critical traffic in IEEE 802.1Qbv are not affected by frame preemption and
can be computed as presented in [8].

4.7.6 Software Defined Networking

In this section we want to perform an evaluation of the general suitablility of the concept of SDN for real-
time networks [82]. We present a simplified version of SDN/OpenFlow, as it was not designed with real-time
constraints in mind. The simplified approach differs from Openflow in two major points: a) instead of TCP, we
use UDP as the transport protocol and b) we use shorter Ethernet messages in comparision to the standard
OpenFlow messages.

SDN-based Network Configuration

SDN network traffic is stream (or ”flow”) based, which means that a traffic stream is defined as a sequence of
frames from the same source to the same destination are routed equally. In accordance with OpenFlow, we
assume that frames are routed by the data plane within the switches represented by flow tables, with a set
of rules, determining the action to be applied to the respective frames. Arriving frames are matched against
the rule fields, e.g. by their MAC and/or IP addresses, VLAN ID, or TCP/UDP ports. The rules, which can be
applied to the frames, are forwarding the frame to a specific switch port, drop the frame, and request further
instructions from the SDN controller on how to handle the frame. SDN networks are configured by the process
of creating and distributing flow table entries, which is performed by the SDN controller. We will consider two
different means of this configuration for the example of admission control.
Admission control manages the access of streams to the network. Either flows are allowed to enter the network
(forward action), are blocked (drop action), or require an explicit configuration from the SDN controller (request
action). For this section, we evaluate the worst-case timing behaviour of such a request action.
When the first frame of a newly incoming flow arrives at a switch (Switch 1 in Fig. 4.26), this switch checks its
flowtable for a matching rule to decide whether to forward or block the stream, or - in this example - generate
a request (req) and send it towards the controller. If the controller decides to deny access for this stream, it
sends this configuration to the requesting switch at once (this scenario is not shown in Fig. 4.26). However,
if the controller decides to allow the stream to access the network, multiple switches have to be reconfigured,
potentially. The configuration messages (conf ) sent to the switches can contain multiple updates for their
respective flow tables, even modifying entries for other flows. After having received the req message, each
switch confirms the update to the SDN controller (ack ). Once each switch has confirmed the update, the
controller sends a confirmation to Switch 1 (en) to enable the flow table entries, allowing the requesting flow to
enter the network.
Each step of this protocol introduces a certain delay. The red boxes in Fig. 4.26 represent the execution
times of the CPUs on the SDN agents and controller, including the interference from other SDN related re-
questes/configurations. The communication delay due to the Ethernet communication is indicated by the blue
arrows, including the interference from all traffic stream in the network. These different delays compose the
overall delay R+

SDN from the initial request until the admission is granted.
Alternatively to the explicit flow control, the configuration can be shifted towards the initial network configuara-
tion. This means, that switches are preconfigured (which is typically done in automotive systems) but requires
that the network changes are known beforehand. The admission then can be granted or denied by simply
toggling the flow tables of the flow’s entry switches, as shown in Fig. 4.26 b). This can significantly reduce the
time for the admission control to a simple request/enable handshake.

Modeling SDN in Compositional Performance Analysis

In this section we present the modelling for the above described admission control scheme in CPA. We use the
simple example system shown in Fig. 4.29.
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Figure 4.26: SDN network (re)configuration protocols

Figure 4.27: Example network for the SDN admission control

The example system consists of two switches, each with their local SDN agent, and the SDN controller, con-
nected to switch S2. Note, that there is non-SDN traffic sent from ECU0 to ECU1. For this example, we assume
that only S1 sends a request to the controller
The CPA model of the explicit admission control scheme is shown in Fig. 4.29. We model the processing
resources (CPUs) of the SDN agents in the switches and of the SDN controller as CPA resources. The pro-
cessing of SDN messages is modelled as tasks on their respective SDN resources, e.g. τ1

r represents the
request message generation on performed on switch S1. The Ethernet communication flow is identical to the
one described in the previous sections and above, here with IEEE802.1Q as the chosen transmission scheme:
A frame transmission is modelled by mapping the transmission task onto the output port resource, with the
task exeuction time corresponding to the frame size. The synchronization mechanism at the SDN controller
(hatched time interval in Figure 2a) is modeled by an AND-junction of the corresponding traffic streams in the
CPA model, i.e. the controller waits for all frames to arrive before starting to work. Since the SDN and non-SDN
traffic partially share the same path, interference between these two classes will occur, to be seen at Port1.2 on
switch S1. The total worst-case latency R+

SDN for the admission request can be upper bounded by first deriving
the worst-case end-to-end latencies from task τ1

r at the requesting switch S1 to the admission task τ1
e , also

at S1. Note, that we have a fork in distribution of the conf messages, which is rejoined at the SDN controller
at the AND junction before τCs . In order to provide an upper bound, we need to consider the maximum path
latency over all forked paths from τCc to τ1

e .
The implicit flow control scheme is presented in Fig. 4.29, showing only the handshake as discussed above.
As expected, this model is less complex.

4.8 Vulnerability Detection for Networks

A timing analysis approach for networks has been presented in D3.1, which can be used to detect timing
vulnerabilities (usually at design time) of the network. the description in D3.1 was already of the final state of
the algorithms, which since then have been implemented. Hence, no update is given in this deliverable.
In deliverable D3.3, a methodology for applying this approach is presented.
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Figure 4.28: CPA model for the explicit flow configuration protocol from Figure 4.26 a)

Figure 4.29: CPA model for the predefined flow protocol from Figure 4.26 b)
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Chapter 5 Conclusion

This document overviews the different integrity aspects considered in SAFURE and their respective integrity
algorithms. This document presents the final analysis of integrity algorithms. We consider three different
aspects of integrity:

5.1 Temperature Integrity

For temperature integrity, we detail a server based thermal protection scheme (TI Server). This scheme can
be used to provide thermal protection in a mixed-critical context. Details on how this scheme can be applied in
a hardware platform running a dual-critical application are given in D3.2.
We also detail how temperature sensors and systems DVFS mechanisms can be exploited to compromose
system security. A quantification of this security threat and possible mitigation actions are dovered in D3.3.
Lastly, we present a preliminary study on thermal side-channel attacks.

5.2 Data Integrity

For data integrity, we have implemented several state-of-the-art algorithms and some quite new algorithms
(EdDSA, Poly1305 and KMAC). We have investigated their performance regarding speed, memory (ROM and
RAM) consumption, and overall suitability for usage in embedded systems.

5.3 Timing and Resource Sharing Integrity

Regarding timing and resource sharing integrity, we have shown how to analyze and detect vulnerabilities. In
deliverable D3.3, we give indications about how to prevent timing integrity violations.

5.4 Integration Plan

Table 5.1 presents the integration plan for technologies presented in this deliverable. Telecom denotes the
telecommunication use-case based on Sony Xperia platform, Automotive denotes the automotive use-case
based on Infineon Aurix platform, and Juno denotes the WP4 use-case based on ARM Juno Board platform.
Table 5.1 has been composed and added to this deliverable in response to reviewer’s recommendation. How-
ever, please note that this table presents a tentative plan. Final integration details will be presented in SAFURE
Deliverable D6.7.
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Technology Section Use-case Comments on integration

TI Server 2.1 Juno, Telecom Feasibility and extent of inte-
gration on Telecom will be as-
sessed in September 2017.

Security implications of temper-
ature

2.2, 2.3, 2.4 Telecom Architectural characteristics of
Telecom are similar to the plat-
forms evaluated in sections 2.2-
2.4. Therefore the security
implications hold for Telecom.
Further integration steps are
not planned.

Data integrity algorithms 3.1, 3.2, Automotive, Extent of integration will be

3.3, 3.4 Telecom assessed in September 2017.

Budget-Based RunTime Engine 4.2 Juno BB-RTE is currently evaluated
on the WP4 prototype

Telecom Feasibility and extent of inte-
gration on Telecom will be as-
sessed in September 2017. BB-
RTE requires PikeOS with priv-
ileged driver and MUXA-over-
ethernet

Timing integrity in overload con-
ditions

4.3 and 4.4 Automotive The algorithms have been vali-
dated on a fuel injection appli-
cation provided by the automo-
tive partner MM (as reported in
the paper). The tool integration
is currently not planned.

Function placement optimiza-
tion

4.5 Automotive The placement optimization al-
gorithm will be applied to appli-
cations examples and architec-
tures defined for the automotive
case studies. The tool integra-
tion is currently not planned.

Multicores vulnerability due to
contention

4.6 Juno Currently being integrated on
the WP4 prototype

Automotive Currently being integrated on
the Automotive multicore use
case

Real-time Ethernet 4.7 Automotive Different Ethernet transmission
schemes will be evaluated in
the virtual demonstrator

Vulnerability Detection for Net-
works

4.8 Automotive Algorithms presented in D3.1
with methodology in D3.3.
Implementation in the model-
based SymTA/S timing analysis
tool to be applied to automotive
scenarios.

Table 5.1: Integration plan for technologies presented in deliverable D3.2

SAFURE D3.2 Page 85 of 90



D3.2 - Final Analysis of Integrity Algorithms

Bibliography

[1] ARM® CoreSight©ip, . URL https://www.arm.com/products/system-ip/coresight-debug-trace.
[2] Nexus 5001 forum, . URL http://www.nexus5001.org.
[3] Martı́n Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro, Greg S. Corrado,

Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey
Irving, Michael Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg,
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