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Executive Summary

The first delivery of work package four p
this document is its complementing. The demonstrator reflects the current state of the work 
package. The work done is represented in 
report. Also the current report provides results of evaluation of the future work within the work 
package. 

This report will be complemented by the results of the final demonstrator 
work package. 
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irst delivery of work package four provides an Alpha version of the demonstrator and 
menting. The demonstrator reflects the current state of the work 

package. The work done is represented in a hardware prototype and described in the current 
report provides results of evaluation of the future work within the work 

This report will be complemented by the results of the final demonstrator 
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Chapter 1 Introduct

The current report provides preliminary results and achievements 
This work package uses modeling and algorithms from work packages two and three in 
demonstrator implementation. 
Automotive use cases of work package six.

The report is divided by chapters
part of the work package and sections highlight different topics within that common part.

Chapter two focuses OS supp
describing the results of porting PikeOS on the ARMv8 architecture and the status of the port 
on the real hardware. The following section is dedicated to port the cryptographic library 
CycurLIB by Escrypt on top pf PikeOS. 
implementation of the EDF scheduler in PikeOS. The last two sections focus on the 
architecture of Secure Boot and Secure Update techniques. 

Chapter three considers scheduling in terms of
hardware support for measurement of mixed
methodology are described in the first section. The following section gives an introduction of 
run-time engine prototype. And t
in mixed criticality scheduling algorithms.

Chapter four evaluates the further development (taking into account the results of chapter 
three) of the run-time engine in the demonstrator prototype
critical levels of applications are given there.

Chapter five is dedicated to safety of AUTOSAR OS
some extracts from ISO 26262 standard in terms of safety. The following section foc
types of AUTOSAR OS-Applications and software safety protection mechanisms. And the 
last section describes the developed firmware drivers for timing and memory protection.

Chapter six focuses on support of mixed criticality in AUTOSAR OS and also o
generation in AUTOSAR run time environment for mixed critical applications based on their 
models. 
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Introduction  

The current report provides preliminary results and achievements of the work package four. 
This work package uses modeling and algorithms from work packages two and three in 
demonstrator implementation. Results of this work package will be used in Tel
Automotive use cases of work package six. 

is divided by chapters and sections where every chapter describes a separate 
part of the work package and sections highlight different topics within that common part.

OS support and security aspects of WP4. It contains a section 
describing the results of porting PikeOS on the ARMv8 architecture and the status of the port 
on the real hardware. The following section is dedicated to port the cryptographic library 

ypt on top pf PikeOS. Further, there also a section with analysis of 
implementation of the EDF scheduler in PikeOS. The last two sections focus on the 
architecture of Secure Boot and Secure Update techniques.  

Chapter three considers scheduling in terms of mixed criticality in different ways. The 
hardware support for measurement of mixed-criticalities and benchmark characterization 
methodology are described in the first section. The following section gives an introduction of 

time engine prototype. And the last section is focused on extension of thermal protection 
in mixed criticality scheduling algorithms. 

Chapter four evaluates the further development (taking into account the results of chapter 
time engine in the demonstrator prototype. More details on different types of 

critical levels of applications are given there. 

Chapter five is dedicated to safety of AUTOSAR OS-applications. First section provides 
some extracts from ISO 26262 standard in terms of safety. The following section foc

Applications and software safety protection mechanisms. And the 
last section describes the developed firmware drivers for timing and memory protection.

Chapter six focuses on support of mixed criticality in AUTOSAR OS and also o
generation in AUTOSAR run time environment for mixed critical applications based on their 
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of the work package four. 
This work package uses modeling and algorithms from work packages two and three in 

Results of this work package will be used in Telecom and 

every chapter describes a separate 
part of the work package and sections highlight different topics within that common part. 

. It contains a section 
describing the results of porting PikeOS on the ARMv8 architecture and the status of the port 
on the real hardware. The following section is dedicated to port the cryptographic library 

there also a section with analysis of 
implementation of the EDF scheduler in PikeOS. The last two sections focus on the 

mixed criticality in different ways. The 
criticalities and benchmark characterization 

methodology are described in the first section. The following section gives an introduction of 
he last section is focused on extension of thermal protection 

Chapter four evaluates the further development (taking into account the results of chapter 
. More details on different types of 

applications. First section provides 
some extracts from ISO 26262 standard in terms of safety. The following section focused on 

Applications and software safety protection mechanisms. And the 
last section describes the developed firmware drivers for timing and memory protection. 

Chapter six focuses on support of mixed criticality in AUTOSAR OS and also on code 
generation in AUTOSAR run time environment for mixed critical applications based on their 
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Chapter 2 PikeOS

2.1 PikeOS on the target

2.1.1 Platform Selection 

During the first six months of the project we have assessed several candidate platforms for 
the project. In the short list were
Both boards are development platforms based on the similar ARM 64 bit CPU architectures. 
However, these boards target different development purposes.

The DragonBoard 810 is designed as a development board for earlier application 
prototyping. 

ARM Juno board is designed for development of low
hypervisors and assessing CPU architectures for end designing devices.

The following table present a deci

 

 

Fully open documentation 

Fully open hardware 

for low-level development 

Suitable for application 
development 

Suitable for system SW 
development 

Enable close to market 
demonstrator 

JTAG interface 

Table 1: Comparison of DragonBoard 810 and ARM Juno

 

Having this information and to avoid delay in the project the consortium agreed on the 
following steps: 

• Port PikeOS on Juno board an

• Setup contact to Qualcomm to get access to low

810 

• Port PikeOS on DragonBoard 810

In this deliverable we describe the status of porting PikeOS on ARM Juno
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PikeOS Support 

PikeOS on the target 

 

months of the project we have assessed several candidate platforms for 
roject. In the short list were boards based on DragonBoard 810 and ARM Juno board. 

Both boards are development platforms based on the similar ARM 64 bit CPU architectures. 
However, these boards target different development purposes. 

s designed as a development board for earlier application 

ARM Juno board is designed for development of low-level system software such as 
hypervisors and assessing CPU architectures for end designing devices. 

The following table present a decision matrix we made for PikeOS: 

DragonBoard 810 ARM Juno

No Yes 

No Yes 

Yes Yes 

No Yes 

Yes No 

No Yes 

: Comparison of DragonBoard 810 and ARM Juno 

Having this information and to avoid delay in the project the consortium agreed on the 

Port PikeOS on Juno board and develop needed hypervisor support

Setup contact to Qualcomm to get access to low-level documentation on SnapDragon 

Port PikeOS on DragonBoard 810 

In this deliverable we describe the status of porting PikeOS on ARM Juno 

  

Page 2 of 44 

months of the project we have assessed several candidate platforms for 
boards based on DragonBoard 810 and ARM Juno board. 

Both boards are development platforms based on the similar ARM 64 bit CPU architectures. 

s designed as a development board for earlier application 

level system software such as 

ARM Juno 

Having this information and to avoid delay in the project the consortium agreed on the 

d develop needed hypervisor support 

level documentation on SnapDragon 

 board. 
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2.1.2 Juno Board 

Within work package four SYSGO provides support for PikeOS on the ARMv8 architecture. 
We have structured the porting work in two phases. The first phase, early development, has 
been done on Fixed Virtual Platforms
been done on ARM Juno board. ARM Juno board has been chosen as a target for the 
porting considering the following arguments:

• It is the only fully open development ARMv8 board with industrial support available on 
the market (at the time of making the decision on t

• It provides required debug facilities (jtag and trace, serial port) for developing an 
operating system and hypervisor

• The support is provided directly by ARM 

 

The characteristics of the board are:

• Compute Subsystem 

o Dual Cluster, big.LITT

o Cortex-A57 MP2 cluster (r0p0)

o Overdrive 1.1GHz operating speed

o Caches: L1 48KB I, 32KB D, L2 2MB

o Cortex-A53 MP4 cluster (r0p0)

o Overdrive 850MHz operating speed

o Caches: L1 32KB, L2 1MB

o Quad Core MALI T624 r1p0

o Nominal 600MHz operating speed

o Caches: L2 128KB

o CoreSight ETM/CTI per core

o DVFS and power gating via SCP

o 4 energy meters

o DMC-400 dual channel DDR3L interface, 8GB 1600MHz DDR

o Internal CCI-400, 128

 

• Rest of SoC 

o Internal NIC-400, 64

o External AXI ports: using Thin

o DMAC : PL330, 128

o Static Memory Bus Interface : PL354

o 32bit 50MHz to slow speed peripheral

o HDCLCD dual video controllers: 1080p
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SYSGO provides support for PikeOS on the ARMv8 architecture. 
We have structured the porting work in two phases. The first phase, early development, has 

Fixed Virtual Platforms simulator provided by ARM. The second phase has 
ne on ARM Juno board. ARM Juno board has been chosen as a target for the 

porting considering the following arguments: 

It is the only fully open development ARMv8 board with industrial support available on 
the market (at the time of making the decision on the board) 

It provides required debug facilities (jtag and trace, serial port) for developing an 
operating system and hypervisor 

The support is provided directly by ARM Company. 

The characteristics of the board are: 

Dual Cluster, big.LITTLE configuration 

A57 MP2 cluster (r0p0) 

Overdrive 1.1GHz operating speed 

Caches: L1 48KB I, 32KB D, L2 2MB 

A53 MP4 cluster (r0p0) 

Overdrive 850MHz operating speed 

Caches: L1 32KB, L2 1MB 

Quad Core MALI T624 r1p0 

Nominal 600MHz operating speed 

Caches: L2 128KB 

CoreSight ETM/CTI per core 

DVFS and power gating via SCP 

4 energy meters 

400 dual channel DDR3L interface, 8GB 1600MHz DDR

400, 128-bit, 533MHz 

400, 64-bit, 400MHz 

External AXI ports: using Thin-Links 

DMAC : PL330, 128-bit 

Static Memory Bus Interface : PL354 

32bit 50MHz to slow speed peripheral 

HDCLCD dual video controllers: 1080p 
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SYSGO provides support for PikeOS on the ARMv8 architecture. 
We have structured the porting work in two phases. The first phase, early development, has 

simulator provided by ARM. The second phase has 
ne on ARM Juno board. ARM Juno board has been chosen as a target for the 

It is the only fully open development ARMv8 board with industrial support available on 

It provides required debug facilities (jtag and trace, serial port) for developing an 

400 dual channel DDR3L interface, 8GB 1600MHz DDR 
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• Debug 

o ARM JTAG : 20

o ARM 32/16 bit parallel trace

 

2.1.3 Alpha: Porting Results 

As it has been said before the first porting has been done with using ARM Fixed Virtual 
Platform simulator for A53-A57 cores.

The software models provide Programmer’s view models of proc
functional behaviour of a model is equivalent to real hardware. PV models sacrifice absolute 
timing accuracy to achieve fast simulated execution speed. This means that you can use the 
PV models for confirming software functionality,
cycle counts, low-level component interactions, or other hardware

The following features was developed on this simulator:

• Hardware Virtualization

Hardware virtualization
machine that acts like a real computer with an operating system. Software executed 
on these virtual machines is separated from the underlying hardware resources
allows PikeOS to run different operation systems on the same hardware 
simultaneously with just a little (or even without) modification of the operation system. 
It also provides almost no overhead in compare to software virtualization, so 
performance of the operation system running under hypervisor supporting hardware 
virtualization is comparative to the performance of the same native operation system.

• Trust Zone 

TrustZone technology is programmed into the hardware, enabling the protection o
memory and peripherals. Since security is designed into the hardware, TrustZone 

Alpha OA & RTE prototypes 

ARM JTAG : 20-way DIL box header 

ARM 32/16 bit parallel trace 

Figure 1:  Juno SoC architecture 

Alpha: Porting Results Fixed Virtual Platforms simulator 

As it has been said before the first porting has been done with using ARM Fixed Virtual 
A57 cores. 

The software models provide Programmer’s view models of processors and devices. The 
functional behaviour of a model is equivalent to real hardware. PV models sacrifice absolute 
timing accuracy to achieve fast simulated execution speed. This means that you can use the 
PV models for confirming software functionality, but you must not rely on the accuracy of 

level component interactions, or other hardware-specific behaviour

The following features was developed on this simulator: 

Hardware Virtualization 

zation or platform virtualization refers to the creation of a 
that acts like a real computer with an operating system. Software executed 

on these virtual machines is separated from the underlying hardware resources
allows PikeOS to run different operation systems on the same hardware 
simultaneously with just a little (or even without) modification of the operation system. 
It also provides almost no overhead in compare to software virtualization, so 
erformance of the operation system running under hypervisor supporting hardware 

virtualization is comparative to the performance of the same native operation system.

TrustZone technology is programmed into the hardware, enabling the protection o
memory and peripherals. Since security is designed into the hardware, TrustZone 
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As it has been said before the first porting has been done with using ARM Fixed Virtual 

essors and devices. The 
functional behaviour of a model is equivalent to real hardware. PV models sacrifice absolute 
timing accuracy to achieve fast simulated execution speed. This means that you can use the 

but you must not rely on the accuracy of 
specific behaviour [1]. 

refers to the creation of a virtual 
that acts like a real computer with an operating system. Software executed 

on these virtual machines is separated from the underlying hardware resources [2]. It 
allows PikeOS to run different operation systems on the same hardware 
simultaneously with just a little (or even without) modification of the operation system. 
It also provides almost no overhead in compare to software virtualization, so 
erformance of the operation system running under hypervisor supporting hardware 

virtualization is comparative to the performance of the same native operation system. 

TrustZone technology is programmed into the hardware, enabling the protection of 
memory and peripherals. Since security is designed into the hardware, TrustZone 
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avoids security vulnerabilities caused by proprietary, non
the core. Security can be maintained as an inherent feature of the device, without 
degrading system performance, enabling device manufacturers to build security 
applications, such as DRM or mobile payment as protected applications that run on 
the secure kernel [3]. 
now it has been ported to ARMv8.

 

2.1.4 Alpha: Porting Results Juno

Currently Juno board is supported officially in PikeOS 4.1 with the following features and 
interfaces: 

• Hardware Virtualization

• Trust Zone 

• Serial driver 

Serial driver provides conso
between target and host. Usually it is used for debugging and 
purposes. 

• Ethernet driver 

Ethernet driver provides network support.

• ElinOS BSP 

Board Support Packages (BSPs) contain the necess
a Linux kernel on a specific target platform. 
modifications to ensure a smooth operation with the 

 

2.1.5 Alpha: Testing on Juno

Juno board support has been testing with the PikeOS Generic

This test suite is used for a regression testing as well as for a product testing.

The results are listed in Table 

Test 

arm-config-test 

basic-linux-test 

coherency-test 

context-switch-bench 

cpu-bench 

decode-test 

demo-linux-guest-test 

demo-pikeos-guest-test 

directio-test 

fpu-test 

hello-world 

high-address-test 

interrupt-forward-test 

memory-test 
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avoids security vulnerabilities caused by proprietary, non-portable solutions outside 
the core. Security can be maintained as an inherent feature of the device, without 

ding system performance, enabling device manufacturers to build security 
applications, such as DRM or mobile payment as protected applications that run on 

.  PikeOS supports this technology for ARMv7 arc
now it has been ported to ARMv8. 

Alpha: Porting Results Juno 

Currently Juno board is supported officially in PikeOS 4.1 with the following features and 

Hardware Virtualization 

provides console support and allows establish basic communication 
between target and host. Usually it is used for debugging and 

Ethernet driver provides network support. 

Board Support Packages (BSPs) contain the necessary adaptations to be able to run 
a Linux kernel on a specific target platform. ElinOS kernels contain some 
modifications to ensure a smooth operation with the ElinOS tools 

Alpha: Testing on Juno 

Juno board support has been testing with the PikeOS Generic BSP Test Suite.

This test suite is used for a regression testing as well as for a product testing.

Table 2: Benchmarks. 

Operation Start End 

Run 17:52:00 17:52:38

Run 17:52:38 17:54:17

Run 17:54:17 17:54:54

Run 17:54:54 17:56:13

Run 17:56:13 19:03:48

Run 19:03:48 19:04:31

Run 19:04:31 19:05:53

Run 19:05:53 19:06:45

Run 19:06:45 19:07:47

Run 19:07:47 19:09:04

Run 19:09:04 19:10:06

Run 19:10:06 19:21:12

Run 19:21:12 19:21:

Run 19:21:53 19:22:44
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portable solutions outside 
the core. Security can be maintained as an inherent feature of the device, without 

ding system performance, enabling device manufacturers to build security 
applications, such as DRM or mobile payment as protected applications that run on 

PikeOS supports this technology for ARMv7 architecture and 

Currently Juno board is supported officially in PikeOS 4.1 with the following features and 

allows establish basic communication 
between target and host. Usually it is used for debugging and administration 

ary adaptations to be able to run 
kernels contain some 

BSP Test Suite. 

This test suite is used for a regression testing as well as for a product testing. 

 Result 

:38 OK 

17:54:17 OK 

17:54:54 OK 

17:56:13 OK 

19:03:48 OK 

19:04:31 OK 

19:05:53 OK 

19:06:45 OK 

19:07:47 OK 

19:09:04 OK 

19:10:06 OK 

19:21:12 Error 

19:21:53 OK 

19:22:44 OK 



D4.1 - Alpha OA & RTE prototypes

SAFURE D4.1 

Test 

network-bench 

p4bus-bench 

p4bus-console-test 

p4bus-ethDriver-network-test 

p4bus-iomem-test 

p4bus-mmaplseek-specvmem-test

p4bus-mmaplseek-test 

p4bus-multiApp-vmchar-test 

p4bus-multiFD-vmchar-test 

p4bus-muxa-test 

p4bus-network-test 

p4bus-nonblock-vmchar-test 

p4bus-severalMem-test 

p4bus-sigkill-vmchar-test 

p4bus-test 

p4bus-vmapi-sysfs-test 

p4bus-vmapi-test 

p4bus-vmchar-fp-test 

p4guest-console-test 

p4guest-multiApp-test 

p4guest-vmfp-test 

stress-test 

stress-test-smp 

virtio-test 

 

2.2 Fixed-priority and EDF for mixed

2.2.1 PikeOS Scheduling

PikeOS is a virtualising embedded real
ensuring isolation of different applications is partitioning, which enforces isolation both 
spatially and temporally. This way, mixed
guarantees the PikeOS partitioning provides.

Partitioning in PikeOS is two
partitioning is available, while other resources like memory, I/O access, and communication 
rights management are handled
concentrate on the scheduling functionality provided by PikeOS. The top
scheduling in PikeOS is time
schedule to determine which partitions are scheduled at which point in time. For some kind of 
dynamics to react to different system states or situations, PikeOS supports different time 
partition schedules that can be switched by a system partition, but there is no way to 
construct new time partition schemata at run
intentionally to ease argumentation about guarantees needed for certification of the temporal 

Alpha OA & RTE prototypes 

Operation Start End 

Run 19:22:44 19:24:49

Run 19:24:49 19:28:25

Run 19:28:25 19:29:19

Run 19:29:19 19:31:26

Run 19:31:27 19:32:38

test Run 19:32:38 19:34:47

Run 19:34:47 19:36:56

Run 19:36:56 19:37:49

Run 19:37:49 19:39:33

Run 19:39:33 19:41:53

Run 19:41:53 19:45:46

Run 19:45:46 19:46:59

Run 19:46:59 19:48:46

Run 19:48:46 19:53:50

Run 19:53:50 19:56:45

Run 19:56:45 19:57:50

Run 19:57:50 19:58:55

Run 19:58:55 20:00:09

Run 20:00:09 20:01:01

Run 20:01:01 20:01:50

Run 20:01:50 20:02:34

Run 20:02:34 20:03:44

Run 20:03:44 20:05:32

Run 20:05:32 20:06:15

Table 2: Benchmarks 

priority and EDF for mixed-critical VM/task scheduler

PikeOS Scheduling 

a virtualising embedded real-time operating system.  It’s basic mechanism for 
ensuring isolation of different applications is partitioning, which enforces isolation both 
spatially and temporally. This way, mixed-criticality systems can be constructed based
guarantees the PikeOS partitioning provides. 

Partitioning in PikeOS is two-fold: to partition CPU time, an ARINC653 based time 
partitioning is available, while other resources like memory, I/O access, and communication 
rights management are handled by resource partitioning.  In this technical paper, we will 
concentrate on the scheduling functionality provided by PikeOS. The top
scheduling in PikeOS is time-partitioning, which uses a static round-robin fixed sequence 

e which partitions are scheduled at which point in time. For some kind of 
dynamics to react to different system states or situations, PikeOS supports different time 
partition schedules that can be switched by a system partition, but there is no way to 

truct new time partition schemata at run-time. This static configuration is done 
intentionally to ease argumentation about guarantees needed for certification of the temporal 
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 Result 

19:24:49 OK 

19:28:25 OK 

19:29:19 OK 

19:31:26 OK 

32:38 OK 

19:34:47 OK 

19:36:56 OK 

19:37:49 OK 

19:39:33 OK 

19:41:53 OK 

19:45:46 OK 

19:46:59 OK 

19:48:46 OK 

19:53:50 OK 

19:56:45 OK 

19:57:50 OK 

19:58:55 OK 

20:00:09 OK 

20:01:01 OK 

20:01:50 OK 

20:02:34 OK 

20:03:44 OK 

20:05:32 OK 

20:06:15 OK 

critical VM/task scheduler 

time operating system.  It’s basic mechanism for 
ensuring isolation of different applications is partitioning, which enforces isolation both 

criticality systems can be constructed based on the 

fold: to partition CPU time, an ARINC653 based time 
partitioning is available, while other resources like memory, I/O access, and communication 

by resource partitioning.  In this technical paper, we will 
concentrate on the scheduling functionality provided by PikeOS. The top-level system 

robin fixed sequence 
e which partitions are scheduled at which point in time. For some kind of 

dynamics to react to different system states or situations, PikeOS supports different time 
partition schedules that can be switched by a system partition, but there is no way to 

time. This static configuration is done 
intentionally to ease argumentation about guarantees needed for certification of the temporal 
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isolation and timing properties of the system. I.e., for simplicity, this paper w
view to a single static time partition schedule.

The time partition scheduling in PikeOS has an extension over the ARINC653 partitioning: a 
time partition that is always active,
time partition plus those from tp0 are eligible to thread scheduling. 
PikeOS time partitioning works: the time partition scheduler selects, based on th
round robin schedule, one of the time partitions, and additional to that, tp0 is also active. 
From the set of threads selected this way, the second level scheduler, which is priority 
based, selects the thread with the highest priority.

TP0 is an important concept in PikeOS, because it can be used for two major tasks:

1. To run background tasks at low priority, i.e., a Linux partition that should be active 
only whenever the system has nothing else to do. This way, free CPU resources can 
be utilised without allocating explicit CPU time. This possibility is best
time critical tasks. Figure 

2. To run high-priority error handlers that are mostly inactive except in critical situations. 
E.g., a power failure handler could be allocated to tp0 with high priority, so that it can 
react quickly if necessary. Again, no CPU time would have to be pre
tasks, because in the normal case, the error handler is expected not to run, and in the 
exceptional case, it can still react with minimal delay. Because such error handler 
have highest priority, they are automatically in the highest criticality class of the 
system, because it tp0, they are always active and could disrupt the whole system in 
case they went out of control. 

Alpha OA & RTE prototypes 

isolation and timing properties of the system. I.e., for simplicity, this paper w
view to a single static time partition schedule. 

Figure 2: PikeOS time partitioning 

The time partition scheduling in PikeOS has an extension over the ARINC653 partitioning: a 
time partition that is always active, which is called tp0. At any time, threads from the current 
time partition plus those from tp0 are eligible to thread scheduling. Figure 
PikeOS time partitioning works: the time partition scheduler selects, based on th
round robin schedule, one of the time partitions, and additional to that, tp0 is also active. 
From the set of threads selected this way, the second level scheduler, which is priority 
based, selects the thread with the highest priority. 

mportant concept in PikeOS, because it can be used for two major tasks:

To run background tasks at low priority, i.e., a Linux partition that should be active 
only whenever the system has nothing else to do. This way, free CPU resources can 

hout allocating explicit CPU time. This possibility is best
Figure 3 shows this possibility. 

priority error handlers that are mostly inactive except in critical situations. 
ower failure handler could be allocated to tp0 with high priority, so that it can 

react quickly if necessary. Again, no CPU time would have to be pre
tasks, because in the normal case, the error handler is expected not to run, and in the 
exceptional case, it can still react with minimal delay. Because such error handler 
have highest priority, they are automatically in the highest criticality class of the 
system, because it tp0, they are always active and could disrupt the whole system in 
ase they went out of control. Figure 4 shows this use case of tp0 in PikeOS.
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isolation and timing properties of the system. I.e., for simplicity, this paper will restrict the 

 

The time partition scheduling in PikeOS has an extension over the ARINC653 partitioning: a 
which is called tp0. At any time, threads from the current 

Figure 2 shows how 
PikeOS time partitioning works: the time partition scheduler selects, based on the static 
round robin schedule, one of the time partitions, and additional to that, tp0 is also active. 
From the set of threads selected this way, the second level scheduler, which is priority 

mportant concept in PikeOS, because it can be used for two major tasks: 

To run background tasks at low priority, i.e., a Linux partition that should be active 
only whenever the system has nothing else to do. This way, free CPU resources can 

hout allocating explicit CPU time. This possibility is best-suited for non-

priority error handlers that are mostly inactive except in critical situations. 
ower failure handler could be allocated to tp0 with high priority, so that it can 

react quickly if necessary. Again, no CPU time would have to be pre-allocated to such 
tasks, because in the normal case, the error handler is expected not to run, and in the 
exceptional case, it can still react with minimal delay. Because such error handler 
have highest priority, they are automatically in the highest criticality class of the 
system, because it tp0, they are always active and could disrupt the whole system in 

shows this use case of tp0 in PikeOS. 
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Figure 3: Background task in tp0, as an extension to traditional ARINC653 time partitioning

 

Figure 4: Fault handler in tp0, another extension to ARINC653 time partitioning

 

2.2.2 Earliest Deadline First (EDF)

Earliest deadline first (EDF) is a dynamic scheduling algorithm used in real
systems to place processes in a priority queue. Whenever a 
finishes, new task released, etc.) the queue will be searched for the process closest to its 
deadline. This process is the next to be scheduled for execution

In the course of the project, we
time system. Together with our research partners, we want to pair up to implement and 
evaluate how EDF scheduling could improve the real
real-time operating system that uses time partitioning.

 

 

 

Scheduling with 
Background Time 
Partition

-> 4 ms additional buffer 
for critical applications

-> 6 ms additional buffer 
for non-critical partition  
in the normal case

Traditional ARINC 653 
Scheduling

Priority

Scheduling with Background Time 

Partition

-> Minimal delay for fault handler
-> Running partition is preempted
-> Fault handler would typically 

switch to different operating mode

Traditional ARINC 653 

Schedulig

-> Large delay for fault handler 
due to time partitioning
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Background task in tp0, as an extension to traditional ARINC653 time partitioning

Fault handler in tp0, another extension to ARINC653 time partitioning

Earliest Deadline First (EDF) 

is a dynamic scheduling algorithm used in real
systems to place processes in a priority queue. Whenever a scheduling event occurs (task 
finishes, new task released, etc.) the queue will be searched for the process closest to its 
deadline. This process is the next to be scheduled for execution [4]. 

In the course of the project, we want to evaluate more possibilities of scheduling in a real
time system. Together with our research partners, we want to pair up to implement and 
evaluate how EDF scheduling could improve the real-time properties and guarantees in a 

stem that uses time partitioning. 

Part A Part B Part C

7 ms5 ms5 ms

Part A Part B

9 ms9 ms

Part D (Time Partition 0, low priority thread

Priority

Part A Part B Part C

Scheduling with Background Time 

handler
Running partition is preempted

switch to different operating mode

Response time

Part A Part B Part C

Power Fail

Power Fail

Fault Handler
(Time Partition 0, high priority thread)

Priority
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is a dynamic scheduling algorithm used in real-time operating 
scheduling event occurs (task 

finishes, new task released, etc.) the queue will be searched for the process closest to its 

want to evaluate more possibilities of scheduling in a real-
time system. Together with our research partners, we want to pair up to implement and 

time properties and guarantees in a 
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low priority thread)

Fault
Handler

Spare



D4.1 - Alpha OA & RTE prototypes

SAFURE D4.1 

2.2.2.1 Event Handling in PikeOS

EDF is most attractive for sporadic, event
particularly time-critical, but for which starvation must be ruled out. It makes less sense for 
purely periodic activities, as such activities can be budgeted for in the time partition table. 
Therefore, EDF is most attractive for latency
preempt threads in other time partitions.

Application threads are routinely assigned to TP0 to serve as low
(e.g., interrupt threads). Such threads are typically lightweight, but there is no enforcement 
mechanism. In the case of an “interrupt storm,” high
could starve other time partitions (in the current system).

By coupling EDF with mandatory budget enforcement, it is possible to assign threads to TP0 
that previously would have been too dangerous to allow the ability to run at any time: 
starvation of threads in other time partitions can be prevented. In particular, this makes 
sense if the replenishment period of an event
partition cycle. If the budget of an event
starvation is still possible. By making the replenishment period (substantially) shorter than 
the length of a time partition, it is ensure that no partition is starved in its entirety.

 

2.2.2.2 Design Considerations

Any EDF scheme needs to be opt
POSIX must not be affected. For practical legacy/adoption reasons, it is highly desirable that 
older “EDF-oblivious” components continue to work even if some newer developments make 
use of the new EDF interfaces.

For efficiency reasons, it is desirable to assign multiple event
reservation. Requiring an individual reservation
pessimism. The classic fixed
delay me” (modulo controlled priority inversions). 

EDF somehow needs to fit into this view of the system. Always prioritizing EDF above fixed
priority tasks would be too intrusive. Always prioritizing fixed
threads defeats the purpose of introducing EDF. Thus, EDF threads and FP threads need to 
co-exist within a shared priority space.

In the classic FP design, threads of equal priority are typically queued in FIFO order (at each 
priority level). There are some exceptions 
inheritance as defined by POSIX. Round
e.g, again POSIX. When integrating EDF into the design, three basic options exist: at 
configuration or integration time, declare one or more of the existing fixed priority levels to be

1. a “pure EDF priority level,” with the obvious interpretation that threads (or 
reservations) of that (fixed) priority are queued in EDF order, and not FIFO order (with 
possible “deadline inheritance” exceptions),

2. a “shared EDF/FP priority level,” where both EDF threads (or reservations) and fixed
priority threads exist, and where fixed
“infinite deadline” (i.e., EDF threads/reservations always 
priority level), or 

                                                

1
 For example, on a single-CPU system, a single task attached to a reservation of 10ms every 100ms 

is guaranteed to be scheduled on the CPU for 10ms every 100ms

Alpha OA & RTE prototypes 

Event Handling in PikeOS 

EDF is most attractive for sporadic, event-driven tasks, and for background activity that is not 
critical, but for which starvation must be ruled out. It makes less sense for 

urely periodic activities, as such activities can be budgeted for in the time partition table. 
Therefore, EDF is most attractive for latency-sensitive threads in TP0 that should be able to 
preempt threads in other time partitions. 

outinely assigned to TP0 to serve as low-latency event handlers 
(e.g., interrupt threads). Such threads are typically lightweight, but there is no enforcement 
mechanism. In the case of an “interrupt storm,” high-priority event handlers assigned to TP0 

d starve other time partitions (in the current system). 

By coupling EDF with mandatory budget enforcement, it is possible to assign threads to TP0 
that previously would have been too dangerous to allow the ability to run at any time: 

in other time partitions can be prevented. In particular, this makes 
sense if the replenishment period of an event-driven thread in TP0 is shorter than the 
partition cycle. If the budget of an event-driven thread is larger than a time partition’s slice, 

arvation is still possible. By making the replenishment period (substantially) shorter than 
the length of a time partition, it is ensure that no partition is starved in its entirety.

Design Considerations 

Any EDF scheme needs to be opt-in, as compliance with standards such as ARINC 653 and 
POSIX must not be affected. For practical legacy/adoption reasons, it is highly desirable that 

oblivious” components continue to work even if some newer developments make 
use of the new EDF interfaces. 

iciency reasons, it is desirable to assign multiple event-driven threads to the same 
reservation. Requiring an individual reservation1 for each thread introduces additional 
pessimism. The classic fixed-priority view of the system is: “nothing of lower prio
delay me” (modulo controlled priority inversions).  

EDF somehow needs to fit into this view of the system. Always prioritizing EDF above fixed
priority tasks would be too intrusive. Always prioritizing fixed-priority threads over EDF 

ts the purpose of introducing EDF. Thus, EDF threads and FP threads need to 
exist within a shared priority space. 

In the classic FP design, threads of equal priority are typically queued in FIFO order (at each 
priority level). There are some exceptions to this basic rule, e.g., in the case of priority 
inheritance as defined by POSIX. Round-robin with fixed time slices is also not uncommon, 
e.g, again POSIX. When integrating EDF into the design, three basic options exist: at 

ime, declare one or more of the existing fixed priority levels to be

a “pure EDF priority level,” with the obvious interpretation that threads (or 
reservations) of that (fixed) priority are queued in EDF order, and not FIFO order (with 

nheritance” exceptions), 

a “shared EDF/FP priority level,” where both EDF threads (or reservations) and fixed
priority threads exist, and where fixed-priority threads are treated as if they had an 
“infinite deadline” (i.e., EDF threads/reservations always have precedence at that 

        

CPU system, a single task attached to a reservation of 10ms every 100ms 
is guaranteed to be scheduled on the CPU for 10ms every 100ms [12]. 
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driven tasks, and for background activity that is not 
critical, but for which starvation must be ruled out. It makes less sense for 

urely periodic activities, as such activities can be budgeted for in the time partition table. 
sensitive threads in TP0 that should be able to 

latency event handlers 
(e.g., interrupt threads). Such threads are typically lightweight, but there is no enforcement 

priority event handlers assigned to TP0 

By coupling EDF with mandatory budget enforcement, it is possible to assign threads to TP0 
that previously would have been too dangerous to allow the ability to run at any time: 

in other time partitions can be prevented. In particular, this makes 
driven thread in TP0 is shorter than the 

driven thread is larger than a time partition’s slice, 
arvation is still possible. By making the replenishment period (substantially) shorter than 

the length of a time partition, it is ensure that no partition is starved in its entirety. 

ith standards such as ARINC 653 and 
POSIX must not be affected. For practical legacy/adoption reasons, it is highly desirable that 

oblivious” components continue to work even if some newer developments make 

driven threads to the same 
for each thread introduces additional 

priority view of the system is: “nothing of lower priority can 

EDF somehow needs to fit into this view of the system. Always prioritizing EDF above fixed-
priority threads over EDF 

ts the purpose of introducing EDF. Thus, EDF threads and FP threads need to 

In the classic FP design, threads of equal priority are typically queued in FIFO order (at each 
to this basic rule, e.g., in the case of priority 

robin with fixed time slices is also not uncommon, 
e.g, again POSIX. When integrating EDF into the design, three basic options exist: at 

ime, declare one or more of the existing fixed priority levels to be 

a “pure EDF priority level,” with the obvious interpretation that threads (or 
reservations) of that (fixed) priority are queued in EDF order, and not FIFO order (with 

a “shared EDF/FP priority level,” where both EDF threads (or reservations) and fixed-
priority threads are treated as if they had an 

have precedence at that 

CPU system, a single task attached to a reservation of 10ms every 100ms 
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3. a “shared FP/EDF priority level,” where both EDF threads/reservations and fixed
priority threads exist, and where fixed
deadline of zero (i.e., fixed
level). 

Of the three possible designs, only the second option makes sense. The third option is 
equivalent to having a pure FP level 
priority level), and the second options subsumes the first option if the user d
threads at the same priority level (which the first option entails anyway).

 

2.2.3 Evaluation Aspects

The implementation of the new PikeOS EDF scheduling will be subject to several evaluation 
metrics.  Obviously, the most question to be answered is w
customers when designing a system. By careful consideration, we believe this to be true, and 
it just remains to be shown that EDF actually works well together with time partitioning.

Secondly of all, we will evaluate whether 
one. There may be a scheduling overhead due to the more complex selection criterion. We 
want to evaluate how much difference this means. The numbers will help system designers 
to decide whether the overhead is worth the gain.

Thirdly, we will evaluate how well an EDF implementation is embeddable into a certified real
time operation system like PikeOS. To the best of our knowledge, there is no data indicating 
whether EDF can be easily certified according to
PikeOS. To evaluate this, SYSGO will use some of its certification experts to examine the 
source code of the implementation and to see whether it would be usable in a certification 
environment. 

 

2.2.4 Implementation 

It is conceptually possible to implement an EDF scheduler in user space, but this may 
introduce overheads that may be too great to be useful. Therefore, an in
implementation will be targeted.

In PikeOS 4.0, SYSGO introduced pluggable kernel drivers. The des
configuration time, the final PikeOS kernel binary is linked together from the core kernel 
binary, plus the platform support package (PSP), containing lowest level timer and boot 
support, plus user defined kernel driver modules. This me
so no special support needs to be given when developing a kernel driver.

A kernel driver for scheduling would be special, because it needs to plug into the PikeOS 
kernel’s scheduler algorithm. For this, no direct support 
SYSGO will have to extend the kernel driver concept in such a way that the PikeOS 
scheduler can invoke callbacks into a pluggable scheduler driver to extend the scheduling.

Once such pluggable scheduler functionality is
as a kernel driver. The PikeOS kernel driver framework provides mechanisms for 
configuration of drivers using an XSD/XML based approach. This can be used by the EDF 
driver to establish the global reservation ta
from the system integrator.  Configuration information can be global and per
PikeOS configuration concept supports both.
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a “shared FP/EDF priority level,” where both EDF threads/reservations and fixed
priority threads exist, and where fixed-priority threads are treated as if they had a 
deadline of zero (i.e., fixed-priority threads always have precedence at that priority 

Of the three possible designs, only the second option makes sense. The third option is 
equivalent to having a pure FP level π and a pure EDF level π − 1 (i.e, at the next lower 
priority level), and the second options subsumes the first option if the user d
threads at the same priority level (which the first option entails anyway). 

Evaluation Aspects 

The implementation of the new PikeOS EDF scheduling will be subject to several evaluation 
metrics.  Obviously, the most question to be answered is whether EDF is a gain for SYSGO 
customers when designing a system. By careful consideration, we believe this to be true, and 
it just remains to be shown that EDF actually works well together with time partitioning.

Secondly of all, we will evaluate whether the scheduler is as efficient as the current PikeOS 
one. There may be a scheduling overhead due to the more complex selection criterion. We 
want to evaluate how much difference this means. The numbers will help system designers 

ad is worth the gain. 

Thirdly, we will evaluate how well an EDF implementation is embeddable into a certified real
time operation system like PikeOS. To the best of our knowledge, there is no data indicating 
whether EDF can be easily certified according to the high standards that are used for 
PikeOS. To evaluate this, SYSGO will use some of its certification experts to examine the 
source code of the implementation and to see whether it would be usable in a certification 

nceptually possible to implement an EDF scheduler in user space, but this may 
introduce overheads that may be too great to be useful. Therefore, an in
implementation will be targeted. 

In PikeOS 4.0, SYSGO introduced pluggable kernel drivers. The design is such that at 
configuration time, the final PikeOS kernel binary is linked together from the core kernel 
binary, plus the platform support package (PSP), containing lowest level timer and boot 
support, plus user defined kernel driver modules. This mechanism is available to customers, 
so no special support needs to be given when developing a kernel driver. 

A kernel driver for scheduling would be special, because it needs to plug into the PikeOS 
kernel’s scheduler algorithm. For this, no direct support is currently available in PikeOS, so 
SYSGO will have to extend the kernel driver concept in such a way that the PikeOS 
scheduler can invoke callbacks into a pluggable scheduler driver to extend the scheduling.

Once such pluggable scheduler functionality is available, the EDF driver can be implemented 
as a kernel driver. The PikeOS kernel driver framework provides mechanisms for 
configuration of drivers using an XSD/XML based approach. This can be used by the EDF 
driver to establish the global reservation table and to pass in any other configuration data 
from the system integrator.  Configuration information can be global and per
PikeOS configuration concept supports both. 
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a “shared FP/EDF priority level,” where both EDF threads/reservations and fixed-
priority threads are treated as if they had a 

always have precedence at that priority 

Of the three possible designs, only the second option makes sense. The third option is 
− 1 (i.e, at the next lower 

priority level), and the second options subsumes the first option if the user does not mix 

The implementation of the new PikeOS EDF scheduling will be subject to several evaluation 
hether EDF is a gain for SYSGO 

customers when designing a system. By careful consideration, we believe this to be true, and 
it just remains to be shown that EDF actually works well together with time partitioning. 

the scheduler is as efficient as the current PikeOS 
one. There may be a scheduling overhead due to the more complex selection criterion. We 
want to evaluate how much difference this means. The numbers will help system designers 

Thirdly, we will evaluate how well an EDF implementation is embeddable into a certified real-
time operation system like PikeOS. To the best of our knowledge, there is no data indicating 

the high standards that are used for 
PikeOS. To evaluate this, SYSGO will use some of its certification experts to examine the 
source code of the implementation and to see whether it would be usable in a certification 

nceptually possible to implement an EDF scheduler in user space, but this may 
introduce overheads that may be too great to be useful. Therefore, an in-kernel 

ign is such that at 
configuration time, the final PikeOS kernel binary is linked together from the core kernel 
binary, plus the platform support package (PSP), containing lowest level timer and boot 

chanism is available to customers, 
 

A kernel driver for scheduling would be special, because it needs to plug into the PikeOS 
is currently available in PikeOS, so 

SYSGO will have to extend the kernel driver concept in such a way that the PikeOS 
scheduler can invoke callbacks into a pluggable scheduler driver to extend the scheduling. 

available, the EDF driver can be implemented 
as a kernel driver. The PikeOS kernel driver framework provides mechanisms for 
configuration of drivers using an XSD/XML based approach. This can be used by the EDF 

ble and to pass in any other configuration data 
from the system integrator.  Configuration information can be global and per-partition, the 



D4.1 - Alpha OA & RTE prototypes

SAFURE D4.1 

2.2.5 Summary 

In the project, we want to implement and evaluate EDF scheduli
combination with time partitioning. We have identified that it is best an addition to the tp0 
concept of PikeOS, for sporadic, not particularly time critical tasks for which starvation needs 
to be ruled out. Latency-sensitive threa

Within the PikeOS 4.0 kernel driver framework, it will be possible to implement the EDF 
scheduler extensions that the PikeOS kernel will need for EDF. The framework also provides 
the necessary means to config
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, we want to implement and evaluate EDF scheduling as part of PikeOS, in 
combination with time partitioning. We have identified that it is best an addition to the tp0 
concept of PikeOS, for sporadic, not particularly time critical tasks for which starvation needs 

sensitive threads in TP0 are most suited for running with EDF.

Within the PikeOS 4.0 kernel driver framework, it will be possible to implement the EDF 
scheduler extensions that the PikeOS kernel will need for EDF. The framework also provides 

ans to configure the scheduling. 
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Chapter 3 Security for Mixed

3.1 CycurLIB on PikeOS

In order to meet the security requirements defined in the D1.2, (i.e. system integrity that both 
the operating system and the run
cryptographic algorithms (like AES, SHA
cryptographic algorithms provide application programmers an easy and standard way to add 
security to applications, and SAFURE will integrate the most relevant algorithms into the run
time environment of PikeOS.  

3.1.1 CycurLIB 

CycurLIB is a cryptographic library developed by ESCRYPT, which is a collection of common 
cryptographic algorithms used in embedded systems where resources are particularly 
limited. 

The library meets the following design

• Minimized ROM size 

• Minimized RAM usage

• Compliance with MISRA

• No dependencies on external libraries (including the C standard library)

• No dependencies on a particular microcontroller or operating system (e.g. 
independence of endianness, no

• No dynamic memory allocation

• Fully re-entrant 

• Easy to integrate in existing systems

 

3.1.2 Cryptographic Algorithms

Currently the cryptographic algorithms being ported into PikeOS are selected from CycurLIB 
according to discussion result of data 

• Symmetric key encryption/decryption algorithm (i.e. AES, ChaCha20, Salsa20)

• Asymmetric key encryption/decryption algorithm (i.e. RSA, ECDSA)

• Message Authentication Codes (MAC) (i.e. HMAC, CMAC, Poly130

Please note that the cryptographic algorithms listed here are only the suggestion. The real 
ported cryptographic algorithms could be extended or reduced according to the real design 
and the use of PikeOS.  

 

3.1.3 PikeOS File Provider

The PikeOS System Software allows applications to register themselves as 
the rest of the system. They can then be accessed using standard file system semantics to 
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Security for Mixed-Criticality

CycurLIB on PikeOS 

In order to meet the security requirements defined in the D1.2, (i.e. system integrity that both 
the operating system and the run-time environment are not manipulated.), standard 

graphic algorithms (like AES, SHA-2, RSA, and ECC) are required. These 
cryptographic algorithms provide application programmers an easy and standard way to add 
security to applications, and SAFURE will integrate the most relevant algorithms into the run

 

CycurLIB is a cryptographic library developed by ESCRYPT, which is a collection of common 
cryptographic algorithms used in embedded systems where resources are particularly 

The library meets the following design criteria: 

Minimized RAM usage 

Compliance with MISRA-C:2012 

No dependencies on external libraries (including the C standard library)

No dependencies on a particular microcontroller or operating system (e.g. 
independence of endianness, no assembly code) 

No dynamic memory allocation 

Easy to integrate in existing systems 

Cryptographic Algorithms 

Currently the cryptographic algorithms being ported into PikeOS are selected from CycurLIB 
according to discussion result of data integrity in D3.1. There are basically three aspects: 

Symmetric key encryption/decryption algorithm (i.e. AES, ChaCha20, Salsa20)

Asymmetric key encryption/decryption algorithm (i.e. RSA, ECDSA)

Message Authentication Codes (MAC) (i.e. HMAC, CMAC, Poly130

Please note that the cryptographic algorithms listed here are only the suggestion. The real 
ported cryptographic algorithms could be extended or reduced according to the real design 

PikeOS File Provider 

e allows applications to register themselves as 
the rest of the system. They can then be accessed using standard file system semantics to 
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Criticality 

In order to meet the security requirements defined in the D1.2, (i.e. system integrity that both 
time environment are not manipulated.), standard 

2, RSA, and ECC) are required. These 
cryptographic algorithms provide application programmers an easy and standard way to add 
security to applications, and SAFURE will integrate the most relevant algorithms into the run-

CycurLIB is a cryptographic library developed by ESCRYPT, which is a collection of common 
cryptographic algorithms used in embedded systems where resources are particularly 

No dependencies on external libraries (including the C standard library) 

No dependencies on a particular microcontroller or operating system (e.g. 

Currently the cryptographic algorithms being ported into PikeOS are selected from CycurLIB 
integrity in D3.1. There are basically three aspects:  

Symmetric key encryption/decryption algorithm (i.e. AES, ChaCha20, Salsa20) 

Asymmetric key encryption/decryption algorithm (i.e. RSA, ECDSA) 

Message Authentication Codes (MAC) (i.e. HMAC, CMAC, Poly1305) 

Please note that the cryptographic algorithms listed here are only the suggestion. The real 
ported cryptographic algorithms could be extended or reduced according to the real design 

e allows applications to register themselves as file providers to 
the rest of the system. They can then be accessed using standard file system semantics to 
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implement all kinds of file systems. File providers 
such as for Ethernet, serial or CAN.
and configurable file providers.

• Internal file providers are part of the PikeOS System Software and are available as 

soon as the system starts up.

o ROM File System (rfs prefix)

o Shared Memory File System (shm prefix)

o Property File System (prop prefix)

• External file providers are applications running in a partition. They allow the 

functionality of PikeOS to be extended

• System extension file pro

allow to extend the file system.

 

3.1.4 Porting CycurLIB using PikeOS File Provider

In order to provide an easy and standard way for application programmers to add security
applications, the cryptographic algorithms from CycurLIB are integrated into PikeOS by using 
the structure of File Provider. 

The PikeOS applications can use the functionality of the File Provider through the PikeOS 
File System API. Different types of f

The cryptographic algorithms from CycurLIB will be integrated into PikeOS in the form of 
external File Providers which are applications running in a partition. Each function of the 
algorithm is implemented as a file. The
through the PikeOS File System API. For example, AES_CBC encryption function is 
implemented as a file called 
AES_CBC encryption function, the
vm_close(), etc. to access the file  
from the file.  

By using File Provider, the applications do not need to know how the cryptographic funct
are implemented. Instead, they just need to know the file name of the cryptographic 
functions.  

In order to make it easy to use, a CycurLIB_Api interface will also be implemented. The 
interface will look similar as the normal cryptographic function wi
parameters. This interface will take care of the sequence of calling the PikeOS File System 
API for each cryptographic function to set the corresponding parameters through the file 
provider to the CycurLIB function. In this way, PikeOS 
CyurLIB_Api without the knowledge about File Provider.

 

3.2 Architecture for Secure

Secure boot is of interest for devices, where a malfunction has disastrous consequences for 
the user. Medical devices for example mostly 
right level of safety and security. By instrumenting the firmware or the operating system, the 
hacker is able to bypass every software security mechanism and to modify the functionality 
of the device, so that an infusion pump may provide too much medication to a patient, 
causing possible catastrophic consequences. 
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implement all kinds of file systems. File providers are also used as the interface to I/O drivers 
ch as for Ethernet, serial or CAN. PikeOS comes with a number of ready

providers. [5] 

Internal file providers are part of the PikeOS System Software and are available as 

arts up. 

ROM File System (rfs prefix) 

Shared Memory File System (shm prefix) 

Property File System (prop prefix) 

External file providers are applications running in a partition. They allow the 

functionality of PikeOS to be extended 

System extension file provider are running in the PikeOS System Software. They also 

allow to extend the file system. [6] 

Porting CycurLIB using PikeOS File Provider 

In order to provide an easy and standard way for application programmers to add security
applications, the cryptographic algorithms from CycurLIB are integrated into PikeOS by using 

 

The PikeOS applications can use the functionality of the File Provider through the PikeOS 
File System API. Different types of file are managed by File Providers.  

The cryptographic algorithms from CycurLIB will be integrated into PikeOS in the form of 
external File Providers which are applications running in a partition. Each function of the 
algorithm is implemented as a file. The file can be accessed by the other PikeOS application 
through the PikeOS File System API. For example, AES_CBC encryption function is 
implemented as a file called file_aes_cbc_enc. If other PikeOS applications want to using 
AES_CBC encryption function, they can use vm_open(), vm_ioctl(), vm_write(), vm_read(), 

to access the file  file_aes_cbc_enc, write inputs to the file and read output 

By using File Provider, the applications do not need to know how the cryptographic funct
are implemented. Instead, they just need to know the file name of the cryptographic 

In order to make it easy to use, a CycurLIB_Api interface will also be implemented. The 
interface will look similar as the normal cryptographic function with input and output 
parameters. This interface will take care of the sequence of calling the PikeOS File System 
API for each cryptographic function to set the corresponding parameters through the file 
provider to the CycurLIB function. In this way, PikeOS applications can directly use 
CyurLIB_Api without the knowledge about File Provider.     

Architecture for Secure Boot 

Secure boot is of interest for devices, where a malfunction has disastrous consequences for 
the user. Medical devices for example mostly use segregation (separation) to provide the 
right level of safety and security. By instrumenting the firmware or the operating system, the 
hacker is able to bypass every software security mechanism and to modify the functionality 

infusion pump may provide too much medication to a patient, 
causing possible catastrophic consequences.  
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the interface to I/O drivers 
PikeOS comes with a number of ready-to-use built-in 

Internal file providers are part of the PikeOS System Software and are available as 

External file providers are applications running in a partition. They allow the 

vider are running in the PikeOS System Software. They also 

In order to provide an easy and standard way for application programmers to add security to 
applications, the cryptographic algorithms from CycurLIB are integrated into PikeOS by using 

The PikeOS applications can use the functionality of the File Provider through the PikeOS 

The cryptographic algorithms from CycurLIB will be integrated into PikeOS in the form of 
external File Providers which are applications running in a partition. Each function of the 

file can be accessed by the other PikeOS application 
through the PikeOS File System API. For example, AES_CBC encryption function is 

If other PikeOS applications want to using 
vm_open(), vm_ioctl(), vm_write(), vm_read(), 

write inputs to the file and read output 

By using File Provider, the applications do not need to know how the cryptographic functions 
are implemented. Instead, they just need to know the file name of the cryptographic 

In order to make it easy to use, a CycurLIB_Api interface will also be implemented. The 
th input and output 

parameters. This interface will take care of the sequence of calling the PikeOS File System 
API for each cryptographic function to set the corresponding parameters through the file 

applications can directly use 

Secure boot is of interest for devices, where a malfunction has disastrous consequences for 
use segregation (separation) to provide the 

right level of safety and security. By instrumenting the firmware or the operating system, the 
hacker is able to bypass every software security mechanism and to modify the functionality 

infusion pump may provide too much medication to a patient, 
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Secure boot is not only a means for securing the boot process. It can also be used to protect 
intellectual property and system secrets by encrypting th
security the attacker will neither be able to start the system with instrumented code (in order 
to analyse the image content) nor will they be able to reverse engineer the application image, 
which they may read from the F

This section describes the secure boot principles and illustrates how the boot process for a 
PikeOS system is secured and how application loading can be secured in a chain of trust.

Some companies (e.g. Texas Instruments, Qualcomm etc.) don’t
about Secure Boot implementation in their SoCs without a NDA agreement. Therefore for the 
first development to achieve quick and portable results, we have chosen Freescale QorIQ 
platform as one with well documented implementation o
Boot concept is platform independent and will be portable with very limited resources to other 
platforms. 

 

3.2.1 Secure Boot Components

While looking at the Trust Architecture, we will focus only on the components required for 
secure boot process. A more detailed description of the Trust Architecture can be found in
[7]. The Software and Hardware components, which are essential for the secure boot 
process, are: 

Security Engine (SEC): The primar
operations. The SEC also supports a security violation detection function known as the Run 
Time Integrity Checker (RTIC). The RTIC uses the SEC’s cryptographic hashing capability to 
periodically check the integrity of designated sections of system memory. 

Security Fuse Processor (SFP):
secret values to other hardware blocks of the QorIQ processor. The values in a locked SFP 
cannot be read, modified or scanned. 

Security Monitor: The Sec_Mon senses and controls the security state of the QorIQ. If a 
security violation is detected, configurable actions are executed. The possible actions range 
from SoC reset to more severe lock

Pre-Boot Loader (PBL): Before the local cores are permitted to boot, the pre
(PBL) loads a reset configuration word (RCW) and Pre
from a non-volatile memory interface and does some basic c

Internal Secure Boot Code (ISBC):
function is to validate a signature over the next code to execute. 

External Secure Boot Code (ESBC):
is usually a boot loader, which implements functionality to validate the next software to be 
loaded. Freescale provides a modified U
OEM.  

Code Signing Tool (CST): The CST enables manufacturers to sign or
for their products to ensure that only authentic software is allowed to run on the end product. 

Secure boot is usually initiated by putting the processor into a specific state by setting the 
Intend To Secure (ITS) bit in the security
during power-on, the system jumps to an unmodifiable Internal Boot ROM, which contains 
the Internal Secure Boot Code (ISBC). The function of the ISBC is to validate the authenticity 
of the next code to be executed. The described sequence of operation is designed to be 
unmodifiable and is called the root of trust.
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Secure boot is not only a means for securing the boot process. It can also be used to protect 
intellectual property and system secrets by encrypting the boot image. With this additional 
security the attacker will neither be able to start the system with instrumented code (in order 
to analyse the image content) nor will they be able to reverse engineer the application image, 
which they may read from the Flash device.  

This section describes the secure boot principles and illustrates how the boot process for a 
PikeOS system is secured and how application loading can be secured in a chain of trust.

Some companies (e.g. Texas Instruments, Qualcomm etc.) don’t provide any information 
about Secure Boot implementation in their SoCs without a NDA agreement. Therefore for the 
first development to achieve quick and portable results, we have chosen Freescale QorIQ 
platform as one with well documented implementation of Secure Boot. The designed Secure 
Boot concept is platform independent and will be portable with very limited resources to other 

Components 

While looking at the Trust Architecture, we will focus only on the components required for 
secure boot process. A more detailed description of the Trust Architecture can be found in

. The Software and Hardware components, which are essential for the secure boot 

The primary function of the SEC is to accelerate cryptographic 
operations. The SEC also supports a security violation detection function known as the Run 
Time Integrity Checker (RTIC). The RTIC uses the SEC’s cryptographic hashing capability to 

e integrity of designated sections of system memory.  

Security Fuse Processor (SFP): The SFP is used to program fuses passing keys and other 
secret values to other hardware blocks of the QorIQ processor. The values in a locked SFP 

or scanned.  

The Sec_Mon senses and controls the security state of the QorIQ. If a 
security violation is detected, configurable actions are executed. The possible actions range 
from SoC reset to more severe lock-out options, which can make the SoC unusable. 

Before the local cores are permitted to boot, the pre
(PBL) loads a reset configuration word (RCW) and Pre-Boot Initialization (PBI) commands 

volatile memory interface and does some basic chip configuration. 

Internal Secure Boot Code (ISBC): The ISBC is an unmodifiable internal boot ROM. Its 
function is to validate a signature over the next code to execute.  

External Secure Boot Code (ESBC): The ESBC is whatever the OEM programs it to be an
is usually a boot loader, which implements functionality to validate the next software to be 
loaded. Freescale provides a modified U-Boot, which can be adapted to the hardware by the 

The CST enables manufacturers to sign or encrypt the software 
for their products to ensure that only authentic software is allowed to run on the end product. 

Secure boot is usually initiated by putting the processor into a specific state by setting the 
Intend To Secure (ITS) bit in the security Fuse Processor (SFP). If the ITS bit is sensed 

on, the system jumps to an unmodifiable Internal Boot ROM, which contains 
the Internal Secure Boot Code (ISBC). The function of the ISBC is to validate the authenticity 

cuted. The described sequence of operation is designed to be 
unmodifiable and is called the root of trust. 
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Secure boot is not only a means for securing the boot process. It can also be used to protect 
e boot image. With this additional 

security the attacker will neither be able to start the system with instrumented code (in order 
to analyse the image content) nor will they be able to reverse engineer the application image, 

This section describes the secure boot principles and illustrates how the boot process for a 
PikeOS system is secured and how application loading can be secured in a chain of trust. 

provide any information 
about Secure Boot implementation in their SoCs without a NDA agreement. Therefore for the 
first development to achieve quick and portable results, we have chosen Freescale QorIQ 

f Secure Boot. The designed Secure 
Boot concept is platform independent and will be portable with very limited resources to other 

While looking at the Trust Architecture, we will focus only on the components required for the 
secure boot process. A more detailed description of the Trust Architecture can be found in 

. The Software and Hardware components, which are essential for the secure boot 

y function of the SEC is to accelerate cryptographic 
operations. The SEC also supports a security violation detection function known as the Run 
Time Integrity Checker (RTIC). The RTIC uses the SEC’s cryptographic hashing capability to 

 

The SFP is used to program fuses passing keys and other 
secret values to other hardware blocks of the QorIQ processor. The values in a locked SFP 

The Sec_Mon senses and controls the security state of the QorIQ. If a 
security violation is detected, configurable actions are executed. The possible actions range 

e the SoC unusable.  

Before the local cores are permitted to boot, the pre-boot loader 
Boot Initialization (PBI) commands 

hip configuration.  

The ISBC is an unmodifiable internal boot ROM. Its 

The ESBC is whatever the OEM programs it to be and 
is usually a boot loader, which implements functionality to validate the next software to be 

Boot, which can be adapted to the hardware by the 

encrypt the software 
for their products to ensure that only authentic software is allowed to run on the end product.  

Secure boot is usually initiated by putting the processor into a specific state by setting the 
Fuse Processor (SFP). If the ITS bit is sensed 

on, the system jumps to an unmodifiable Internal Boot ROM, which contains 
the Internal Secure Boot Code (ISBC). The function of the ISBC is to validate the authenticity 

cuted. The described sequence of operation is designed to be 
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3.2.2 Code Signing 

In order to guarantee authenticity of the code to be executed, secure boot relies on validating 
a signature, which has been generated f
The Freescale Code Signing Tool (CST) provides all required means to digitally sign code 
and apply encryption. The RSA
also used in the Freescale CST. The CST can establish a Public Key Infrastructure (PKI) tree 
of keys and certificates needed for code signing in addition to generating digital signatures 
across data provided by the OEM. The signatures generated by the CST can then be 
included as part of the end product software image
process for a “System Image” using the Code Signing Tool. The generic signature process 
can be summarized as:  

1. Calculate a hash over the system image 

2. Sign the previously generated hash with the private key

3. Calculate hash over public key and burn this into Super Root Key (SRK) fuse 

Rather than signing the whole image, a ha
hash over the System Image. Then the hash is signed with the RSA private key and 
appended to a header, which is known as the CSF
public key will be used to validate the h
written to the flash. Therefore a hash is generated from the public key, and programmed into 
a fuse block. Although Figure 
possible (even advantageous) to encrypt portions of the image with the One
Programmable- Master-Key (OTPMK), which is a persistent secret value held in the SFP. 
This prevents attackers from stealing code from flash for reverse engineering.  

 

3.2.3 The Secure Boot Process

Starting from the root of trust, secure boot shall make sure that the firmware to be loaded is 
authentic. Either it is the original image or it is an updated image, which must have gone 
through the same code signature process as described in 
boot process can be divided into two steps. The pre
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In order to guarantee authenticity of the code to be executed, secure boot relies on validating 
a signature, which has been generated from the system image (which shall be validated). 
The Freescale Code Signing Tool (CST) provides all required means to digitally sign code 
and apply encryption. The RSA-algorithm is the most common sign and verify tool, which is 

ST. The CST can establish a Public Key Infrastructure (PKI) tree 
of keys and certificates needed for code signing in addition to generating digital signatures 
across data provided by the OEM. The signatures generated by the CST can then be 

of the end product software image [8]. Figure 5 shows the code signing 
process for a “System Image” using the Code Signing Tool. The generic signature process 

over the system image  

Sign the previously generated hash with the private key 

Calculate hash over public key and burn this into Super Root Key (SRK) fuse 

Figure 5: Code signing process 

Rather than signing the whole image, a hash algorithm (e.g. SHA256) is used to generate a 
hash over the System Image. Then the hash is signed with the RSA private key and 
appended to a header, which is known as the CSF- header. During the boot process the 
public key will be used to validate the hash. The header and the system image are then 
written to the flash. Therefore a hash is generated from the public key, and programmed into 

Figure 5 shows the hash being calculated over system image, it is 
ssible (even advantageous) to encrypt portions of the image with the One

Key (OTPMK), which is a persistent secret value held in the SFP. 
This prevents attackers from stealing code from flash for reverse engineering.  

Boot Process 

Starting from the root of trust, secure boot shall make sure that the firmware to be loaded is 
authentic. Either it is the original image or it is an updated image, which must have gone 
through the same code signature process as described in the previous chapter. The secure 
boot process can be divided into two steps. The pre-boot phase, which initializes the SoC for 
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In order to guarantee authenticity of the code to be executed, secure boot relies on validating 
rom the system image (which shall be validated). 

The Freescale Code Signing Tool (CST) provides all required means to digitally sign code 
algorithm is the most common sign and verify tool, which is 

ST. The CST can establish a Public Key Infrastructure (PKI) tree 
of keys and certificates needed for code signing in addition to generating digital signatures 
across data provided by the OEM. The signatures generated by the CST can then be 

shows the code signing 
process for a “System Image” using the Code Signing Tool. The generic signature process 

Calculate hash over public key and burn this into Super Root Key (SRK) fuse  

 

sh algorithm (e.g. SHA256) is used to generate a 
hash over the System Image. Then the hash is signed with the RSA private key and 

header. During the boot process the 
ash. The header and the system image are then 

written to the flash. Therefore a hash is generated from the public key, and programmed into 
shows the hash being calculated over system image, it is 

ssible (even advantageous) to encrypt portions of the image with the One-Time-
Key (OTPMK), which is a persistent secret value held in the SFP. 

This prevents attackers from stealing code from flash for reverse engineering.   

Starting from the root of trust, secure boot shall make sure that the firmware to be loaded is 
authentic. Either it is the original image or it is an updated image, which must have gone 

the previous chapter. The secure 
boot phase, which initializes the SoC for 



D4.1 - Alpha OA & RTE prototypes

SAFURE D4.1 

the secure boot process and the ISBC phase, which performs the signature validation over 
the firmware, which was named system ima

Freescale provides reference firmware code, which can be adapted by the OEM to support 
the customer’s hardware. This firmware code is logically divided in two parts. The fir
which is executed by the ISBC, performs further device configuration and code 
authentication using similar mechanisms as the ISBC. This part is called External Secure 
Boot Code (ESBC). As Freescale uses U
second logical part is the “Trusted U
the ESBC and loaded into main memory for execution.  

Pre-Boot phase  

Before the local cores are permitted to boot, the reset control logic blocks all ac
fuse values are sensed. The fuse value, which indicates the intention to use secure boot, is 
the Intend To Secure (ITS) bit. If the ITS bit is set, interfaces, memory permissions and MMU 
configurations are locked down. 

The Pre-Boot-Loader (PBL) loads the configuration values from the Reset Configuration 
Word (RCW) and the Pre- Boot
chip configuration, making sure that the ISBC knows the location of the CSF header. After 
this setup, the PBL enables Core 0, which begins executing code from the hard wired ISBC.   

ISBC phase  

As described earlier, the ISBC is considered inherently trusted, because it cannot be 
modified.  

Apart from some platform self
signature validation of the firmware. As shown in 
validation of the firmware is taken from the CSF header. The validation process uses CPU 0 
to execute the ISBC code, whi
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the secure boot process and the ISBC phase, which performs the signature validation over 
the firmware, which was named system image for code signing.  

Figure 6: The secure boot process 

Freescale provides reference firmware code, which can be adapted by the OEM to support 
the customer’s hardware. This firmware code is logically divided in two parts. The fir
which is executed by the ISBC, performs further device configuration and code 
authentication using similar mechanisms as the ISBC. This part is called External Secure 
Boot Code (ESBC). As Freescale uses U-Boot code, it is also named “Trusted U
second logical part is the “Trusted U-Boot Client”. This Trusted U-Boot client is validated by 
the ESBC and loaded into main memory for execution.   

Before the local cores are permitted to boot, the reset control logic blocks all ac
fuse values are sensed. The fuse value, which indicates the intention to use secure boot, is 
the Intend To Secure (ITS) bit. If the ITS bit is set, interfaces, memory permissions and MMU 
configurations are locked down.  

PBL) loads the configuration values from the Reset Configuration 
Boot-Initialization (PBI) commands, thereby performing minimum 

chip configuration, making sure that the ISBC knows the location of the CSF header. After 
e PBL enables Core 0, which begins executing code from the hard wired ISBC.   

As described earlier, the ISBC is considered inherently trusted, because it cannot be 

Apart from some platform self-test and policy checks, the main task of the ISBC is the 
signature validation of the firmware. As shown in Figure 7, the information needed for the 
validation of the firmware is taken from the CSF header. The validation process uses CPU 0 
to execute the ISBC code, while the security monitor monitors the security state during this 
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the secure boot process and the ISBC phase, which performs the signature validation over 

 

Freescale provides reference firmware code, which can be adapted by the OEM to support 
the customer’s hardware. This firmware code is logically divided in two parts. The first part, 
which is executed by the ISBC, performs further device configuration and code 
authentication using similar mechanisms as the ISBC. This part is called External Secure 

Boot code, it is also named “Trusted U-Boot”. The 
Boot client is validated by 

Before the local cores are permitted to boot, the reset control logic blocks all activities until 
fuse values are sensed. The fuse value, which indicates the intention to use secure boot, is 
the Intend To Secure (ITS) bit. If the ITS bit is set, interfaces, memory permissions and MMU 

PBL) loads the configuration values from the Reset Configuration 
Initialization (PBI) commands, thereby performing minimum 

chip configuration, making sure that the ISBC knows the location of the CSF header. After 
e PBL enables Core 0, which begins executing code from the hard wired ISBC.    

As described earlier, the ISBC is considered inherently trusted, because it cannot be 

of the ISBC is the 
, the information needed for the 

validation of the firmware is taken from the CSF header. The validation process uses CPU 0 
le the security monitor monitors the security state during this 
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process and the Security Engine is used to decrypt the image or the hash values. The 
detailed execution process is shown in 

1. The ISBC executes self-tests

2. A hash is calculated over the public key, taken from the CSF header

3. The calculated hash is compared with the hash in the Super Root Key (SRK)

(see Figure 5) 

4. If the hashes are identical, the hash for the C
calculated 

5. Using the public key, the system image signature (see 
decrypted 

6. The hashes of the signatures from step 4 and 5 are compared

7. If the hashes are equal, the exe

 

ESBC validation process  

The ESBC is mainly a Freescale modified U
configuration such as mapping physical memory, initializing the network interfaces, data path 
infrastructure and loading next

In Freescale’s reference code, this client validation process uses the same mechanisms as 
the ISBC (security monitor to monitor the security state and the Security Engine to decrypt 
the image or the hash values). The ESBC has the same CSF header format prepended to it. 
The public key used for this validation can be the same as used by the ISBC, or it can be a 
new public key from the trusted U

If the signature passes, the Trusted U
Boot Client and begins execution. At this point, the developer’s authentic device 
configurations, OS and applications can be started 

Alpha OA & RTE prototypes 

process and the Security Engine is used to decrypt the image or the hash values. The 
detailed execution process is shown in Figure 7 and has the following steps: 

tests 

A hash is calculated over the public key, taken from the CSF header 

The calculated hash is compared with the hash in the Super Root Key (SRK)

If the hashes are identical, the hash for the CSF header and the system image is 

Using the public key, the system image signature (see Figure 5) from CSF header is 

The hashes of the signatures from step 4 and 5 are compared 

If the hashes are equal, the execution is passed to the ESBC 

The ESBC is mainly a Freescale modified U-Boot, which performs minimal additional chip 
configuration such as mapping physical memory, initializing the network interfaces, data path 

oading next-stage software (Trusted U-Boot Client) into main memory. 

In Freescale’s reference code, this client validation process uses the same mechanisms as 
the ISBC (security monitor to monitor the security state and the Security Engine to decrypt 

image or the hash values). The ESBC has the same CSF header format prepended to it. 
The public key used for this validation can be the same as used by the ISBC, or it can be a 
new public key from the trusted U-Boot client’s CSF header.  

sses, the Trusted U-Boot jumps to the entry point within the Trusted U
Boot Client and begins execution. At this point, the developer’s authentic device 
configurations, OS and applications can be started [9] 

Figure 7: The validation process 
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process and the Security Engine is used to decrypt the image or the hash values. The 
and has the following steps:  

The calculated hash is compared with the hash in the Super Root Key (SRK) 

SF header and the system image is 

) from CSF header is 

Boot, which performs minimal additional chip 
configuration such as mapping physical memory, initializing the network interfaces, data path 

Boot Client) into main memory.  

In Freescale’s reference code, this client validation process uses the same mechanisms as 
the ISBC (security monitor to monitor the security state and the Security Engine to decrypt 

image or the hash values). The ESBC has the same CSF header format prepended to it. 
The public key used for this validation can be the same as used by the ISBC, or it can be a 

Boot jumps to the entry point within the Trusted U-
Boot Client and begins execution. At this point, the developer’s authentic device 
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Chain of Trust  

The ISBC is SoC internal unchangeable code and thus called the root of trust of the secure 
boot process. The ESBC is the first external piece of code, which runs through a validation 
process and thus is also secure. If each software module is validated by the previously 
loaded software, we build a chain of trust, which guarantees that each software module is 
authentic and trusted (Figure 8

The ESBC is the first link in the chain of trust verified by the ISBC. By implementing 
appropriate validation algorithms in the ESBC, this can validate the operating system, and by 
implementing appropriate validation algorithms in the O
used to validate the application. 

   

3.2.4 PikeOS Security 

PikeOS is a real-time hypervisor, which is based on separation kernel architecture. Besides 
offering real-time capabilities, PikeOS can separate and isolate a defined 
resources (e.g. memory, CPU
9). This separation of resources ensures that partitions do not interfere with each other. The 
communication between the
communication is only possible, if the communication means are generated and strictly 
assigned for the communicating partitions. A partition can host user applications in several 
flavours. Hosting legacy code in a bare metal environment is also possible as hosting several 
APIs for PikeOS (ARINC653, AUTOSAR, POSIX, JAVA, ADA, etc). Even complete operating 
systems like Linux can operate in a partition. Of course, multiple instances of the 
aforementioned runtime systems can reside in its own PikeOS partition with each owning its 
dedicated resources.  

Alpha OA & RTE prototypes 

The ISBC is SoC internal unchangeable code and thus called the root of trust of the secure 
boot process. The ESBC is the first external piece of code, which runs through a validation 

s is also secure. If each software module is validated by the previously 
loaded software, we build a chain of trust, which guarantees that each software module is 

8).  

Figure 8: Chain of Trust 

The ESBC is the first link in the chain of trust verified by the ISBC. By implementing 
appropriate validation algorithms in the ESBC, this can validate the operating system, and by 
implementing appropriate validation algorithms in the Operating system image, this can be 
used to validate the application.  

time hypervisor, which is based on separation kernel architecture. Besides 
time capabilities, PikeOS can separate and isolate a defined 

resources (e.g. memory, CPU-cores, processing time, interrupts, etc.) into partitions (
). This separation of resources ensures that partitions do not interfere with each other. The 

communication between the partitions follow a white list policy, which ensures that 
communication is only possible, if the communication means are generated and strictly 
assigned for the communicating partitions. A partition can host user applications in several 

legacy code in a bare metal environment is also possible as hosting several 
APIs for PikeOS (ARINC653, AUTOSAR, POSIX, JAVA, ADA, etc). Even complete operating 
systems like Linux can operate in a partition. Of course, multiple instances of the 

ed runtime systems can reside in its own PikeOS partition with each owning its 
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The ISBC is SoC internal unchangeable code and thus called the root of trust of the secure 
boot process. The ESBC is the first external piece of code, which runs through a validation 

s is also secure. If each software module is validated by the previously 
loaded software, we build a chain of trust, which guarantees that each software module is 

 

The ESBC is the first link in the chain of trust verified by the ISBC. By implementing 
appropriate validation algorithms in the ESBC, this can validate the operating system, and by 

perating system image, this can be 

time hypervisor, which is based on separation kernel architecture. Besides 
time capabilities, PikeOS can separate and isolate a defined set of hardware 

cores, processing time, interrupts, etc.) into partitions (Figure 
). This separation of resources ensures that partitions do not interfere with each other. The 

partitions follow a white list policy, which ensures that 
communication is only possible, if the communication means are generated and strictly 
assigned for the communicating partitions. A partition can host user applications in several 

legacy code in a bare metal environment is also possible as hosting several 
APIs for PikeOS (ARINC653, AUTOSAR, POSIX, JAVA, ADA, etc). Even complete operating 
systems like Linux can operate in a partition. Of course, multiple instances of the 

ed runtime systems can reside in its own PikeOS partition with each owning its 
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Figure 9: Security by separation and controlled information flow

 

Partition separation and isolation restricts hacker attacks us
software on one partition, isolating them from all other partitions on PikeOS. 

The strict control of PikeOS over hardware resources, processing time and communication 
channels adds “security by separation” to the “security by des
For a state of the art microkernel based operating system, security by design includes 
aspects like malware protection, encryption, monitoring, etc. In addition, PikeOS offers 
security by separating sensitive data from insensi
a PikeOS Linux Partition through a known security leak, will neither be able to access 
hardware resources, which are not assigned to the partition, nor will he be able to access 
PikeOS resources and also he will
explicitly configured for the infected partition. 

 

3.2.5 PikeOS Secure-Boot

As PikeOS increases the cost and effort for hacking a system disproportionately, the 
modification of firmware, operating sy
for hackers to break into a PikeOS system. Application of secure boot to a PikeOS system 
will ensure that nobody can change the system software without help and information from 
the OEM.  

The PikeOS partitioning concepts allows the integration of third party applications into a 
partition. When involving a third party into application development, we need to add the third 
party code into the chain of trust. Thus, we need modularity of the software compo
which are loaded one after the other. Another important aspect is that we do not want to 
share the private keys, which we have used for signing own code (boot loader and PikeOS 
image). Either the third party has his own pair of keys or we need to pr
the third party. The third party will use these keys for generating the CSF header for his 
application. In order to keep the system modular and flexible, each component (Bootloader, 
PikeOS image and application) will be a standalone
volatile memory. The validation of the boot loader and the PikeOS image follow the earlier 
described secure boot process. The validation process for the third party application is 
implemented as a user application runnin
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Security by separation and controlled information flow

Partition separation and isolation restricts hacker attacks using malicious application 
software on one partition, isolating them from all other partitions on PikeOS. 

The strict control of PikeOS over hardware resources, processing time and communication 
channels adds “security by separation” to the “security by design” concept for IoT devices. 
For a state of the art microkernel based operating system, security by design includes 
aspects like malware protection, encryption, monitoring, etc. In addition, PikeOS offers 
security by separating sensitive data from insensitive data. A hacker who is able to penetrate 
a PikeOS Linux Partition through a known security leak, will neither be able to access 
hardware resources, which are not assigned to the partition, nor will he be able to access 
PikeOS resources and also he will not be able to access other partitions, if this has not been 
explicitly configured for the infected partition.  

Boot 

As PikeOS increases the cost and effort for hacking a system disproportionately, the 
modification of firmware, operating system or application image might be a viable alternative 
for hackers to break into a PikeOS system. Application of secure boot to a PikeOS system 
will ensure that nobody can change the system software without help and information from 

artitioning concepts allows the integration of third party applications into a 
partition. When involving a third party into application development, we need to add the third 
party code into the chain of trust. Thus, we need modularity of the software compo
which are loaded one after the other. Another important aspect is that we do not want to 
share the private keys, which we have used for signing own code (boot loader and PikeOS 
image). Either the third party has his own pair of keys or we need to provide a pair of keys to 
the third party. The third party will use these keys for generating the CSF header for his 
application. In order to keep the system modular and flexible, each component (Bootloader, 
PikeOS image and application) will be a standalone executable, which is stored in non
volatile memory. The validation of the boot loader and the PikeOS image follow the earlier 
described secure boot process. The validation process for the third party application is 
implemented as a user application running in a PikeOS partition (Figure 10
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Security by separation and controlled information flow 

ing malicious application 
software on one partition, isolating them from all other partitions on PikeOS.  

The strict control of PikeOS over hardware resources, processing time and communication 
ign” concept for IoT devices. 

For a state of the art microkernel based operating system, security by design includes 
aspects like malware protection, encryption, monitoring, etc. In addition, PikeOS offers 

tive data. A hacker who is able to penetrate 
a PikeOS Linux Partition through a known security leak, will neither be able to access 
hardware resources, which are not assigned to the partition, nor will he be able to access 

not be able to access other partitions, if this has not been 

As PikeOS increases the cost and effort for hacking a system disproportionately, the 
stem or application image might be a viable alternative 

for hackers to break into a PikeOS system. Application of secure boot to a PikeOS system 
will ensure that nobody can change the system software without help and information from 

artitioning concepts allows the integration of third party applications into a 
partition. When involving a third party into application development, we need to add the third 
party code into the chain of trust. Thus, we need modularity of the software components, 
which are loaded one after the other. Another important aspect is that we do not want to 
share the private keys, which we have used for signing own code (boot loader and PikeOS 

ovide a pair of keys to 
the third party. The third party will use these keys for generating the CSF header for his 
application. In order to keep the system modular and flexible, each component (Bootloader, 

executable, which is stored in non-
volatile memory. The validation of the boot loader and the PikeOS image follow the earlier 
described secure boot process. The validation process for the third party application is 

10).  
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Figure 10: 

This user application loader will need the ability to control the execution in other partitions. To 
validate the user application image, the application loader needs to implement functionality to 
use the cryptographic accelerator of the security engine. It will also be required to access the 
SFP, which stores the key hashes burned into the fuses. If the validat
monitor may be used to indicate the error and take appropriate action. The first step of the 
loader is to read the following information from an internal PikeOS file system:  

• The location of a CSF header, which will be used for the
corresponding user application.

• The hash of the Public Key.

• The partition number which will host the validated user application. 

 

After validating the user application, the loader copies it into the corresponding partitions 
memory and starts the partition.  

 

3.2.6 Conclusion 

Using secure boot is an effective way to protect an IoT device against firmware level 
modifications, which are neither visible to the operating system nor to the user applications. 
A SoC internal hardware makes sure, that
secure root of trust and validates the software, which will be loaded and operated in the next 
step. By enabling the validated software to validate the next software package, the very last 
software package can rely on a chain of trust, which is authentic and secure. 

Adding the user application to the secure boot chain of trust, is achieved easily by isolating 
these application into a PikeOS partition. Loading and execution the user application is 
performed by an application loader, which ensures that only validated applications are 
executed. Compared to a standard microkernel based OS, the PikeOS real
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: PikeOS Secure boot with application validation 

This user application loader will need the ability to control the execution in other partitions. To 
e the user application image, the application loader needs to implement functionality to 

use the cryptographic accelerator of the security engine. It will also be required to access the 
SFP, which stores the key hashes burned into the fuses. If the validation fails, the security 
monitor may be used to indicate the error and take appropriate action. The first step of the 
loader is to read the following information from an internal PikeOS file system:  

The location of a CSF header, which will be used for the
corresponding user application. 

The hash of the Public Key. 

The partition number which will host the validated user application. 

After validating the user application, the loader copies it into the corresponding partitions 
tarts the partition.   

Using secure boot is an effective way to protect an IoT device against firmware level 
modifications, which are neither visible to the operating system nor to the user applications. 
A SoC internal hardware makes sure, that the secure boot process starts from a guaranteed 
secure root of trust and validates the software, which will be loaded and operated in the next 
step. By enabling the validated software to validate the next software package, the very last 

can rely on a chain of trust, which is authentic and secure. 

Adding the user application to the secure boot chain of trust, is achieved easily by isolating 
these application into a PikeOS partition. Loading and execution the user application is 

by an application loader, which ensures that only validated applications are 
executed. Compared to a standard microkernel based OS, the PikeOS real
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This user application loader will need the ability to control the execution in other partitions. To 
e the user application image, the application loader needs to implement functionality to 

use the cryptographic accelerator of the security engine. It will also be required to access the 
ion fails, the security 

monitor may be used to indicate the error and take appropriate action. The first step of the 
loader is to read the following information from an internal PikeOS file system:   

The location of a CSF header, which will be used for the validation of the 

The partition number which will host the validated user application.  

After validating the user application, the loader copies it into the corresponding partitions 

Using secure boot is an effective way to protect an IoT device against firmware level 
modifications, which are neither visible to the operating system nor to the user applications. 

the secure boot process starts from a guaranteed 
secure root of trust and validates the software, which will be loaded and operated in the next 
step. By enabling the validated software to validate the next software package, the very last 

can rely on a chain of trust, which is authentic and secure.  

Adding the user application to the secure boot chain of trust, is achieved easily by isolating 
these application into a PikeOS partition. Loading and execution the user application is 

by an application loader, which ensures that only validated applications are 
executed. Compared to a standard microkernel based OS, the PikeOS real-time hypervisor 
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offers additional security by its partitioning capabilities. The partitioning concept of Pik
well recognized by the security certification authorities to be certifiable up to Common 
Criteria Evaluation Assurance Level 6. 

Here is described the configuration and execution of secure boot on QorIQ architecture. 
Comparable features of course ex
architecture. PikeOS of course runs on these SoC’s and provides the full bandwidth of 
security described in this section.

3.3 Architecture for Secure Flash Update

Currently, software updates for automotive 
service intervals within the service station. However, in order to react timely against 
emerging vulnerabilities and new threats, it is desirable to perform updates more frequently, 
ideally using a wireless connectio
the firmware, security becomes a crucial part of the firmware update process.

The firmware update system consists of a Backend Server (operated by the OEM or a 
service provider) and the firmware upd

First, the firmware has to be transferred from the Backend Server to the embedded ECU. 
This can be done using a regular Internet connection (e.g., via GSM) to the Backend Server. 
In order to preserve the integrity
can be used. Optionally, the firmware can also be encrypted in order to perverse the 
confidentiality and thus prevent reverse engineering of the software functions. Hence, the 
transferred data include the firmware itself (possibly encrypted) and a digital signature or 
MAC value which is attached to the end of the firmware.

Second, the firmware update is forwarded to a Secure Update application that (optionally) 
decrypts the firmware update. Then,
place. To accomplish this, the transferred digital signature is verified using standard 
cryptographic algorithms (like RSA, ECDSA, EdDSA) or 
value of the message is calculated and checked against the transferred value. If both values 
are identical, the firmware update is considered authentic and the flashing of the firmware 
can be performed. 

The architecture allows both asymmetric and symmetric algorithms. Depending on t
platform (RAM size, ROM size, CPU speed), either the first or the latter is better suited. In 
the case of asymmetric cryptography, only the public key has to be stored in the embedded 
system. It is no problem if a potential attacker can read this public
ensured that this key cannot be modified, because otherwise an attacker could replace it with 
his own public key. Similarly, the key used to generate the MAC value has to be securely 
stored and even protected from read
an attacker could use the key to calculate a legitimate MAC value for a manipulated firmware 
update. 
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offers additional security by its partitioning capabilities. The partitioning concept of Pik
well recognized by the security certification authorities to be certifiable up to Common 
Criteria Evaluation Assurance Level 6.  

Here is described the configuration and execution of secure boot on QorIQ architecture. 
Comparable features of course exist on other SoC like the Intel Core-
architecture. PikeOS of course runs on these SoC’s and provides the full bandwidth of 
security described in this section. 

Architecture for Secure Flash Update 

Currently, software updates for automotive ECUs are predominantly performed during 
service intervals within the service station. However, in order to react timely against 
emerging vulnerabilities and new threats, it is desirable to perform updates more frequently, 
ideally using a wireless connection to a remote server. To prevent attackers from modifying 
the firmware, security becomes a crucial part of the firmware update process.

The firmware update system consists of a Backend Server (operated by the OEM or a 
service provider) and the firmware update components within the embedded system.

First, the firmware has to be transferred from the Backend Server to the embedded ECU. 
This can be done using a regular Internet connection (e.g., via GSM) to the Backend Server. 
In order to preserve the integrity and authenticity of the firmware, digital signatures or MACs 
can be used. Optionally, the firmware can also be encrypted in order to perverse the 
confidentiality and thus prevent reverse engineering of the software functions. Hence, the 

nclude the firmware itself (possibly encrypted) and a digital signature or 
MAC value which is attached to the end of the firmware. 

Second, the firmware update is forwarded to a Secure Update application that (optionally) 
decrypts the firmware update. Then, the verification of the digital signature or MAC takes 
place. To accomplish this, the transferred digital signature is verified using standard 
cryptographic algorithms (like RSA, ECDSA, EdDSA) or – in the case of MACs 

culated and checked against the transferred value. If both values 
are identical, the firmware update is considered authentic and the flashing of the firmware 

The architecture allows both asymmetric and symmetric algorithms. Depending on t
platform (RAM size, ROM size, CPU speed), either the first or the latter is better suited. In 
the case of asymmetric cryptography, only the public key has to be stored in the embedded 
system. It is no problem if a potential attacker can read this public key. However, it has to be 
ensured that this key cannot be modified, because otherwise an attacker could replace it with 
his own public key. Similarly, the key used to generate the MAC value has to be securely 
stored and even protected from read-out by an unauthorized party. The rationale here is that 
an attacker could use the key to calculate a legitimate MAC value for a manipulated firmware 
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offers additional security by its partitioning capabilities. The partitioning concept of PikeOS is 
well recognized by the security certification authorities to be certifiable up to Common 

Here is described the configuration and execution of secure boot on QorIQ architecture. 
-i or the TI OMAP 

architecture. PikeOS of course runs on these SoC’s and provides the full bandwidth of 

ECUs are predominantly performed during 
service intervals within the service station. However, in order to react timely against 
emerging vulnerabilities and new threats, it is desirable to perform updates more frequently, 

n to a remote server. To prevent attackers from modifying 
the firmware, security becomes a crucial part of the firmware update process. 

The firmware update system consists of a Backend Server (operated by the OEM or a 
ate components within the embedded system. 

First, the firmware has to be transferred from the Backend Server to the embedded ECU. 
This can be done using a regular Internet connection (e.g., via GSM) to the Backend Server. 

and authenticity of the firmware, digital signatures or MACs 
can be used. Optionally, the firmware can also be encrypted in order to perverse the 
confidentiality and thus prevent reverse engineering of the software functions. Hence, the 

nclude the firmware itself (possibly encrypted) and a digital signature or 

Second, the firmware update is forwarded to a Secure Update application that (optionally) 
the verification of the digital signature or MAC takes 

place. To accomplish this, the transferred digital signature is verified using standard 
in the case of MACs – the MAC 

culated and checked against the transferred value. If both values 
are identical, the firmware update is considered authentic and the flashing of the firmware 

The architecture allows both asymmetric and symmetric algorithms. Depending on the 
platform (RAM size, ROM size, CPU speed), either the first or the latter is better suited. In 
the case of asymmetric cryptography, only the public key has to be stored in the embedded 

key. However, it has to be 
ensured that this key cannot be modified, because otherwise an attacker could replace it with 
his own public key. Similarly, the key used to generate the MAC value has to be securely 

unauthorized party. The rationale here is that 
an attacker could use the key to calculate a legitimate MAC value for a manipulated firmware 
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Chapter 4 Mixed

4.1 Hardware Support for Mixed

4.1.1 Hardware Counters

The number of hardware performance monitoring counters (PMCs) available in the 
SnapDragon processor is very limited. For instance, cache and memory accesses can be 
counted, but not whether L1 and L2 cache accesses turn out to be hits or misses. This 
complicates the development of our methodology to measure the impact of contention in the 
access to shared resources. 

In order to interface PMCs we have developed a library with the following interface to 
read/write PMCs (only main functions listed here). Names
details are provided in the library source code and will be conveniently documented in the 
final prototype: 

void pmu_start();  

void pmu_stop(); 

void pmu_reset_counters(); 

void pmu_set_counter(unsigned int event, unsigned int 

void pmu_activate_counter(unsigned int counter);

void pmu_stop_counter(unsigned int counter);

uint64_t pmu_read_counter(int counter);

void pmu_write_counter(int counter, uint64_t value);

Such library can be found in 
In order to quantify the impact of contention in the access to the different shared resources 
we have developed several microbenchmarks devised to stress each specific resource 
separately. This allows estimating the maximum delay a requ
resource can suffer, and so these data is used to feed the templates/signatures needed for 
upper-bounding contention impact.

So far stressing benchmarks have been devised to account for contention in the access to 
the shared L2 cache and to the shared memory controller. Those benchmarks have the 
following structure: 

R1 = 0; 

for (i=0; i<N; i++) { 

    reset PMCs 

    for (j=0; j<M; j++) {

        R2 = Load [@A+R1]

        R1 = R1+STRIDE

        R2 = Load [@A+R1]

        R1 = R1+STRIDE

        … 

        R2 = Load [@A+R1]

        R1 = R1+STRIDE

    } 

    read PMCs 

} 

Alpha OA & RTE prototypes 

Mixed-Critical Run Time Engine

Hardware Support for Mixed-Criticality Multicore Systems 

Hardware Counters 

The number of hardware performance monitoring counters (PMCs) available in the 
SnapDragon processor is very limited. For instance, cache and memory accesses can be 
counted, but not whether L1 and L2 cache accesses turn out to be hits or misses. This 

icates the development of our methodology to measure the impact of contention in the 

In order to interface PMCs we have developed a library with the following interface to 
read/write PMCs (only main functions listed here). Names are self-explanatory. Further 
details are provided in the library source code and will be conveniently documented in the 

void pmu_set_counter(unsigned int event, unsigned int counter); 

void pmu_activate_counter(unsigned int counter); 

void pmu_stop_counter(unsigned int counter); 

uint64_t pmu_read_counter(int counter); 

void pmu_write_counter(int counter, uint64_t value); 

Such library can be found in BSCmicrobenchmarks.zip under src/pmu.h
In order to quantify the impact of contention in the access to the different shared resources 
we have developed several microbenchmarks devised to stress each specific resource 
separately. This allows estimating the maximum delay a request to a particular shared 
resource can suffer, and so these data is used to feed the templates/signatures needed for 

bounding contention impact. 

So far stressing benchmarks have been devised to account for contention in the access to 
ache and to the shared memory controller. Those benchmarks have the 

 

for (j=0; j<M; j++) { 

R2 = Load [@A+R1] 

R1 = R1+STRIDE 

R2 = Load [@A+R1] 

E 

R2 = Load [@A+R1] 

R1 = R1+STRIDE 
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Critical Run Time Engine 

Criticality Multicore Systems  

The number of hardware performance monitoring counters (PMCs) available in the 
SnapDragon processor is very limited. For instance, cache and memory accesses can be 
counted, but not whether L1 and L2 cache accesses turn out to be hits or misses. This 

icates the development of our methodology to measure the impact of contention in the 

In order to interface PMCs we have developed a library with the following interface to 
explanatory. Further 

details are provided in the library source code and will be conveniently documented in the 

rc/pmu.h, src/pmu.c 
In order to quantify the impact of contention in the access to the different shared resources 
we have developed several microbenchmarks devised to stress each specific resource 

est to a particular shared 
resource can suffer, and so these data is used to feed the templates/signatures needed for 

So far stressing benchmarks have been devised to account for contention in the access to 
ache and to the shared memory controller. Those benchmarks have the 
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Those benchmarks use a sufficiently large data vector starting in address @A. 
Measurements are collected N times (e.g., 10) since a measurement can be polluted, from 
time to time, by the Linux OS running below. M and the number of LOAD operations in the 
loop are set to values sufficiently high so that the overheads of the loop and to fill the 
instruction L1 cache become negligible (e.g., M=1000 and 16 LOAD operations). The 
particular PMCs read and reset depend on the contention that is to be measured in a 
particular experiment. Finally, STRIDE relates to the distance between memory objects 
accessed so as to make sure that they either
and L2. 

Some details of those microbenchmarks are omitted in this description for the sake of 
simplifying the explanation. The actual microbenchmarks developed so far can be found in 
BSCmicrobenchmarks.zip under 
one of them can be found under 

 

4.1.2 Signatures and Templates

As described in D3.1 (delivered by M15), timing integrity due to multicore contention is 
accounted for developing resource usage signatures and templates. We refer
D3.1 for details on signatures and templates.

We can build our signatures and templates either by running microbenchmarks with the 
specific number of requests that we want to upper
requests to be upper-bounded and multiplying it by the maximum per
experience on a different architecture shows that the former approach may not be fully 
precise under some circumstances, so we build upon the latter.

Signatures and templates will be built upon t
microbenchmarks presented in previous subsection.

 

4.2 Alpha RTE Prototype

Time Critical Systems are characterized by stringent timing requirements expressed as 
deadlines for the applications running in the system. Clas
full time isolation that should guarantee that no task or application can delay another task or 
application. 

With mixed-critical time-critical systems, the applications / tasks composing the system run 
with a different level of criticality. As a consequence, the global timing requirement of the 
system would now translates into no task should be allowed to delay any task with equal or 
higher degree of criticality. 

We further relax this requirement by allowing low critical 
behaviour of high critical tasks, as long as it does not endanger the high
deadlines. 

The Run Time Engine (RTE)
proactively acting during each t
three different kinds of task appearing in 
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Those benchmarks use a sufficiently large data vector starting in address @A. 
Measurements are collected N times (e.g., 10) since a measurement can be polluted, from 

time, by the Linux OS running below. M and the number of LOAD operations in the 
loop are set to values sufficiently high so that the overheads of the loop and to fill the 
instruction L1 cache become negligible (e.g., M=1000 and 16 LOAD operations). The 

rticular PMCs read and reset depend on the contention that is to be measured in a 
particular experiment. Finally, STRIDE relates to the distance between memory objects 
accessed so as to make sure that they either hit in L1, miss in L1 and hit in L2, or mis

Some details of those microbenchmarks are omitted in this description for the sake of 
simplifying the explanation. The actual microbenchmarks developed so far can be found in 

under src/ folder. Preliminary documentation describing each 
one of them can be found under src/doc/ folder. 

Signatures and Templates 

As described in D3.1 (delivered by M15), timing integrity due to multicore contention is 
accounted for developing resource usage signatures and templates. We refer
D3.1 for details on signatures and templates. 

We can build our signatures and templates either by running microbenchmarks with the 
specific number of requests that we want to upper-bound or by counting the number of 

ded and multiplying it by the maximum per-request delay. Our 
experience on a different architecture shows that the former approach may not be fully 
precise under some circumstances, so we build upon the latter. 

Signatures and templates will be built upon the delay per request obtained from those 
microbenchmarks presented in previous subsection. 

Alpha RTE Prototype 

Time Critical Systems are characterized by stringent timing requirements expressed as 
deadlines for the applications running in the system. Classical time-critical systems require 
full time isolation that should guarantee that no task or application can delay another task or 

critical systems, the applications / tasks composing the system run 
evel of criticality. As a consequence, the global timing requirement of the 

system would now translates into no task should be allowed to delay any task with equal or 

We further relax this requirement by allowing low critical tasks to alter (slow) the timing 
behaviour of high critical tasks, as long as it does not endanger the high

Run Time Engine (RTE) is in charge of guaranteeing the high-critical task deadlines by 
proactively acting during each time slot on the lower critical task scheduling. We consider 
three different kinds of task appearing in Figure 11: 
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Those benchmarks use a sufficiently large data vector starting in address @A. 
Measurements are collected N times (e.g., 10) since a measurement can be polluted, from 

time, by the Linux OS running below. M and the number of LOAD operations in the 
loop are set to values sufficiently high so that the overheads of the loop and to fill the 
instruction L1 cache become negligible (e.g., M=1000 and 16 LOAD operations). The 

rticular PMCs read and reset depend on the contention that is to be measured in a 
particular experiment. Finally, STRIDE relates to the distance between memory objects 

hit in L1, miss in L1 and hit in L2, or miss in L1 

Some details of those microbenchmarks are omitted in this description for the sake of 
simplifying the explanation. The actual microbenchmarks developed so far can be found in 

on describing each 

As described in D3.1 (delivered by M15), timing integrity due to multicore contention is 
accounted for developing resource usage signatures and templates. We refer the reader to 

We can build our signatures and templates either by running microbenchmarks with the 
bound or by counting the number of 

request delay. Our 
experience on a different architecture shows that the former approach may not be fully 

he delay per request obtained from those 

Time Critical Systems are characterized by stringent timing requirements expressed as 
critical systems require 

full time isolation that should guarantee that no task or application can delay another task or 

critical systems, the applications / tasks composing the system run 
evel of criticality. As a consequence, the global timing requirement of the 

system would now translates into no task should be allowed to delay any task with equal or 

tasks to alter (slow) the timing 
behaviour of high critical tasks, as long as it does not endanger the high-critical task 

critical task deadlines by 
ime slot on the lower critical task scheduling. We consider 
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• High critical task, which deadlines have to be guaranteed. The
be altered by the RTE.

• Low critical task is allowed to run up to an available budget in term of resource 
access. If the low-critical task can complete without spending the entire allocated 
budget, it does so, else it is suspended by
(when a new budget will be available).

• QoS-aware Firm real time tasks are low critical tasks that adapt their behaviour to the 
remaining resource budget. Rather than reactively suspending the task when it 
reaches its budget, the task can shift to some kind of degraded mode that is less time 
consuming but usually provides a less accurate result.

 

The available budget for low
phase of the critical application and the target architecture relying on the signatures 
presented in this chapter. It heavily relies on Performance Monitor Counters to determine the 
number of access to each shared resource.

The first release of the RTE will only encompass High
QoS-aware tasks will be added in a later time. The whole time
in Chapter 5, including the hardware and software environment.

We will also mainly focus on resource a
design such as the requirements can easily be shifted to power and temperature 
requirements. In such a context, thermal models as defined in WP2 will be used to compute 
the available budget, and hardware t
counters. 

 

4.3 Adding thermal protection to mixed criticality scheduling 

Temperature adds a new dimension to the Mixed
hardware platform will cause thermal inte
what we mean by thermal interferences we first explain thermal constraints and thermal 
protection mechanisms which are in place in modern processing platforms.

Modern processing platforms tend to have hig
processor activity, switching too many transistors at a time generates more heat than can be 
dissipated, possibly damaging the chip due to exceeding the maximum safe temperature. To 
alleviate this, hardware driven Dynamic Thermal Management (DTM) is used. DTM resorts to 
techniques (e.g., sharp speed throttling) that severely impair performance. 
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Figure 11: RTE Behaviour 

, which deadlines have to be guaranteed. Their scheduling shall not 
be altered by the RTE. 

is allowed to run up to an available budget in term of resource 
critical task can complete without spending the entire allocated 

budget, it does so, else it is suspended by the RTE at least until the next time slot 
(when a new budget will be available). 

Firm real time tasks are low critical tasks that adapt their behaviour to the 
remaining resource budget. Rather than reactively suspending the task when it 

its budget, the task can shift to some kind of degraded mode that is less time 
consuming but usually provides a less accurate result. 

The available budget for low-critical and QoS-aware task is defined during a first profiling 
ation and the target architecture relying on the signatures 

presented in this chapter. It heavily relies on Performance Monitor Counters to determine the 
number of access to each shared resource. 

The first release of the RTE will only encompass High-Critical and Low
aware tasks will be added in a later time. The whole time-critical prototype is presented 

, including the hardware and software environment. 

We will also mainly focus on resource access and timing budget first, but the RTE will be 
design such as the requirements can easily be shifted to power and temperature 
requirements. In such a context, thermal models as defined in WP2 will be used to compute 
the available budget, and hardware thermal probes will be used in lieu of classical hardware 

Adding thermal protection to mixed criticality scheduling 

Temperature adds a new dimension to the Mixed-Criticality scheduling problem. Sharing a 
hardware platform will cause thermal interferences between criticality levels. To understand 
what we mean by thermal interferences we first explain thermal constraints and thermal 
protection mechanisms which are in place in modern processing platforms.

Modern processing platforms tend to have high power densities. Therefore, in periods of high 
processor activity, switching too many transistors at a time generates more heat than can be 
dissipated, possibly damaging the chip due to exceeding the maximum safe temperature. To 

driven Dynamic Thermal Management (DTM) is used. DTM resorts to 
techniques (e.g., sharp speed throttling) that severely impair performance. 
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ir scheduling shall not 

is allowed to run up to an available budget in term of resource 
critical task can complete without spending the entire allocated 

the RTE at least until the next time slot 

Firm real time tasks are low critical tasks that adapt their behaviour to the 
remaining resource budget. Rather than reactively suspending the task when it 

its budget, the task can shift to some kind of degraded mode that is less time 

aware task is defined during a first profiling 
ation and the target architecture relying on the signatures 

presented in this chapter. It heavily relies on Performance Monitor Counters to determine the 

al and Low-Critical tasks, and 
critical prototype is presented 

ccess and timing budget first, but the RTE will be 
design such as the requirements can easily be shifted to power and temperature 
requirements. In such a context, thermal models as defined in WP2 will be used to compute 

hermal probes will be used in lieu of classical hardware 

Adding thermal protection to mixed criticality scheduling  

Criticality scheduling problem. Sharing a 
rferences between criticality levels. To understand 

what we mean by thermal interferences we first explain thermal constraints and thermal 
protection mechanisms which are in place in modern processing platforms. 

h power densities. Therefore, in periods of high 
processor activity, switching too many transistors at a time generates more heat than can be 
dissipated, possibly damaging the chip due to exceeding the maximum safe temperature. To 

driven Dynamic Thermal Management (DTM) is used. DTM resorts to 
techniques (e.g., sharp speed throttling) that severely impair performance.  
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In a mixed-critical setting, DTM significantly complicates the scheduling problem. We can 
imagine a scenario where a low criticality task over exercises the CPU and causes DTM to 
be triggered. Now, while DTM is active, a high criticality task may be scheduled for 
execution. Consequently, the high criticality task will experience degraded performance; 
which in the worst-case, may lead to a deadline miss. In this manner, the low criticality task 
can interfere with the execution of hi criticality task.

 

4.3.1 Thermal protection mechanism

To ensure thermal protection, we adopt a thermal analysis based approach. Based on the 
application and task model, we characterize the worst
Critical tasks. If the worst-case temperature is higher than the temperature threshold where 
DTM is enabled, the mixed criticality taskset is deemed “unsafe”. If the worst
temperature is lower than the temperature threshold, the additional temperature margin is 
used to assign a thermal budget

4.3.1.1 Thermal model 

We assume that the processor has active and idle states; with each state having 
power consumption. We approximate the heat flow in a system by the following differential 
equation: 

Ω

 

Where Ω, P, G and Tamb are thermal capacity, power consumption, thermal conducta
ambient temperature respectively. If power consumption is assumed constant within a given 
interval, then Equation 1 has the following closed form solution:

    

T ( t)

 

4.3.1.2 Adding thermal protection to RTE Prototype

We can use [10] to determine the worst
Critical tasks are executing on the system. 
execution trace which would lead to maximum system temperature; given task scheduling 
constraints and system thermal model. This 
simulated to determine the maximum temperature. The maximum te
to determine/assign thermal budgets
defined as the maximum allowed temperature increase caused by the execution of a Lo
Critical/QoS-aware task. Thermal budget is chosen such th
runtime, a Lo-critical task will be suspended if it exceeds its thermal budget. A QoS
task may degrade its service to meet thermal budget constraints.
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critical setting, DTM significantly complicates the scheduling problem. We can 
a low criticality task over exercises the CPU and causes DTM to 

be triggered. Now, while DTM is active, a high criticality task may be scheduled for 
execution. Consequently, the high criticality task will experience degraded performance; 

case, may lead to a deadline miss. In this manner, the low criticality task 
can interfere with the execution of hi criticality task. 

Thermal protection mechanism 

To ensure thermal protection, we adopt a thermal analysis based approach. Based on the 
cation and task model, we characterize the worst-case temperature for executing Hi

case temperature is higher than the temperature threshold where 
DTM is enabled, the mixed criticality taskset is deemed “unsafe”. If the worst
temperature is lower than the temperature threshold, the additional temperature margin is 

thermal budget to the remaining Lo-Critical tasks. 

We assume that the processor has active and idle states; with each state having 
power consumption. We approximate the heat flow in a system by the following differential 

Ω
dT

dt
= − G(T − T

amb
)+P

 

Equation 1 

are thermal capacity, power consumption, thermal conducta
ambient temperature respectively. If power consumption is assumed constant within a given 

has the following closed form solution: 

)= T
∞
+(T (t

0
)− T

∞
). e

− a .(t− t
0
)

 

Equation 2 

Adding thermal protection to RTE Prototype 

to determine the worst-case maximum system temperature, when only Hi
Critical tasks are executing on the system. [10] presents an approach to determine the task 
execution trace which would lead to maximum system temperature; given task scheduling 
constraints and system thermal model. This thermal worst-case execution trace is then 
simulated to determine the maximum temperature. The maximum temperature is then used 

thermal budgets to Lo-Critical and QoS-aware tasks. A thermal budget is 
defined as the maximum allowed temperature increase caused by the execution of a Lo

aware task. Thermal budget is chosen such that DTM is never triggered. At 
critical task will be suspended if it exceeds its thermal budget. A QoS

task may degrade its service to meet thermal budget constraints.  

  

Page 25 of 44 

critical setting, DTM significantly complicates the scheduling problem. We can 
a low criticality task over exercises the CPU and causes DTM to 

be triggered. Now, while DTM is active, a high criticality task may be scheduled for 
execution. Consequently, the high criticality task will experience degraded performance; 

case, may lead to a deadline miss. In this manner, the low criticality task 

To ensure thermal protection, we adopt a thermal analysis based approach. Based on the 
case temperature for executing Hi-

case temperature is higher than the temperature threshold where 
DTM is enabled, the mixed criticality taskset is deemed “unsafe”. If the worst-case 
temperature is lower than the temperature threshold, the additional temperature margin is 

We assume that the processor has active and idle states; with each state having a different 
power consumption. We approximate the heat flow in a system by the following differential 

 

are thermal capacity, power consumption, thermal conductance and 
ambient temperature respectively. If power consumption is assumed constant within a given 

 

case maximum system temperature, when only Hi-
to determine the task 

execution trace which would lead to maximum system temperature; given task scheduling 
execution trace is then 
mperature is then used 

aware tasks. A thermal budget is 
defined as the maximum allowed temperature increase caused by the execution of a Lo-

at DTM is never triggered. At 
critical task will be suspended if it exceeds its thermal budget. A QoS-aware 
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Chapter 5 WP4 Time

As presented in previous chapter, the t
critical, qos-aware tasks as well as the RTE engine. 
for this WP4 prototype. 

Mixed-critical tasks as well as the RTE will run as single
threads on top of the PikeOS operating system. We will develop a driver for PikeOS to 
provide privileged access to the PMC hardware counters. The prototype will target the 
Dragonboard 810 architecture thought the ARM
system. 

Figure 12: Target environment for the Time

As the ARM PSP will first be developed for the Juno board, we will start with a baremetal 
prototype where the RTE will a
consequence, several versions of the application will be provided. The selected applications 
are presented in the next subsections.

 

5.1 Hard Real Time High
System 

The selected hard real-time high
mark-up Flight Management System (FMS) application from the avionics domain. 

The purpose of the Flight Management System (FMS) in modern avionics is to provide
crew with centralized control for the aircraft navigation sensors, computer based flight 
planning, fuel management, radio navigation management,
information. Taking charge of a wide variety of in
the workload of the flight crew allowing us to reduce crew size.

The FMS is especially responsible for services that allow in
From pre-set flightplans (take
localization, trajectory computation allowing the plane to follow the flightplan, and reaction to 
pilot directives. 

The FMS application is constituted by 25 time
task groups as presented in Figure 
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WP4 Time-Critical Prototype

As presented in previous chapter, the time-critical prototype encompasses high
aware tasks as well as the RTE engine. Figure 12 details the target environment 

critical tasks as well as the RTE will run as single or multiple partitions applications or 
threads on top of the PikeOS operating system. We will develop a driver for PikeOS to 
provide privileged access to the PMC hardware counters. The prototype will target the 
Dragonboard 810 architecture thought the ARM64 PSP present in the PikeOS operating 

Target environment for the Time-Critical prototype

As the ARM PSP will first be developed for the Juno board, we will start with a baremetal 
prototype where the RTE will also be in charge of scheduling the baremetal tasks. As a 
consequence, several versions of the application will be provided. The selected applications 
are presented in the next subsections. 

Hard Real Time High-critical Application: Flight Management 

high-critical application for the WP4 time-critical prototype is a 
up Flight Management System (FMS) application from the avionics domain. 

The purpose of the Flight Management System (FMS) in modern avionics is to provide
crew with centralized control for the aircraft navigation sensors, computer based flight 
planning, fuel management, radio navigation management, and geographical situation 
information. Taking charge of a wide variety of in-flight tasks, the FMS allows
the workload of the flight crew allowing us to reduce crew size. 

The FMS is especially responsible for services that allow in-flight guidance of the plane. 
set flightplans (take-off airport to landing airport), the FMS is responsible

localization, trajectory computation allowing the plane to follow the flightplan, and reaction to 

The FMS application is constituted by 25 time-critical tasks that are regrouped into different 
Figure 13.  
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Critical Prototype 

critical prototype encompasses high-critical, low-
details the target environment 

or multiple partitions applications or 
threads on top of the PikeOS operating system. We will develop a driver for PikeOS to 
provide privileged access to the PMC hardware counters. The prototype will target the 

64 PSP present in the PikeOS operating 

 

Critical prototype 

As the ARM PSP will first be developed for the Juno board, we will start with a baremetal 
lso be in charge of scheduling the baremetal tasks. As a 

consequence, several versions of the application will be provided. The selected applications 

critical Application: Flight Management 

critical prototype is a 
up Flight Management System (FMS) application from the avionics domain.  

The purpose of the Flight Management System (FMS) in modern avionics is to provide the 
crew with centralized control for the aircraft navigation sensors, computer based flight 

and geographical situation 
flight tasks, the FMS allows us to reduce 

flight guidance of the plane. 
off airport to landing airport), the FMS is responsible for plane 

localization, trajectory computation allowing the plane to follow the flightplan, and reaction to 

critical tasks that are regrouped into different 
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The Sensors task group is in charge of generating all the localization data from various 
sensors (Anemo-barometric sensors, IRS (Pure Inertia Reference System), GPS (Global 
Positioning System), HYB (Hybrid Inertia Reference 

The Localization task group is in charge of analysing outputs of sensors to generate the 
most probable position of the aircraft (BCP). This localization data is composed of: Position 
(latitude, longitude, and altitude), Attitude (P
(Ground speed and Vertical Speed), Acceleration (lateral and longitudinal), and Wind related 
data (speed and angle). 

Note that a single sensor may not provide the full Localization information. The Doppler 
sensor for instance does not provide any position related information such as longitude and 
latitude.  It however provides very accurate velocity (speed related) information. The role of 
the Localization task group is therefore to merge information from the sens
trustworthiness levels. 

The purpose of the Nearest 
airports, during the flight. This information is useful in case the pilot decides to have an 
impromptu landing for some reason. The tasks from this task group do not participate directly 
in flight management, and the computed output only has to be sent to the display.

The Flightplan task group is in charge of managing and processing modification requests on 
the flightplans that are pre-set routes used to guide the airplane. Three different flightplans 
coexist concurrently on the system:

• The active flightplan is the flightplan currently used to guide the aircraft.

• The secondary flightplan is an alternative route toward the de

consider for instance an alternative

has a significant impact on the target airport approach procedure.

• The temporary flightplan is an intermediate flightplan allowing the crew to enter a

flightplan and check for the modification before applying. 

The flightplan task group is only composed of aperiodic tasks that correspond to the pilot’s 
modifications to the pre-set flightplans.

Alpha OA & RTE prototypes 

task group is in charge of generating all the localization data from various 
barometric sensors, IRS (Pure Inertia Reference System), GPS (Global 

Positioning System), HYB (Hybrid Inertia Reference System), Doppler sensor)

task group is in charge of analysing outputs of sensors to generate the 
most probable position of the aircraft (BCP). This localization data is composed of: Position 
(latitude, longitude, and altitude), Attitude (Pitch, Roll and Yaw angular rates), Velocity 
(Ground speed and Vertical Speed), Acceleration (lateral and longitudinal), and Wind related 

Note that a single sensor may not provide the full Localization information. The Doppler 
for instance does not provide any position related information such as longitude and 

latitude.  It however provides very accurate velocity (speed related) information. The role of 
the Localization task group is therefore to merge information from the sens

 Airports task group is to continually build a list of the nearest 
airports, during the flight. This information is useful in case the pilot decides to have an 

reason. The tasks from this task group do not participate directly 
in flight management, and the computed output only has to be sent to the display.

task group is in charge of managing and processing modification requests on 
set routes used to guide the airplane. Three different flightplans 

coexist concurrently on the system: 

The active flightplan is the flightplan currently used to guide the aircraft.

The secondary flightplan is an alternative route toward the de

consider for instance an alternative-landing runway on the destination airport, which 

has a significant impact on the target airport approach procedure. 

The temporary flightplan is an intermediate flightplan allowing the crew to enter a

flightplan and check for the modification before applying.  

The flightplan task group is only composed of aperiodic tasks that correspond to the pilot’s 
set flightplans. 
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task group is in charge of generating all the localization data from various 
barometric sensors, IRS (Pure Inertia Reference System), GPS (Global 

System), Doppler sensor) 

task group is in charge of analysing outputs of sensors to generate the 
most probable position of the aircraft (BCP). This localization data is composed of: Position 

itch, Roll and Yaw angular rates), Velocity 
(Ground speed and Vertical Speed), Acceleration (lateral and longitudinal), and Wind related 

Note that a single sensor may not provide the full Localization information. The Doppler 
for instance does not provide any position related information such as longitude and 

latitude.  It however provides very accurate velocity (speed related) information. The role of 
the Localization task group is therefore to merge information from the sensors with different 

Airports task group is to continually build a list of the nearest 
airports, during the flight. This information is useful in case the pilot decides to have an 

reason. The tasks from this task group do not participate directly 
in flight management, and the computed output only has to be sent to the display. 

task group is in charge of managing and processing modification requests on 
set routes used to guide the airplane. Three different flightplans 

The active flightplan is the flightplan currently used to guide the aircraft. 

The secondary flightplan is an alternative route toward the destination. It could 

landing runway on the destination airport, which 

 

The temporary flightplan is an intermediate flightplan allowing the crew to enter a new 

The flightplan task group is only composed of aperiodic tasks that correspond to the pilot’s 
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The Trajectory task group aims at computing both lateral and vertical profiles for the three 
flightplans set by the flightplan task. The lateral profile is composed of waypoints as well as 
leg information (path before, after and between the waypoints). The vertical profile provides 
altitude information (cruise altitude interceptions, crossing altitudes and slope angles) as well 
as performance information (estimated time of arrival, estimated fuel on board).

Trajectory computation is performed for each of the three above defined flightplans. The 
inputs of trajectory computation are both the flightplan and the best computed position (BCP) 
of the plane that comes from the localization task group. The computed trajectory tri
tangent the pre-set flightplan while respecting passenger wellness (limiting roll and pitch) as 
well as physical limitation of the plane actuators such as flaps. The trajectory information is 
later used by the plane autopilot to actually interact wit

The FMS application also embeds a large 
cache structure. It is both linearly and regularly accessed by task from the Nearest airport 
task group, as well as randomly and sporadically accessed b
group. Accesses to this database in the main memory is very interference prone.

All the tasks composing the FMS have stringent 
4 respectively show the time requirements of periodic and aperiodic tasks composing the 
application. 

Periodic Task

SENSC1 

LOCC1 

LOCC2 

LOCC3 

LOCC4 

TRAJR1 

TRAJR2 

TRAJR3 

NEARP1 

Table 3

In the FMS, periodic tasks are characterized by an activation period as well as a deadline 
that always corresponds to the next activation period.

Aperiodic 

Task 

SENSA1 

SENSA2 

SENSA3 

SENSA4 

LOCA1 

LOCA2 

LOCA3 

FPLNA1 

FPLNA2 

FPLNA3 

FPLNA4 

FPLNA5 

FPLNA6 
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task group aims at computing both lateral and vertical profiles for the three 
flightplans set by the flightplan task. The lateral profile is composed of waypoints as well as 

after and between the waypoints). The vertical profile provides 
altitude information (cruise altitude interceptions, crossing altitudes and slope angles) as well 
as performance information (estimated time of arrival, estimated fuel on board).

omputation is performed for each of the three above defined flightplans. The 
inputs of trajectory computation are both the flightplan and the best computed position (BCP) 
of the plane that comes from the localization task group. The computed trajectory tri

set flightplan while respecting passenger wellness (limiting roll and pitch) as 
well as physical limitation of the plane actuators such as flaps. The trajectory information is 
later used by the plane autopilot to actually interact with these actuators. 

The FMS application also embeds a large Navigation Database that does not fit in any 
cache structure. It is both linearly and regularly accessed by task from the Nearest airport 
task group, as well as randomly and sporadically accessed by tasks of the Flightplan task 
group. Accesses to this database in the main memory is very interference prone.

All the tasks composing the FMS have stringent real-time requirements. 
spectively show the time requirements of periodic and aperiodic tasks composing the 

Periodic Task Period / Deadline 

200ms 

200ms 

1.6s 

5s 

1s 

200ms 

300ms 

300ms 

1s 

3: FMS: Time requirements of periodic tasks 

In the FMS, periodic tasks are characterized by an activation period as well as a deadline 
that always corresponds to the next activation period. 

Maximum activations Deadline 

2 per 200ms 50ms 

2 per 200ms 50ms 

2 per 200ms 50ms 

2 per 200ms 50ms 

2 per 200ms 100ms 

5 per 5s 50ms 

5 per 1s 50ms 

once at initialization 1s 

1 per 1s 1s 

once at initialization 1s 

1 per 1s 1s 

1 per 1s 1s 

1 per 1s 50ms 
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task group aims at computing both lateral and vertical profiles for the three 
flightplans set by the flightplan task. The lateral profile is composed of waypoints as well as 

after and between the waypoints). The vertical profile provides 
altitude information (cruise altitude interceptions, crossing altitudes and slope angles) as well 
as performance information (estimated time of arrival, estimated fuel on board). 

omputation is performed for each of the three above defined flightplans. The 
inputs of trajectory computation are both the flightplan and the best computed position (BCP) 
of the plane that comes from the localization task group. The computed trajectory tries to 

set flightplan while respecting passenger wellness (limiting roll and pitch) as 
well as physical limitation of the plane actuators such as flaps. The trajectory information is 

that does not fit in any 
cache structure. It is both linearly and regularly accessed by task from the Nearest airport 

y tasks of the Flightplan task 
group. Accesses to this database in the main memory is very interference prone. 

. Table 3 and Table 
spectively show the time requirements of periodic and aperiodic tasks composing the 

In the FMS, periodic tasks are characterized by an activation period as well as a deadline 
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FPLNA7 

FPLNA8 

TRAJA1 

Table 4

All aperiodic tasks are sporadic, and are cha
per period of time. This period of time is usually defined by the period of the periodic task 
consuming the data produced by the aperiodic task. Aperiodic tasks also have to respect a 
deadline provided by Table 4.

We will develop both a baremetal and a single
application. 

 

5.2 Soft Real Time Low
Distributed Control System

The selected soft low-critical
control-command application implementing a bi
tasks composing the applications, appearing in 

• The Generator process is generat
on the first pass, or iterates on the received data on the next passes.

• The Splitter process splits the data received from a 
to all the filtering tasks.

• The LoPass and the HiPass
data. 

• The Aggregator process fuses the previously computed filtered data and sends it 
back as feedback to the generator task.

• The Display process finally displays the fused data.

 

Figure 14: Partitioned BiQuad application implemented in PikeOS

Figure 14 illustrates the multi-
different partitions and 6 PikeOS threads imple
exhibits the use of the possible communication mediums available in PikeOS, both for 
intra/inter-partition communication and for performing heavy load floating

Several other implementations are a
single-partition version. 
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1 per 1s 50ms 

1 per 1s 50ms 

once at initialization 50ms 

4: FMS: Time requirements of aperiodic tasks 

All aperiodic tasks are sporadic, and are characterized by a maximum number of activation 
per period of time. This period of time is usually defined by the period of the periodic task 
consuming the data produced by the aperiodic task. Aperiodic tasks also have to respect a 

 

We will develop both a baremetal and a single-partition PikeOS native version of the 

Soft Real Time Low-critical Application: Bi
Distributed Control System 

critical real-time application for the WP4 time-critical prototype is a 
command application implementing a bi-quadratic distributed control system. The 

tasks composing the applications, appearing in Figure 14, are: 

process is generating the input data. It either self-
on the first pass, or iterates on the received data on the next passes.

process splits the data received from a FIFO to make it globally available 
to all the filtering tasks. 

HiPass processes are applying some bi quadratic filtering to the 

process fuses the previously computed filtered data and sends it 
back as feedback to the generator task. 

process finally displays the fused data. 

Partitioned BiQuad application implemented in PikeOS

-partition PikeOS version of this application. It is composed of 3 
different partitions and 6 PikeOS threads implementing the different tasks. This example 
exhibits the use of the possible communication mediums available in PikeOS, both for 

partition communication and for performing heavy load floating-point computation.

Several other implementations are also realized, including a bare metal version, and a 
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racterized by a maximum number of activation 
per period of time. This period of time is usually defined by the period of the periodic task 
consuming the data produced by the aperiodic task. Aperiodic tasks also have to respect a 

partition PikeOS native version of the 

pplication: Bi-Quadratic 

critical prototype is a 
quadratic distributed control system. The 

-generates the data 
on the first pass, or iterates on the received data on the next passes. 

to make it globally available 

processes are applying some bi quadratic filtering to the 

process fuses the previously computed filtered data and sends it 

 

Partitioned BiQuad application implemented in PikeOS 

partition PikeOS version of this application. It is composed of 3 
menting the different tasks. This example 

exhibits the use of the possible communication mediums available in PikeOS, both for 
point computation. 

lso realized, including a bare metal version, and a 
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All the tasks composing the BiQuad application have soft 
in term of data throughput. The quantity of data manipulated, the complexity of the 
computation, and the throughput requirements can all be parameterized in the application. 
We will select these requirements such that the high
the generated interference without the RTE. The runtime engine will degrade t
behaviour of the BiQuad application to ensure correct execution of the critical application.

 

5.3 Firm Real Time QOS

The implementation of the last application composing the prototype has not started yet, but 
we already defined its specification. Contrary to the soft real
if the resource budget is spent, the firm real time application reactively adapt
available budget. 

We selected a video broadcasting application based on t
vary the decoded frame rate accordingly to the resource available. The task graph of the 
application is presented in Figure 

Figure 15

Before decoding each frame composing the video, this application will receive from the RTE 
the available resource budget, and decide if the current frame should be decoded or skipped. 
This way, rather than freezing the video because of more c
reduced, providing the user with a more acceptable experience.

As a baseline, this application will also be run without the QoS mechanism enabled, and we 
will compare the number of frame skipped with QoS versus the numb
introduced latency without QoS (letting the RTE consider that the application is soft
time). 

The initial timing requirements
per second, as per standard video broadcasti
 

Alpha OA & RTE prototypes 

All the tasks composing the BiQuad application have soft real-time requirements
in term of data throughput. The quantity of data manipulated, the complexity of the 

utation, and the throughput requirements can all be parameterized in the application. 
We will select these requirements such that the high-critical application can be impacted by 
the generated interference without the RTE. The runtime engine will degrade t
behaviour of the BiQuad application to ensure correct execution of the critical application.

Firm Real Time QOS-aware Application: Video broadcasting

The implementation of the last application composing the prototype has not started yet, but 
already defined its specification. Contrary to the soft real-time application that is stopped 

if the resource budget is spent, the firm real time application reactively adapt

We selected a video broadcasting application based on the MJPEG format that allows us to 
vary the decoded frame rate accordingly to the resource available. The task graph of the 

Figure 15. 

15: Firm Real Time Application Task Flow Graph 

Before decoding each frame composing the video, this application will receive from the RTE 
the available resource budget, and decide if the current frame should be decoded or skipped. 
This way, rather than freezing the video because of more critical tasks, the framerate will be 
reduced, providing the user with a more acceptable experience. 

As a baseline, this application will also be run without the QoS mechanism enabled, and we 
will compare the number of frame skipped with QoS versus the number of frame delayed and 
introduced latency without QoS (letting the RTE consider that the application is soft

timing requirements of the MJPEG application correspond to decoding 25 frames 
per second, as per standard video broadcasting.  
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time requirements expressed 
in term of data throughput. The quantity of data manipulated, the complexity of the 

utation, and the throughput requirements can all be parameterized in the application. 
critical application can be impacted by 

the generated interference without the RTE. The runtime engine will degrade the timing 
behaviour of the BiQuad application to ensure correct execution of the critical application. 

pplication: Video broadcasting 

The implementation of the last application composing the prototype has not started yet, but 
time application that is stopped 

if the resource budget is spent, the firm real time application reactively adapts to the 

he MJPEG format that allows us to 
vary the decoded frame rate accordingly to the resource available. The task graph of the 

 

Before decoding each frame composing the video, this application will receive from the RTE 
the available resource budget, and decide if the current frame should be decoded or skipped. 

ritical tasks, the framerate will be 

As a baseline, this application will also be run without the QoS mechanism enabled, and we 
er of frame delayed and 

introduced latency without QoS (letting the RTE consider that the application is soft-real 

of the MJPEG application correspond to decoding 25 frames 
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Chapter 6 Freedom f

mixed-critical systems

In automotive systems, Safety Analysis is based on the ISO 26262 standard 
26262 provides design guidelines to accomplish at SW level “Freedom of Interfer
allowing to avoid that safety-relevant components and data could be corrupted by non
components. 
In fact, the “Freedom of Interference” 
software partition to another software partitio
Automotive standard, like AUTOSAR, defines and designs safety mechanisms to guarantee 
“Freedom of Interference” (see 
system thought they affect system performances. 
by ISO-26262, like "Freedom of interference”, can take a real advantage from the hardware 
separation (e.g. different private memories) provided by multi
The SAFURE Automotive multicore use case 
concept into account. In particular, 
the same device to reduce cost. The special safety requirements of the Engine and 
Transmission Control functionality mus
isolation of the two parts. In order to achieve these requirements MAG, for SAFURE WP4, 
designed two optimized firmware drivers: TPROT and MPU (see 

 

6.1 Safety and freedo

In automotive systems, Safety Analysis is based on the ISO 26262 standard 
standard consists of 9 normative parts and a guideline for the ISO 26262 as the 10th part. 
Here some extracts from ISO 26262 are provided, that describe different Safety Analysis 
area covered by ISO-26262, for details please refer to the full ISO 26262 documentation 

ISO-26262 provides design guidelines to accomplish at SW level “F
thus allowing to avoid that safety
ASIL components. 

Automotive Scenario related to SAFURE Project will implement protection mechanisms 
aligned to these ISO guidelines.

 

6.1.1 ISO 26262 – Timing Protection

ISO 26262-6, chapter 7 [11]
analyse the dynamic design aspects (temporal constraints) of the software components. To 
determine the dynamic behavio
needs to consider: 

• the different operating states (e.g. power up, shut down, normal operation, calibration 
and diagnosis). 

• the communication relationships and their allocation to the system hardw

CPU and communication channels).

Alpha OA & RTE prototypes 

Freedom from Interferences for 

critical systems 

In automotive systems, Safety Analysis is based on the ISO 26262 standard 
26262 provides design guidelines to accomplish at SW level “Freedom of Interfer

relevant components and data could be corrupted by non

“Freedom of Interference” objective is to prevent propagation of a failure in one 
software partition to another software partition.  

AUTOSAR, defines and designs safety mechanisms to guarantee 
(see chapter 6.3), these mechanisms are necessary on multicore 

system thought they affect system performances. Moreover, some of the issues addressed 
26262, like "Freedom of interference”, can take a real advantage from the hardware 

separation (e.g. different private memories) provided by multi-core microcontrollers.
The SAFURE Automotive multicore use case (see D1.1) takes “Freedom of Interference” 
concept into account. In particular, Engine Control and Transmission Control are realized on 
the same device to reduce cost. The special safety requirements of the Engine and 
Transmission Control functionality must be covered by ensuring spatial and temporal 
isolation of the two parts. In order to achieve these requirements MAG, for SAFURE WP4, 
designed two optimized firmware drivers: TPROT and MPU (see chapter 6.3

Safety and freedom from interferences mechanisms

In automotive systems, Safety Analysis is based on the ISO 26262 standard 
standard consists of 9 normative parts and a guideline for the ISO 26262 as the 10th part. 

rom ISO 26262 are provided, that describe different Safety Analysis 
26262, for details please refer to the full ISO 26262 documentation 

26262 provides design guidelines to accomplish at SW level “Freedom of Interference”, 
thus allowing to avoid that safety-relevant components and data could be corrupted by non

Automotive Scenario related to SAFURE Project will implement protection mechanisms 
aligned to these ISO guidelines. 

Timing Protection 

[11] covers software architectural design and describes how to 
analyse the dynamic design aspects (temporal constraints) of the software components. To 
determine the dynamic behaviour (e.g. of tasks, time slices and interrupts) the developer 

the different operating states (e.g. power up, shut down, normal operation, calibration 

the communication relationships and their allocation to the system hardw

CPU and communication channels). 
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nces for 

In automotive systems, Safety Analysis is based on the ISO 26262 standard [11]. The ISO 
26262 provides design guidelines to accomplish at SW level “Freedom of Interference”, thus 

relevant components and data could be corrupted by non-ASIL 

objective is to prevent propagation of a failure in one 

AUTOSAR, defines and designs safety mechanisms to guarantee 
these mechanisms are necessary on multicore 

some of the issues addressed 
26262, like "Freedom of interference”, can take a real advantage from the hardware 

core microcontrollers. 
“Freedom of Interference” 

Engine Control and Transmission Control are realized on 
the same device to reduce cost. The special safety requirements of the Engine and 

t be covered by ensuring spatial and temporal 
isolation of the two parts. In order to achieve these requirements MAG, for SAFURE WP4, 

6.3).  

interferences mechanisms 

In automotive systems, Safety Analysis is based on the ISO 26262 standard [11]. The 
standard consists of 9 normative parts and a guideline for the ISO 26262 as the 10th part. 

rom ISO 26262 are provided, that describe different Safety Analysis 
26262, for details please refer to the full ISO 26262 documentation [11]. 

reedom of Interference”, 
relevant components and data could be corrupted by non-

Automotive Scenario related to SAFURE Project will implement protection mechanisms 

covers software architectural design and describes how to 
analyse the dynamic design aspects (temporal constraints) of the software components. To 

ur (e.g. of tasks, time slices and interrupts) the developer 

the different operating states (e.g. power up, shut down, normal operation, calibration 

the communication relationships and their allocation to the system hardware (e.g. 
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The determination of the dynamic behaviour of multicore systems is possible with a 
simulation approach. Temporal isolation is required to protect the execution time of critical 
tasks (software partitions) from unw
faults) such as blocking of execution, deadlocks, livelocks, incorrect allocation of execution 
time, and incorrect synchronization between software elements.

Complementing the runtime mechanisms for tim
tolerant strategies and architectural approaches for fault isolation.

The normative regulation enumerates that these faults can be prevented by using traditional 
approaches like time triggered scheduling, cycling
priority based scheduling. In this research project also dynamic scheduling approaches will 
be analysed. 

Following annex D of ISO 26262
has to be supervised by monitoring of processor execution time of software partitions in 
accordance with their allocation, program sequence monitoring and arrival rate monitoring.

 

6.1.2 ISO 26262 – Memory and exchange of information Protection

With respect to memory, the effects of faults such as those listed below can be considered 
for software elements executed in each software partition:

• corruption of content (it can cause a hardware reset),

• read or write access to memory allocated to another software e

an unpredictable behavior

Mechanisms such as memory protection

redundancy check (CRC), redundant storage, restricted access to memory, static analysis of 

memory accessing software and static allocation can be used to prevent faults.

With respect to the exchange of information, the causes for faults or effects of faults such as 
those listed below can be considered for each sender or each receiver:

• repetition of information,

• loss of information, 

• delay of information, 

• insertion of information,

• masquerade or incorrect addressing of information,

• incorrect sequence of information,

• corruption of information,

• asymmetric information sent from a sender to multiple receivers,

• information from a sender received by only a subset of the receivers, and

• blocking access to a communication channel.

 

6.2 AUTOSAR OS-Application and Protection Support

AUTOSAR specifications introduce OS

COUNTERs, ALARMS, Schedule Tables), that could resemble to processes (without 

memory virtualization). 

The Operating System module is responsible for scheduling the available processing 

resource between the OS-Applications that share the processor. If OS
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The determination of the dynamic behaviour of multicore systems is possible with a 
simulation approach. Temporal isolation is required to protect the execution time of critical 
tasks (software partitions) from unwanted interference caused by faults (including timing 

blocking of execution, deadlocks, livelocks, incorrect allocation of execution 
time, and incorrect synchronization between software elements. 

Complementing the runtime mechanisms for time isolation, we will also investigate fault
tolerant strategies and architectural approaches for fault isolation. 

The normative regulation enumerates that these faults can be prevented by using traditional 
approaches like time triggered scheduling, cycling execution scheduling policy and fixed 
priority based scheduling. In this research project also dynamic scheduling approaches will 

Following annex D of ISO 26262-6 [11] freedom from interference by software partiti
has to be supervised by monitoring of processor execution time of software partitions in 
accordance with their allocation, program sequence monitoring and arrival rate monitoring.

Memory and exchange of information Protection

t to memory, the effects of faults such as those listed below can be considered 
for software elements executed in each software partition: 

corruption of content (it can cause a hardware reset), 

read or write access to memory allocated to another software element (it can cause 

behavior of the Control Unit). 

memory protection, parity bits, error-correcting code (ECC), cyclic 

redundancy check (CRC), redundant storage, restricted access to memory, static analysis of 

cessing software and static allocation can be used to prevent faults.

With respect to the exchange of information, the causes for faults or effects of faults such as 
those listed below can be considered for each sender or each receiver: 

mation, 

insertion of information, 

masquerade or incorrect addressing of information, 

incorrect sequence of information, 

corruption of information, 

asymmetric information sent from a sender to multiple receivers, 

nformation from a sender received by only a subset of the receivers, and

blocking access to a communication channel. 

Application and Protection Support

AUTOSAR specifications introduce OS-Applications as entities containers (TASKs, ISR2s, 

ERs, ALARMS, Schedule Tables), that could resemble to processes (without 

The Operating System module is responsible for scheduling the available processing 

Applications that share the processor. If OS
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The determination of the dynamic behaviour of multicore systems is possible with a 
simulation approach. Temporal isolation is required to protect the execution time of critical 

anted interference caused by faults (including timing 
blocking of execution, deadlocks, livelocks, incorrect allocation of execution 

e isolation, we will also investigate fault-

The normative regulation enumerates that these faults can be prevented by using traditional 
execution scheduling policy and fixed 

priority based scheduling. In this research project also dynamic scheduling approaches will 

freedom from interference by software partitioning 
has to be supervised by monitoring of processor execution time of software partitions in 
accordance with their allocation, program sequence monitoring and arrival rate monitoring. 

Memory and exchange of information Protection 

t to memory, the effects of faults such as those listed below can be considered 

lement (it can cause 

correcting code (ECC), cyclic 

redundancy check (CRC), redundant storage, restricted access to memory, static analysis of 

cessing software and static allocation can be used to prevent faults. 

With respect to the exchange of information, the causes for faults or effects of faults such as 

nformation from a sender received by only a subset of the receivers, and 

Application and Protection Support 

Applications as entities containers (TASKs, ISR2s, 

ERs, ALARMS, Schedule Tables), that could resemble to processes (without 

The Operating System module is responsible for scheduling the available processing 

Applications that share the processor. If OS-Application(s) are 
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used, all TASKs, ISRs, COUNTERs, ALARMs and Schedule tables must belong to an OS

Application. All objects which belong to the same OS

The right to access objects from other OS

An event is accessible if the TASK for which the EVENT can be set is accessible. Access 

means that these Operating System objects are allowed as parameters to API services.

The above are the fundamentals of

There are two classes of OS-Application:

1. Trusted OS-Applications

disabled at runtime. They may have unrestricted access to memory, the Operating 

System module’s API, and NEED NOT have their timing behaviou

runtime. They are allowed to run in privileged mode when supported by the 

processor. 

2. Non-Trusted OS-Applications

features disabled at runtime. They have restricted access to memory, restri

access to the Operating System module’s API and have their timing behaviour 

enforced at runtime. They are not allowed to run in privileged mode when supported 

by the processor. 

Operating System module itself is a TRUSTED OS

The running OS-Application is defined as the OS

Task or ISR belongs. In case of a hook routine the Task or ISR which caused the call of the 

hook routine defines the running OS

There are services offered by the AUTO

access rights and the membership of objects and memory variables. These services are 

intended to be used in case of an inter

arguments. 

OS-Applications have a state which defines the scope of accessibility of its Operating 

System objects from other OS

following states: 

• Active and accessible

may be accessed from other OS

• Currently in restart phase

cannot be accessed from other OS

calls AllowAccess(). 

• Terminated and not accessible

objects cannot be accessed from other OS

Protection is only possible for Operating System managed objects. This means that:

• It is not possible to provide protection during runtime of OSEK Category 1 ISRs 

because the operating system is not aware of any Category 1 ISRs being invoked. 

Therefore, if any protection is required, Category 1 ISRs have to be avoided. If 

Category 1 interrupts AND OS

must belong to a trusted OS

Alpha OA & RTE prototypes 

used, all TASKs, ISRs, COUNTERs, ALARMs and Schedule tables must belong to an OS

Application. All objects which belong to the same OS-Application have access to each other. 

objects from other OS-Applications may be granted d

An event is accessible if the TASK for which the EVENT can be set is accessible. Access 

means that these Operating System objects are allowed as parameters to API services.

The above are the fundamentals of Service Protection. 

Application: 

Applications: Are allowed to run with monitoring or protection features 

disabled at runtime. They may have unrestricted access to memory, the Operating 

System module’s API, and NEED NOT have their timing behaviou

runtime. They are allowed to run in privileged mode when supported by the 

Applications: Are not allowed to run with monitoring or protection 

features disabled at runtime. They have restricted access to memory, restri

access to the Operating System module’s API and have their timing behaviour 

enforced at runtime. They are not allowed to run in privileged mode when supported 

Operating System module itself is a TRUSTED OS-Application. 

Application is defined as the OS-Application to which the currently running 

Task or ISR belongs. In case of a hook routine the Task or ISR which caused the call of the 

hook routine defines the running OS-Application. 

There are services offered by the AUTOSAR OS which give the caller information about the 

access rights and the membership of objects and memory variables. These services are 

intended to be used in case of an inter-OS-Application call for checking access rights and 

ve a state which defines the scope of accessibility of its Operating 

System objects from other OS-Applications. Each OS-Application is always in one of the 

Active and accessible (APPLICATION_ACCESSIBLE): Operating System objects 

cessed from other OS-Applications. This is the default state at start up.

Currently in restart phase (APPLICATION_RESTART): Operating System objects 

cannot be accessed from other OS-Applications. State is valid until the OSApplication 

Terminated and not accessible (APPLICATION_TERMINATED): Operating System 

objects cannot be accessed from other OS-Applications. State will not change.

Protection is only possible for Operating System managed objects. This means that:

provide protection during runtime of OSEK Category 1 ISRs 

because the operating system is not aware of any Category 1 ISRs being invoked. 

Therefore, if any protection is required, Category 1 ISRs have to be avoided. If 

gory 1 interrupts AND OS-Applications are used together then all Category 1 ISR 

must belong to a trusted OS-Application. 
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used, all TASKs, ISRs, COUNTERs, ALARMs and Schedule tables must belong to an OS-

Application have access to each other. 

Applications may be granted during configuration. 

An event is accessible if the TASK for which the EVENT can be set is accessible. Access 

means that these Operating System objects are allowed as parameters to API services. 

: Are allowed to run with monitoring or protection features 

disabled at runtime. They may have unrestricted access to memory, the Operating 

System module’s API, and NEED NOT have their timing behaviour enforced at 

runtime. They are allowed to run in privileged mode when supported by the 

: Are not allowed to run with monitoring or protection 

features disabled at runtime. They have restricted access to memory, restricted 

access to the Operating System module’s API and have their timing behaviour 

enforced at runtime. They are not allowed to run in privileged mode when supported 

Application to which the currently running 

Task or ISR belongs. In case of a hook routine the Task or ISR which caused the call of the 

SAR OS which give the caller information about the 

access rights and the membership of objects and memory variables. These services are 

Application call for checking access rights and 

ve a state which defines the scope of accessibility of its Operating 

Application is always in one of the 

(APPLICATION_ACCESSIBLE): Operating System objects 

Applications. This is the default state at start up. 

(APPLICATION_RESTART): Operating System objects 

Applications. State is valid until the OSApplication 

(APPLICATION_TERMINATED): Operating System 

Applications. State will not change. 

Protection is only possible for Operating System managed objects. This means that: 

provide protection during runtime of OSEK Category 1 ISRs [12], 

because the operating system is not aware of any Category 1 ISRs being invoked. 

Therefore, if any protection is required, Category 1 ISRs have to be avoided. If 

Applications are used together then all Category 1 ISR 
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• It is not possible to provide protection between functions called from the body of the 

same Task/Category 2 ISR 

AUTOSAR specify four protection features:

• Service Protection: Protect the Object Access (TASK, ALARMs, Schedule Table, 

Resources) between OS

• Memory Protection: Protect

possible corruption by Non

• Stack Monitoring: On processors that do not provide any memory protection hardware 

it may still be necessary to provide a “best effort with available resources” scheme for 

detectable classes of memory faults. Stack monitoring will identify where a task or 

ISR has exceeded a specified stack usage at context switch time.

• Timing Protection: A timing fault in a real

misses its deadline at 

that let the software understand which TASK or ISR2 is causing a deadline missing.

 

6.3 Freedom from Interferences OS

For SAFURE, the Automotive Multicore Use Case prototype guarantees at firmwar
freedom from interferences compliant with ISO 26262. In particular, for SAFURE WP4 MAG 
has studied and developed two firmware drivers (
protection and memory protection to guarantee 
applications that run on two different cores (
RealTime OS supports.  

 

6.3.1 Timing Isolation OS

MAG has designed a FW component (
support from a Real-time OS. From a Safety point of view, this allow to use Timing Protection 
(AUTOSAR -like) but with a QM RTOS

 

AUTOSAR Timing Protection concept is built on the fo
in order to be used without any OS supports:

1. The execution time of Task/ISRs in the system

The measure of Task execution time can be performed without the need of OS, if this 

measure is triggered by the Task itself. T

Resource of the uC. Execution Budget violation can trigger Time Protection Error.

• Execution Budget: 

2. The blocking time that Task/ISRs suffers from lower priority Task

resources or disabling interrupts

The TPROT component can execute a measure of resources locked by lower priority 

tasks, if the measure is triggered by the lower priority task itself. Time violation can trigger 

Time Protection Error. 

• Lock Time : Maximum permitted Interrupt Lock Time or Resource Lock Time

Alpha OA & RTE prototypes 

It is not possible to provide protection between functions called from the body of the 

same Task/Category 2 ISR [12]. 

specify four protection features: 

: Protect the Object Access (TASK, ALARMs, Schedule Table, 

Resources) between OS-Application, if the permission is not explicitly granted.

: Protect Global Data and Stacks of an OS

possible corruption by Non-Trusted OS-Application. 

: On processors that do not provide any memory protection hardware 

it may still be necessary to provide a “best effort with available resources” scheme for 

ctable classes of memory faults. Stack monitoring will identify where a task or 

ISR has exceeded a specified stack usage at context switch time. 

: A timing fault in a real-time system occurs when a task or interrupt 

misses its deadline at runtime. AUTOSAR OS supply a mechanism based on budget 

that let the software understand which TASK or ISR2 is causing a deadline missing.

Interferences OS-extension 

For SAFURE, the Automotive Multicore Use Case prototype guarantees at firmwar
compliant with ISO 26262. In particular, for SAFURE WP4 MAG 

has studied and developed two firmware drivers (AUTOSAR -like) to implement timing 
protection and memory protection to guarantee freedom from interferences
applications that run on two different cores (chapter 6.2). This is an optimized alternative to 

Timing Isolation OS-extension 

MAG has designed a FW component (TPROT) to realize Timing Protecti
time OS. From a Safety point of view, this allow to use Timing Protection 

like) but with a QM RTOS (Part 3: Concept phase [11]). 

Timing Protection concept is built on the following monitors that will be adjusted 
in order to be used without any OS supports: 

The execution time of Task/ISRs in the system 

The measure of Task execution time can be performed without the need of OS, if this 

measure is triggered by the Task itself. The measure can be performed using a Timer 

Resource of the uC. Execution Budget violation can trigger Time Protection Error.

: Maximum permitted execution time for a Task/ISR.

The blocking time that Task/ISRs suffers from lower priority Tasks/ISRs locking shared 

resources or disabling interrupts 

The TPROT component can execute a measure of resources locked by lower priority 

tasks, if the measure is triggered by the lower priority task itself. Time violation can trigger 

: Maximum permitted Interrupt Lock Time or Resource Lock Time
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It is not possible to provide protection between functions called from the body of the 

: Protect the Object Access (TASK, ALARMs, Schedule Table, 

Application, if the permission is not explicitly granted. 

of an OS-Application from 

: On processors that do not provide any memory protection hardware 

it may still be necessary to provide a “best effort with available resources” scheme for 

ctable classes of memory faults. Stack monitoring will identify where a task or 

 

time system occurs when a task or interrupt 

OS supply a mechanism based on budget 

that let the software understand which TASK or ISR2 is causing a deadline missing. 

For SAFURE, the Automotive Multicore Use Case prototype guarantees at firmware level the 
compliant with ISO 26262. In particular, for SAFURE WP4 MAG 

like) to implement timing 
freedom from interferences between two 

). This is an optimized alternative to 

) to realize Timing Protection without any 
time OS. From a Safety point of view, this allow to use Timing Protection 

llowing monitors that will be adjusted 

The measure of Task execution time can be performed without the need of OS, if this 

he measure can be performed using a Timer 

Resource of the uC. Execution Budget violation can trigger Time Protection Error. 

Maximum permitted execution time for a Task/ISR. 

s/ISRs locking shared 

The TPROT component can execute a measure of resources locked by lower priority 

tasks, if the measure is triggered by the lower priority task itself. Time violation can trigger 

: Maximum permitted Interrupt Lock Time or Resource Lock Time 
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3. The inter-arrival rate of Task/ISRs in the system

TPROT will measure inter

each transition to READY STATE for each ta

just check that the time elapsed between two consecutive execution of the task is inside 

a determined upper bound. Again it is needed that the measure is triggered inside the 

Task. 

• Time Period: The maximum time

activation of the same task.

6.3.1.1 TPROT Design Draft: Concept and API

TPROT introduce the concept of TimerSet that is a logical identifier bound to one or more uC 

timing resources. The number of uC resources needed may v

uC model. TimerSet will also encapsulate all the timing protection budgets and measures.

One task should always use the same TimerSet. Different Tasks should always use different 

TimerSet. 

Some sample API: 

TPROT_SetExecBudget ( <TimerSet>  Tx, <ExecutionBudget_uS> ExecBudget )

TPROT_SetTimePeriod( <TimerSet>  Tx, <TimePeriod_uS> TimePeriod )

TPROT_SetLockBudget (<TimerSet>  Tx , <LockBudget_uS> LockBudget )

TPROT_StartExecBudget  ( <TimerSet> Tx  )

TPROT_StopExecBudget  ( <Time

TPROT_StartLockBudget (<TimerSet> Tx  )

TPROT_StopLockBudget (<TimerSet> Tx  )

TPROT_CheckExecBudget  ( <TimerSet> Tx  ) 

TPROT_CheckTimePeriod  ( <TimerSet> Tx  ) 

TPROT_CheckLockBudget ( <TimerSet> Tx )  

TPROT_ClearTimerSet  ( <TimerSet> Tx  )

TPROT_TimingProtection_Error ( <ErrorId> E ) 

 

An example of usage for TPROT:

Alpha OA & RTE prototypes 

arrival rate of Task/ISRs in the system 

TPROT will measure inter-arrival rate not in the strict meaning of Autosar (that will count 

each transition to READY STATE for each task and define a lower bound for it), but will 

just check that the time elapsed between two consecutive execution of the task is inside 

a determined upper bound. Again it is needed that the measure is triggered inside the 

: The maximum time elapsed admitted between two successive 

activation of the same task. 

TPROT Design Draft: Concept and API 

TPROT introduce the concept of TimerSet that is a logical identifier bound to one or more uC 

timing resources. The number of uC resources needed may vary depending on the specific 

uC model. TimerSet will also encapsulate all the timing protection budgets and measures.

One task should always use the same TimerSet. Different Tasks should always use different 

( <TimerSet>  Tx, <ExecutionBudget_uS> ExecBudget )

TPROT_SetTimePeriod( <TimerSet>  Tx, <TimePeriod_uS> TimePeriod )

TPROT_SetLockBudget (<TimerSet>  Tx , <LockBudget_uS> LockBudget )

TPROT_StartExecBudget  ( <TimerSet> Tx  ) 

TPROT_StopExecBudget  ( <TimerSet> Tx  ) 

TPROT_StartLockBudget (<TimerSet> Tx  ) 

TPROT_StopLockBudget (<TimerSet> Tx  ) 

TPROT_CheckExecBudget  ( <TimerSet> Tx  ) � Reset Execution Budget counting.

TPROT_CheckTimePeriod  ( <TimerSet> Tx  ) � Reset Time Period counting.

udget ( <TimerSet> Tx )  � Reset Lock Budget counting.

TPROT_ClearTimerSet  ( <TimerSet> Tx  ) 

TPROT_TimingProtection_Error ( <ErrorId> E )  

An example of usage for TPROT: 
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arrival rate not in the strict meaning of Autosar (that will count 

sk and define a lower bound for it), but will 

just check that the time elapsed between two consecutive execution of the task is inside 

a determined upper bound. Again it is needed that the measure is triggered inside the 

elapsed admitted between two successive 

TPROT introduce the concept of TimerSet that is a logical identifier bound to one or more uC 

ary depending on the specific 

uC model. TimerSet will also encapsulate all the timing protection budgets and measures. 

One task should always use the same TimerSet. Different Tasks should always use different 

( <TimerSet>  Tx, <ExecutionBudget_uS> ExecBudget ) 

TPROT_SetTimePeriod( <TimerSet>  Tx, <TimePeriod_uS> TimePeriod ) 

TPROT_SetLockBudget (<TimerSet>  Tx , <LockBudget_uS> LockBudget ) 

Reset Execution Budget counting. 

Reset Time Period counting. 

Reset Lock Budget counting. 
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Figure 16: TPROT Design Draft (example explained with Se

 

6.3.2 Memory Protection OS

MAG has designed a FW driver to support memory protection at Task level, to guarantee 
that data structures inside the protected Task (or part of it) cannot be accessed by untrusted 
operations. This implementation makes use of microcontroller MPU device. This mechanism 
is ISO 26262 compliant and AUTOSAR

 

Here is the Memory Protection concept described in 

Alpha OA & RTE prototypes 

: TPROT Design Draft (example explained with Sequence Diagram)

Memory Protection OS-extension 

FW driver to support memory protection at Task level, to guarantee 
that data structures inside the protected Task (or part of it) cannot be accessed by untrusted 

tion makes use of microcontroller MPU device. This mechanism 
AUTOSAR-like. 

Here is the Memory Protection concept described in AUTOSAR [13]: 
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quence Diagram) 

FW driver to support memory protection at Task level, to guarantee 
that data structures inside the protected Task (or part of it) cannot be accessed by untrusted 

tion makes use of microcontroller MPU device. This mechanism 
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Figure 17: Memory protection app

 

6.3.2.1 Memory Protection Design Draft: Concept

Here is the concept implemented by MAG FW MPU Driver:

Suppose that the Figure 17 represents RAM partitioning (P0, P1 and P2) we want to obtain, 

giving the following requirements:

• Total of 256 KB of RAM.

• P0, P1, P2 are running on the same core.

• There is a real-time OS running. All the partitions P0, P1, P2 are preemptive.

• P2 is the default partition

 

Alpha OA & RTE prototypes 

: Memory protection applied at OS Application level.

Memory Protection Design Draft: Concept 

Here is the concept implemented by MAG FW MPU Driver: 

represents RAM partitioning (P0, P1 and P2) we want to obtain, 

giving the following requirements: 

256 KB of RAM.  

P0, P1, P2 are running on the same core. 

time OS running. All the partitions P0, P1, P2 are preemptive.

default partition (see MPU Static Configuration section for details).
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lied at OS Application level. 

represents RAM partitioning (P0, P1 and P2) we want to obtain, 

time OS running. All the partitions P0, P1, P2 are preemptive. 

(see MPU Static Configuration section for details). 
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Figure 19: The diagram shows activation of P1 & P2 only, but the same apply when 
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Figure 18: partitioning example. 

The diagram shows activation of P1 & P2 only, but the same apply when 
activating a task owned by P0. 
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The diagram shows activation of P1 & P2 only, but the same apply when 
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Chapter 7 AUTOSAR OS

7.1 AUTOSAR OS support for mixed criticality

Currently, most of the AUTOSAR OS support for mixed critical application relies on a set of 
mechanisms (with reference to the 4.3 definition of the standard)

• mechanisms for timing isolation. Providing support for preventing timing faults from 
one application components from affecting other components

• mechanisms for monitoring. Providing support for check
on the execution time of runnable, ISRs and critical sections

• mechanisms for predictable scheduling. Providing support for the implementation of 
scheduling policies that allow for predicatble interferences and blocking times.

Among these mechanisms, we are interested in those for which an open source 
implementation exists or can be obtained by extending the Erika OS
(AUTOSAR) system. 

Hence, in the analysis of the services, we are
availability in Erika (for the architectures of interest for S
commercial implementation of AUTOSAR OS exist from several vendors in Europe and 
outside, but an open source kernel offers oppor
experimentation by academics and the industry.

Mechanisms for timing protection

AUTOSAR OS guarantees a statically configured upper bound, called the Execution Budget, 
on the execution time of tasks and category 2 ISRs

AUTOSAR OS prevents guarantees a statically configured upper bound, called the Lock 
Budget, on the time that resources are held by tasks or Category 2 ISRs

AUTOSAR OS enforces an inter
lower bound, called the Time Frame, on the time between a task being permitted to transitio
into the READY state due to activation or release

Mechanisms for monitoring 

AUTOSAR OS mechanisms for monitoring include hooks and events that are invoked or 
activated in correspondence to an attempt at policy violation.

Mechanisms for predictable scheduling

AUTOSAR OS mechanisms for predictable scheduling include scheduling tables and priority
based scheduling with ceiling mechanisms for local resource protection and locks 
intercore resource protection (to be supplemented by a mechanism for global ceilings or an 
equivalent bounded blocking time mechanism). In their basic configuration both of them are 
not sufficient to provide isolation but must be supplemented.

7.2 AUTOSAR RTE generation for mixed

The AUTOSAR RTE is the layer of automatically generated code that bridges the gap 
between the application SW components (and their code implementation) and the services of 
the basic SW, including the operating syst
services. 

Alpha OA & RTE prototypes 

AUTOSAR OS 

AUTOSAR OS support for mixed criticality 

Currently, most of the AUTOSAR OS support for mixed critical application relies on a set of 
ms (with reference to the 4.3 definition of the standard) 

mechanisms for timing isolation. Providing support for preventing timing faults from 
one application components from affecting other components 

mechanisms for monitoring. Providing support for checking violations of assumptions 
on the execution time of runnable, ISRs and critical sections 

mechanisms for predictable scheduling. Providing support for the implementation of 
scheduling policies that allow for predicatble interferences and blocking times.

Among these mechanisms, we are interested in those for which an open source 
implementation exists or can be obtained by extending the Erika OS [14] open source OSEK 

Hence, in the analysis of the services, we are especially interested in verifying their 
availability in Erika (for the architectures of interest for SAFURE). Of course other 
commercial implementation of AUTOSAR OS exist from several vendors in Europe and 
outside, but an open source kernel offers opportunities for better dissemination and 
experimentation by academics and the industry. 

Mechanisms for timing protection 

AUTOSAR OS guarantees a statically configured upper bound, called the Execution Budget, 
asks and category 2 ISRs 

AUTOSAR OS prevents guarantees a statically configured upper bound, called the Lock 
esources are held by tasks or Category 2 ISRs 

AUTOSAR OS enforces an inter-arrival time protection to guarantee a statically configured 
nd, called the Time Frame, on the time between a task being permitted to transitio

activation or release 

Mechanisms for monitoring 

AUTOSAR OS mechanisms for monitoring include hooks and events that are invoked or 
orrespondence to an attempt at policy violation. 

Mechanisms for predictable scheduling 

AUTOSAR OS mechanisms for predictable scheduling include scheduling tables and priority
based scheduling with ceiling mechanisms for local resource protection and locks 
intercore resource protection (to be supplemented by a mechanism for global ceilings or an 
equivalent bounded blocking time mechanism). In their basic configuration both of them are 
not sufficient to provide isolation but must be supplemented. 

RTE generation for mixed-critical systems

The AUTOSAR RTE is the layer of automatically generated code that bridges the gap 
between the application SW components (and their code implementation) and the services of 
the basic SW, including the operating system, (most of) the drivers and the communication 
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Currently, most of the AUTOSAR OS support for mixed critical application relies on a set of 

mechanisms for timing isolation. Providing support for preventing timing faults from 

ing violations of assumptions 

mechanisms for predictable scheduling. Providing support for the implementation of 
scheduling policies that allow for predicatble interferences and blocking times. 

Among these mechanisms, we are interested in those for which an open source 
open source OSEK 

especially interested in verifying their 
). Of course other 

commercial implementation of AUTOSAR OS exist from several vendors in Europe and 
tunities for better dissemination and 

AUTOSAR OS guarantees a statically configured upper bound, called the Execution Budget, 

AUTOSAR OS prevents guarantees a statically configured upper bound, called the Lock 

arrival time protection to guarantee a statically configured 
nd, called the Time Frame, on the time between a task being permitted to transition 

AUTOSAR OS mechanisms for monitoring include hooks and events that are invoked or 

AUTOSAR OS mechanisms for predictable scheduling include scheduling tables and priority-
based scheduling with ceiling mechanisms for local resource protection and locks for 
intercore resource protection (to be supplemented by a mechanism for global ceilings or an 
equivalent bounded blocking time mechanism). In their basic configuration both of them are 

critical systems 

The AUTOSAR RTE is the layer of automatically generated code that bridges the gap 
between the application SW components (and their code implementation) and the services of 

em, (most of) the drivers and the communication 
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The idea is that application developers should not use the OS (and scheduling) services 
directly, since before the composition of the system by the integrator, the runnable code is 
not assigned to any task or ECU and therefore cannot fully define its scheduling or 
scheduling conditions. 

In mixed-critical systems the application SW components have additional characteristics that 
characterize them, including (time) criticality levels and the need for p
and a guarantee of their timing budgets or deadlines.

These requirements are expressed in the AUTOSAR component and runnable model, either 
directly, or by making use of the extensions developed in WP2.

Our planned development consist

A parser that analyses the ARXML code of a model with components a different criticality 
levels and build an internal representation of the AUTOSAR model with the proposed 
extensions. 

The parser will be developed in Eclipse by leveragin
AUTOSAR consortium, or by defining a custom metamodel matching the AUTOSAR 
metamodel v4.3 and then using the Eclipse mechanisms for serialization and deserialization.

The second component is a co
automatically selects the OS services identified in the previous section for the protection of 
the timing characteristics of the critical tasks and for guaranteeing isolation.

The generator will be validated with a set of sample models, defined in Rhapsody. 

7.3 Adaptive Autosar

Adaptive policies for future support for mixed criticality include hierarchical scheduling 
support with possibly server policies on t
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The idea is that application developers should not use the OS (and scheduling) services 
directly, since before the composition of the system by the integrator, the runnable code is 

ny task or ECU and therefore cannot fully define its scheduling or 

critical systems the application SW components have additional characteristics that 
characterize them, including (time) criticality levels and the need for protection by isolation 
and a guarantee of their timing budgets or deadlines. 

These requirements are expressed in the AUTOSAR component and runnable model, either 
directly, or by making use of the extensions developed in WP2. 

Our planned development consists of the following: 

A parser that analyses the ARXML code of a model with components a different criticality 
levels and build an internal representation of the AUTOSAR model with the proposed 

The parser will be developed in Eclipse by leveraging the Artop framework
AUTOSAR consortium, or by defining a custom metamodel matching the AUTOSAR 
metamodel v4.3 and then using the Eclipse mechanisms for serialization and deserialization.

The second component is a code generator tool that takes the model of the application and 
automatically selects the OS services identified in the previous section for the protection of 
the timing characteristics of the critical tasks and for guaranteeing isolation.

be validated with a set of sample models, defined in Rhapsody. 

Adaptive Autosar and future support for mixed-critical

Adaptive policies for future support for mixed criticality include hierarchical scheduling 
support with possibly server policies on top of EDF. 
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The idea is that application developers should not use the OS (and scheduling) services 
directly, since before the composition of the system by the integrator, the runnable code is 

ny task or ECU and therefore cannot fully define its scheduling or 

critical systems the application SW components have additional characteristics that 
rotection by isolation 

These requirements are expressed in the AUTOSAR component and runnable model, either 

A parser that analyses the ARXML code of a model with components a different criticality 
levels and build an internal representation of the AUTOSAR model with the proposed 

g the Artop framework [15] by the 
AUTOSAR consortium, or by defining a custom metamodel matching the AUTOSAR 
metamodel v4.3 and then using the Eclipse mechanisms for serialization and deserialization. 

de generator tool that takes the model of the application and 
automatically selects the OS services identified in the previous section for the protection of 
the timing characteristics of the critical tasks and for guaranteeing isolation. 

be validated with a set of sample models, defined in Rhapsody.  

criticality 

Adaptive policies for future support for mixed criticality include hierarchical scheduling 
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Chapter 8 Summary and conclusion 

This report is complementing the Alpha version of Operation System and Runt Time Engines 
prototype. We have reported on the current status and future work within work package four. 
The technologies developed for the f
Telecom Use Case demonstrator in work package six.

 

Alpha OA & RTE prototypes 

Summary and conclusion  

This report is complementing the Alpha version of Operation System and Runt Time Engines 
prototype. We have reported on the current status and future work within work package four. 
The technologies developed for the final version of prototype will be implemented in the 
Telecom Use Case demonstrator in work package six.  
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This report is complementing the Alpha version of Operation System and Runt Time Engines 
prototype. We have reported on the current status and future work within work package four. 

inal version of prototype will be implemented in the 
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Chapter 9 List of Abbreviations

BSP Board Support Packages

EDF Earliest Deadline First

TP0 Time Partit

FP Fixed Priority

PSP Platform Support Package

NDA Non

SEC Security Engine

SFP Security Fuse Processor

PBL Pre-

RCW reset configuration word

PBI Pre-

ISBC Internal Secure Boot Code

ESBC External Secure Boot Code

CST Code Signing Tool

ITS Intend To Secure

PKI Public Key Infrastructure

SRK Super Root Key

ECU Engine control unit

PMC performance monitoring counters

RTE Run Time Engine

DTM Dynamic Thermal Management

FMS Flight Management

BCP Best Computed Position

QoS  Quality of Service

QM Quality Management

RTOS Real

ASIL Automotive Safety Integrity Level

TPROT Timing Protection FW Driver

MPU Memory Protection Unit

ECC Error

CRC Cycl

ISR Interrupt Service Routine

OSEC Offene Systeme und deren Schnittstellen für die Elektronik in 
Kraftfahrzeugen (German)
English: "Open Systems and their Interfaces for the Electronics 
in Motor Vehicles"
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List of Abbreviations 

Board Support Packages 

Earliest Deadline First 

Time Partition 0 

Fixed Priority 

Platform Support Package 

Non-disclosure Agreement 

Security Engine 

Security Fuse Processor 

-Boot Loader 

reset configuration word 

-Boot Initialization 

Internal Secure Boot Code 

ernal Secure Boot Code 

Code Signing Tool 

Intend To Secure 

Public Key Infrastructure 

Super Root Key 

Engine control unit 

performance monitoring counters 

Run Time Engine 

Dynamic Thermal Management 

Flight Management System 

Best Computed Position 

Quality of Service 

Quality Management 

Real-time Operating System 

Automotive Safety Integrity Level 

Timing Protection FW Driver 

Memory Protection Unit 

Error-correcting Code 

Cyclic Redundancy Check 

Interrupt Service Routine 

Offene Systeme und deren Schnittstellen für die Elektronik in 
Kraftfahrzeugen (German) 
English: "Open Systems and their Interfaces for the Electronics 
in Motor Vehicles" 

Table 5: List of Abbreviations 
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Offene Systeme und deren Schnittstellen für die Elektronik in 

English: "Open Systems and their Interfaces for the Electronics 
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