

Alpha OA & RTE prototypes

Project number:

Project acronym:

Project title:

Start date of the project:

Duration:

Programme:

Deliverable type:

Deliverable reference number:

Work package

Due date:

Actual submission date:

Responsible organisation:

Editor:

Dissemination level:

Revision:

Abstract:

Keywords:

This project has received funding from the
research and innovation programme

This work was supported by the Swiss State
(SERI) under contract number 15.0025. The opinions expressed and arguments employed herein
do not necessarily reflect the official views of the Swiss Government.

D4.1

Alpha OA & RTE prototypes

644080

SAFURE

SAFURE: SAFety and secURity by dEsign for

interconnected mixed-critical cyber-physical

systems

1st February, 2015

36 months

H2020-ICT-2014-1

Report

Deliverable reference number: ICT-644080 / D4.1 / FINAL | 1.0

WP4

July 2016 – M18

29 July 2016

SYSG

Mikalai Krasikau

PU

1.0

The document is a report complementing D4.1
Alpha demonstrator. It describes the amount of
work done, the demonstrated achievements
also future plans of WP4.

run-time engines, multicore, scheduler, mixed
criticality, monitor, crypto, security

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 644080.

This work was supported by the Swiss State Secretariat for Education‚ Research and Innovation
(SERI) under contract number 15.0025. The opinions expressed and arguments employed herein
do not necessarily reflect the official views of the Swiss Government.

Alpha OA & RTE prototypes

SAFURE: SAFety and secURity by dEsign for

physical

menting D4.1
Alpha demonstrator. It describes the amount of

the demonstrated achievements, and

, multicore, scheduler, mixed-

European Union’s Horizon 2020
under grant agreement No 644080.

Secretariat for Education‚ Research and Innovation
(SERI) under contract number 15.0025. The opinions expressed and arguments employed herein

D4.1 - Alpha OA & RTE prototypes

SAFURE D4.1

Editor

Mikalai Krasikau (SYSG)

Contributors

Sylvain Girbal (TRT)

Stefania Botta, Luigi Santamato (MAG)

Jaume Abella (BSC)

Rehan Ahmed (ETHZ)

André Osterhues, Cheng Lu (ESCR)

Marco Di Natale (SSSA)

Mikalai Krasikau (SYSG)

Reviewer

Dominique Ragot (TCS)

Disclaimer

The information in this document is provided "as is", and no guarantee or warranty is given that the
information is fit for any particular purpose. The user uses the information at its sole risk and liability.

Alpha OA & RTE prototypes

Stefania Botta, Luigi Santamato (MAG)

André Osterhues, Cheng Lu (ESCR)

on in this document is provided "as is", and no guarantee or warranty is given that the
information is fit for any particular purpose. The user uses the information at its sole risk and liability.

Page II

on in this document is provided "as is", and no guarantee or warranty is given that the
information is fit for any particular purpose. The user uses the information at its sole risk and liability.

D4.1 - Alpha OA & RTE prototypes

SAFURE D4.1

Executive Summary

The first delivery of work package four p
this document is its complementing. The demonstrator reflects the current state of the work
package. The work done is represented in
report. Also the current report provides results of evaluation of the future work within the work
package.

This report will be complemented by the results of the final demonstrator
work package.

Alpha OA & RTE prototypes

Executive Summary

irst delivery of work package four provides an Alpha version of the demonstrator and
menting. The demonstrator reflects the current state of the work

package. The work done is represented in a hardware prototype and described in the current
report provides results of evaluation of the future work within the work

This report will be complemented by the results of the final demonstrator

Page III

rovides an Alpha version of the demonstrator and
menting. The demonstrator reflects the current state of the work

and described in the current
report provides results of evaluation of the future work within the work

This report will be complemented by the results of the final demonstrator at the end of the

D4.1 - Alpha OA & RTE prototypes

SAFURE D4.1

Contents

Chapter 1 Introduction

Chapter 2 PikeOS Support

2.1 PikeOS on the target

2.1.1 Platform Selection

2.1.2 Juno Board

2.1.3 Alpha: Porting Results Fixed Virtual Platforms simulator

2.1.4 Alpha: Porting Results Juno

2.1.5 Alpha: Testing on Juno

2.2 Fixed-priority and ED

2.2.1 PikeOS Scheduling

2.2.2 Earliest Deadline First (EDF)

2.2.2.1 Event Handling in PikeOS

2.2.2.2 Design Considerations

2.2.3 Evaluation Aspects

2.2.4 Implementation

2.2.5 Summary

Chapter 3 Security for Mixed

3.1 CycurLIB on PikeOS

3.1.1 CycurLIB

3.1.2 Cryptographic Algorithms

3.1.3 PikeOS File Provider

3.1.4 Porting CycurLIB using PikeOS File Provider

3.2 Architecture for Secure Boot

3.2.1 Secure Boot Components

3.2.2 Code Signing

3.2.3 The Secure Boot Process

3.2.4 PikeOS Security

3.2.5 PikeOS Secure-Boot

3.2.6 Conclusion

3.3 Architecture for Secure Flash Update

Chapter 4 Mixed-Critical Run Time Engine

4.1 Hardware Support for Mixed

4.1.1 Hardware Counters

Alpha OA & RTE prototypes

...

Support ..

PikeOS on the target ..

..

..

Alpha: Porting Results Fixed Virtual Platforms simulator

Alpha: Porting Results Juno ..

Alpha: Testing on Juno ..

priority and EDF for mixed-critical VM/task scheduler

 ..

Earliest Deadline First (EDF) ..

Event Handling in PikeOS ..

Design Considerations ..

 ...

..

..

Security for Mixed-Criticality ..

CycurLIB on PikeOS ..

..

orithms ..

PikeOS File Provider ...

Porting CycurLIB using PikeOS File Provider

Architecture for Secure Boot ..

Secure Boot Components ..

..

The Secure Boot Process ..

..

Boot ...

..

Architecture for Secure Flash Update ..

tical Run Time Engine

Hardware Support for Mixed-Criticality Multicore Systems

 ...

Page IV

......................... 1

... 2

.. 2

.................................. 2

.. 3

.. 4

... 5

.. 5

............................ 6

................................ 6

.. 8

.. 9

... 9

...............................10

.....................................10

..11

............................ 12

.. 12

...12

..12

.............................12

..13

.. 13

...14

..15

...15

....................................18

.............................19

..20

............................ 21

.. 22

............................ 22

...............................22

D4.1 - Alpha OA & RTE prototypes

SAFURE D4.1

4.1.2 Signatures and Templates

4.2 Alpha RTE Prototype

4.3 Adding thermal protection

4.3.1 Thermal protection mechanism

4.3.1.1 Thermal model

4.3.1.2 Adding thermal protection to RTE Prototype

Chapter 5 WP4 Time-Critical Prototype

5.1 Hard Real Time High

5.2 Soft Real Time Low
System

5.3 Firm Real Time QOS

Chapter 6 Freedom from Interferences for mixed

6.1 Safety and freedom from interferences mechanisms

6.1.1 ISO 26262 – Timing Protection

6.1.2 ISO 26262 – Memory and

6.2 AUTOSAR OS-Application and Protection Support

6.3 Freedom from Interferences OS

6.3.1 Timing Isolation OS-

6.3.1.1 TPROT Design Draft: Concept and API

6.3.2 Memory Protection OS

6.3.2.1 Memory Protection Design Draft: Concept

Chapter 7 AUTOSAR OS

7.1 AUTOSAR OS support for mixed criticality

7.2 AUTOSAR RTE generation for mixed

7.3 Adaptive Autosar and future support for mixed

Chapter 8 Summary and conclusion

Chapter 9 List of Abbreviations

Chapter 10 Bibliography

Alpha OA & RTE prototypes

Signatures and Templates ..

Alpha RTE Prototype ..

Adding thermal protection to mixed criticality scheduling

Thermal protection mechanism ..

Thermal model ...

Adding thermal protection to RTE Prototype

Critical Prototype ..

Time High-critical Application: Flight Management System

Soft Real Time Low-critical Application: Bi-Quadratic Distributed Control
..

Firm Real Time QOS-aware Application: Video broadcasting

Freedom from Interferences for mixed-critical systems

Safety and freedom from interferences mechanisms

Timing Protection ..

Memory and exchange of information Protection

Application and Protection Support

Freedom from Interferences OS-extension

-extension ..

TPROT Design Draft: Concept and API

Memory Protection OS-extension ..

Memory Protection Design Draft: Concept................................

AUTOSAR OS ..

AUTOSAR OS support for mixed criticality

AUTOSAR RTE generation for mixed-critical systems

Adaptive Autosar and future support for mixed-criticality

Summary and conclusion ..

List of Abbreviations ..

Bibliography ..

Page V

..23

... 23

............................... 24

...25

.............................25

..25

............................ 26

critical Application: Flight Management System 26

Quadratic Distributed Control
.. 30

....................... 31

critical systems................ 32

..................................... 32

...32

..............................33

....................................... 33

.. 35

..35

...36

..37

...38

.. 40

.. 40

.................................. 40

............................... 41

................................. 42

.. 43

... 44

D4.1 - Alpha OA & RTE prototypes

SAFURE D4.1

List of Figures

Figure 1: Juno SoC architecture

Figure 2: PikeOS time partitioning.

Figure 3: Background task in tp0, as an extension to traditional ARINC653 time pa

Figure 4: Fault handler in tp0, another extension to ARINC653 time partitioning.

Figure 5: Code signing process

Figure 6: The secure boot process

Figure 7: The validation process

Figure 8: Chain of Trust

Figure 9: Security by separation and controlled information flow

Figure 10: PikeOS Secure boot with application validation

Figure 11: RTE Behaviour

Figure 12: Target environment for the Time

Figure 13: FMS Application Task flow graph

Figure 14: Partitioned BiQuad application implemented in PikeOS

Figure 15: Firm Real Time Application Task Flow Graph

Figure 16: TPROT Design Draft (example explained with Sequence Diagram)

Figure 17: Memory protection applied at OS Application level.

Figure 18: partitioning example.

Figure 19: The diagram shows activation of P1 & P2 only, but the same apply when
activating a task owned by P0.

Alpha OA & RTE prototypes

List of Figures

cture ..

Figure 2: PikeOS time partitioning. ..

Figure 3: Background task in tp0, as an extension to traditional ARINC653 time pa

Figure 4: Fault handler in tp0, another extension to ARINC653 time partitioning.

Figure 5: Code signing process ..

Figure 6: The secure boot process ..

Figure 7: The validation process ...

..

Figure 9: Security by separation and controlled information flow

cure boot with application validation

..

Figure 12: Target environment for the Time-Critical prototype

Figure 13: FMS Application Task flow graph ..

Figure 14: Partitioned BiQuad application implemented in PikeOS

Figure 15: Firm Real Time Application Task Flow Graph

Figure 16: TPROT Design Draft (example explained with Sequence Diagram)

Figure 17: Memory protection applied at OS Application level.

Figure 18: partitioning example. ...

Figure 19: The diagram shows activation of P1 & P2 only, but the same apply when
activating a task owned by P0. ..

Page VI

... 4

... 7

Figure 3: Background task in tp0, as an extension to traditional ARINC653 time partitioning. 8

Figure 4: Fault handler in tp0, another extension to ARINC653 time partitioning. 8

............................15

...16

...........................17

..18

..19

...20

....................................24

..26

..28

.......................................30

..31

Figure 16: TPROT Design Draft (example explained with Sequence Diagram)37

...38

...........................39

Figure 19: The diagram shows activation of P1 & P2 only, but the same apply when
...39

D4.1 - Alpha OA & RTE prototypes

SAFURE D4.1

List of Tables

Table 1: Comparison of DragonBoard 810 and ARM Juno

Table 2: Benchmarks................................

Table 3: FMS: Time requirements of periodic tasks

Table 4: FMS: Time requirements of aperiodic tasks

Table 5: List of Abbreviations

Alpha OA & RTE prototypes

le 1: Comparison of DragonBoard 810 and ARM Juno

..

Table 3: FMS: Time requirements of periodic tasks ..

Table 4: FMS: Time requirements of aperiodic tasks ..

 ...

Page VII

.. 2

... 6

..............................29

............................30

...............................43

D4.1 - Alpha OA & RTE prototypes

SAFURE D4.1

Chapter 1 Introduct

The current report provides preliminary results and achievements
This work package uses modeling and algorithms from work packages two and three in
demonstrator implementation.
Automotive use cases of work package six.

The report is divided by chapters
part of the work package and sections highlight different topics within that common part.

Chapter two focuses OS supp
describing the results of porting PikeOS on the ARMv8 architecture and the status of the port
on the real hardware. The following section is dedicated to port the cryptographic library
CycurLIB by Escrypt on top pf PikeOS.
implementation of the EDF scheduler in PikeOS. The last two sections focus on the
architecture of Secure Boot and Secure Update techniques.

Chapter three considers scheduling in terms of
hardware support for measurement of mixed
methodology are described in the first section. The following section gives an introduction of
run-time engine prototype. And t
in mixed criticality scheduling algorithms.

Chapter four evaluates the further development (taking into account the results of chapter
three) of the run-time engine in the demonstrator prototype
critical levels of applications are given there.

Chapter five is dedicated to safety of AUTOSAR OS
some extracts from ISO 26262 standard in terms of safety. The following section foc
types of AUTOSAR OS-Applications and software safety protection mechanisms. And the
last section describes the developed firmware drivers for timing and memory protection.

Chapter six focuses on support of mixed criticality in AUTOSAR OS and also o
generation in AUTOSAR run time environment for mixed critical applications based on their
models.

Alpha OA & RTE prototypes

Introduction

The current report provides preliminary results and achievements of the work package four.
This work package uses modeling and algorithms from work packages two and three in
demonstrator implementation. Results of this work package will be used in Tel
Automotive use cases of work package six.

is divided by chapters and sections where every chapter describes a separate
part of the work package and sections highlight different topics within that common part.

OS support and security aspects of WP4. It contains a section
describing the results of porting PikeOS on the ARMv8 architecture and the status of the port
on the real hardware. The following section is dedicated to port the cryptographic library

ypt on top pf PikeOS. Further, there also a section with analysis of
implementation of the EDF scheduler in PikeOS. The last two sections focus on the
architecture of Secure Boot and Secure Update techniques.

Chapter three considers scheduling in terms of mixed criticality in different ways. The
hardware support for measurement of mixed-criticalities and benchmark characterization
methodology are described in the first section. The following section gives an introduction of

time engine prototype. And the last section is focused on extension of thermal protection
in mixed criticality scheduling algorithms.

Chapter four evaluates the further development (taking into account the results of chapter
time engine in the demonstrator prototype. More details on different types of

critical levels of applications are given there.

Chapter five is dedicated to safety of AUTOSAR OS-applications. First section provides
some extracts from ISO 26262 standard in terms of safety. The following section foc

Applications and software safety protection mechanisms. And the
last section describes the developed firmware drivers for timing and memory protection.

Chapter six focuses on support of mixed criticality in AUTOSAR OS and also o
generation in AUTOSAR run time environment for mixed critical applications based on their

Page 1 of 44

of the work package four.
This work package uses modeling and algorithms from work packages two and three in

Results of this work package will be used in Telecom and

every chapter describes a separate
part of the work package and sections highlight different topics within that common part.

. It contains a section
describing the results of porting PikeOS on the ARMv8 architecture and the status of the port
on the real hardware. The following section is dedicated to port the cryptographic library

there also a section with analysis of
implementation of the EDF scheduler in PikeOS. The last two sections focus on the

mixed criticality in different ways. The
criticalities and benchmark characterization

methodology are described in the first section. The following section gives an introduction of
he last section is focused on extension of thermal protection

Chapter four evaluates the further development (taking into account the results of chapter
. More details on different types of

applications. First section provides
some extracts from ISO 26262 standard in terms of safety. The following section focused on

Applications and software safety protection mechanisms. And the
last section describes the developed firmware drivers for timing and memory protection.

Chapter six focuses on support of mixed criticality in AUTOSAR OS and also on code
generation in AUTOSAR run time environment for mixed critical applications based on their

D4.1 - Alpha OA & RTE prototypes

SAFURE D4.1

Chapter 2 PikeOS

2.1 PikeOS on the target

2.1.1 Platform Selection

During the first six months of the project we have assessed several candidate platforms for
the project. In the short list were
Both boards are development platforms based on the similar ARM 64 bit CPU architectures.
However, these boards target different development purposes.

The DragonBoard 810 is designed as a development board for earlier application
prototyping.

ARM Juno board is designed for development of low
hypervisors and assessing CPU architectures for end designing devices.

The following table present a deci

Fully open documentation

Fully open hardware

for low-level development

Suitable for application
development

Suitable for system SW
development

Enable close to market
demonstrator

JTAG interface

Table 1: Comparison of DragonBoard 810 and ARM Juno

Having this information and to avoid delay in the project the consortium agreed on the
following steps:

• Port PikeOS on Juno board an

• Setup contact to Qualcomm to get access to low

810

• Port PikeOS on DragonBoard 810

In this deliverable we describe the status of porting PikeOS on ARM Juno

Alpha OA & RTE prototypes

PikeOS Support

PikeOS on the target

months of the project we have assessed several candidate platforms for
roject. In the short list were boards based on DragonBoard 810 and ARM Juno board.

Both boards are development platforms based on the similar ARM 64 bit CPU architectures.
However, these boards target different development purposes.

s designed as a development board for earlier application

ARM Juno board is designed for development of low-level system software such as
hypervisors and assessing CPU architectures for end designing devices.

The following table present a decision matrix we made for PikeOS:

DragonBoard 810 ARM Juno

No Yes

No Yes

Yes Yes

No Yes

Yes No

No Yes

: Comparison of DragonBoard 810 and ARM Juno

Having this information and to avoid delay in the project the consortium agreed on the

Port PikeOS on Juno board and develop needed hypervisor support

Setup contact to Qualcomm to get access to low-level documentation on SnapDragon

Port PikeOS on DragonBoard 810

In this deliverable we describe the status of porting PikeOS on ARM Juno

Page 2 of 44

months of the project we have assessed several candidate platforms for
boards based on DragonBoard 810 and ARM Juno board.

Both boards are development platforms based on the similar ARM 64 bit CPU architectures.

s designed as a development board for earlier application

level system software such as

ARM Juno

Having this information and to avoid delay in the project the consortium agreed on the

d develop needed hypervisor support

level documentation on SnapDragon

 board.

D4.1 - Alpha OA & RTE prototypes

SAFURE D4.1

2.1.2 Juno Board

Within work package four SYSGO provides support for PikeOS on the ARMv8 architecture.
We have structured the porting work in two phases. The first phase, early development, has
been done on Fixed Virtual Platforms
been done on ARM Juno board. ARM Juno board has been chosen as a target for the
porting considering the following arguments:

• It is the only fully open development ARMv8 board with industrial support available on
the market (at the time of making the decision on t

• It provides required debug facilities (jtag and trace, serial port) for developing an
operating system and hypervisor

• The support is provided directly by ARM

The characteristics of the board are:

• Compute Subsystem

o Dual Cluster, big.LITT

o Cortex-A57 MP2 cluster (r0p0)

o Overdrive 1.1GHz operating speed

o Caches: L1 48KB I, 32KB D, L2 2MB

o Cortex-A53 MP4 cluster (r0p0)

o Overdrive 850MHz operating speed

o Caches: L1 32KB, L2 1MB

o Quad Core MALI T624 r1p0

o Nominal 600MHz operating speed

o Caches: L2 128KB

o CoreSight ETM/CTI per core

o DVFS and power gating via SCP

o 4 energy meters

o DMC-400 dual channel DDR3L interface, 8GB 1600MHz DDR

o Internal CCI-400, 128

• Rest of SoC

o Internal NIC-400, 64

o External AXI ports: using Thin

o DMAC : PL330, 128

o Static Memory Bus Interface : PL354

o 32bit 50MHz to slow speed peripheral

o HDCLCD dual video controllers: 1080p

Alpha OA & RTE prototypes

SYSGO provides support for PikeOS on the ARMv8 architecture.
We have structured the porting work in two phases. The first phase, early development, has

Fixed Virtual Platforms simulator provided by ARM. The second phase has
ne on ARM Juno board. ARM Juno board has been chosen as a target for the

porting considering the following arguments:

It is the only fully open development ARMv8 board with industrial support available on
the market (at the time of making the decision on the board)

It provides required debug facilities (jtag and trace, serial port) for developing an
operating system and hypervisor

The support is provided directly by ARM Company.

The characteristics of the board are:

Dual Cluster, big.LITTLE configuration

A57 MP2 cluster (r0p0)

Overdrive 1.1GHz operating speed

Caches: L1 48KB I, 32KB D, L2 2MB

A53 MP4 cluster (r0p0)

Overdrive 850MHz operating speed

Caches: L1 32KB, L2 1MB

Quad Core MALI T624 r1p0

Nominal 600MHz operating speed

Caches: L2 128KB

CoreSight ETM/CTI per core

DVFS and power gating via SCP

4 energy meters

400 dual channel DDR3L interface, 8GB 1600MHz DDR

400, 128-bit, 533MHz

400, 64-bit, 400MHz

External AXI ports: using Thin-Links

DMAC : PL330, 128-bit

Static Memory Bus Interface : PL354

32bit 50MHz to slow speed peripheral

HDCLCD dual video controllers: 1080p

Page 3 of 44

SYSGO provides support for PikeOS on the ARMv8 architecture.
We have structured the porting work in two phases. The first phase, early development, has

simulator provided by ARM. The second phase has
ne on ARM Juno board. ARM Juno board has been chosen as a target for the

It is the only fully open development ARMv8 board with industrial support available on

It provides required debug facilities (jtag and trace, serial port) for developing an

400 dual channel DDR3L interface, 8GB 1600MHz DDR

D4.1 - Alpha OA & RTE prototypes

SAFURE D4.1

• Debug

o ARM JTAG : 20

o ARM 32/16 bit parallel trace

2.1.3 Alpha: Porting Results

As it has been said before the first porting has been done with using ARM Fixed Virtual
Platform simulator for A53-A57 cores.

The software models provide Programmer’s view models of proc
functional behaviour of a model is equivalent to real hardware. PV models sacrifice absolute
timing accuracy to achieve fast simulated execution speed. This means that you can use the
PV models for confirming software functionality,
cycle counts, low-level component interactions, or other hardware

The following features was developed on this simulator:

• Hardware Virtualization

Hardware virtualization
machine that acts like a real computer with an operating system. Software executed
on these virtual machines is separated from the underlying hardware resources
allows PikeOS to run different operation systems on the same hardware
simultaneously with just a little (or even without) modification of the operation system.
It also provides almost no overhead in compare to software virtualization, so
performance of the operation system running under hypervisor supporting hardware
virtualization is comparative to the performance of the same native operation system.

• Trust Zone

TrustZone technology is programmed into the hardware, enabling the protection o
memory and peripherals. Since security is designed into the hardware, TrustZone

Alpha OA & RTE prototypes

ARM JTAG : 20-way DIL box header

ARM 32/16 bit parallel trace

Figure 1: Juno SoC architecture

Alpha: Porting Results Fixed Virtual Platforms simulator

As it has been said before the first porting has been done with using ARM Fixed Virtual
A57 cores.

The software models provide Programmer’s view models of processors and devices. The
functional behaviour of a model is equivalent to real hardware. PV models sacrifice absolute
timing accuracy to achieve fast simulated execution speed. This means that you can use the
PV models for confirming software functionality, but you must not rely on the accuracy of

level component interactions, or other hardware-specific behaviour

The following features was developed on this simulator:

Hardware Virtualization

zation or platform virtualization refers to the creation of a
that acts like a real computer with an operating system. Software executed

on these virtual machines is separated from the underlying hardware resources
allows PikeOS to run different operation systems on the same hardware
simultaneously with just a little (or even without) modification of the operation system.
It also provides almost no overhead in compare to software virtualization, so
erformance of the operation system running under hypervisor supporting hardware

virtualization is comparative to the performance of the same native operation system.

TrustZone technology is programmed into the hardware, enabling the protection o
memory and peripherals. Since security is designed into the hardware, TrustZone

Page 4 of 44

As it has been said before the first porting has been done with using ARM Fixed Virtual

essors and devices. The
functional behaviour of a model is equivalent to real hardware. PV models sacrifice absolute
timing accuracy to achieve fast simulated execution speed. This means that you can use the

but you must not rely on the accuracy of
specific behaviour [1].

refers to the creation of a virtual
that acts like a real computer with an operating system. Software executed

on these virtual machines is separated from the underlying hardware resources [2]. It
allows PikeOS to run different operation systems on the same hardware
simultaneously with just a little (or even without) modification of the operation system.
It also provides almost no overhead in compare to software virtualization, so
erformance of the operation system running under hypervisor supporting hardware

virtualization is comparative to the performance of the same native operation system.

TrustZone technology is programmed into the hardware, enabling the protection of
memory and peripherals. Since security is designed into the hardware, TrustZone

D4.1 - Alpha OA & RTE prototypes

SAFURE D4.1

avoids security vulnerabilities caused by proprietary, non
the core. Security can be maintained as an inherent feature of the device, without
degrading system performance, enabling device manufacturers to build security
applications, such as DRM or mobile payment as protected applications that run on
the secure kernel [3].
now it has been ported to ARMv8.

2.1.4 Alpha: Porting Results Juno

Currently Juno board is supported officially in PikeOS 4.1 with the following features and
interfaces:

• Hardware Virtualization

• Trust Zone

• Serial driver

Serial driver provides conso
between target and host. Usually it is used for debugging and
purposes.

• Ethernet driver

Ethernet driver provides network support.

• ElinOS BSP

Board Support Packages (BSPs) contain the necess
a Linux kernel on a specific target platform.
modifications to ensure a smooth operation with the

2.1.5 Alpha: Testing on Juno

Juno board support has been testing with the PikeOS Generic

This test suite is used for a regression testing as well as for a product testing.

The results are listed in Table

Test

arm-config-test

basic-linux-test

coherency-test

context-switch-bench

cpu-bench

decode-test

demo-linux-guest-test

demo-pikeos-guest-test

directio-test

fpu-test

hello-world

high-address-test

interrupt-forward-test

memory-test

Alpha OA & RTE prototypes

avoids security vulnerabilities caused by proprietary, non-portable solutions outside
the core. Security can be maintained as an inherent feature of the device, without

ding system performance, enabling device manufacturers to build security
applications, such as DRM or mobile payment as protected applications that run on

. PikeOS supports this technology for ARMv7 arc
now it has been ported to ARMv8.

Alpha: Porting Results Juno

Currently Juno board is supported officially in PikeOS 4.1 with the following features and

Hardware Virtualization

provides console support and allows establish basic communication
between target and host. Usually it is used for debugging and

Ethernet driver provides network support.

Board Support Packages (BSPs) contain the necessary adaptations to be able to run
a Linux kernel on a specific target platform. ElinOS kernels contain some
modifications to ensure a smooth operation with the ElinOS tools

Alpha: Testing on Juno

Juno board support has been testing with the PikeOS Generic BSP Test Suite.

This test suite is used for a regression testing as well as for a product testing.

Table 2: Benchmarks.

Operation Start End

Run 17:52:00 17:52:38

Run 17:52:38 17:54:17

Run 17:54:17 17:54:54

Run 17:54:54 17:56:13

Run 17:56:13 19:03:48

Run 19:03:48 19:04:31

Run 19:04:31 19:05:53

Run 19:05:53 19:06:45

Run 19:06:45 19:07:47

Run 19:07:47 19:09:04

Run 19:09:04 19:10:06

Run 19:10:06 19:21:12

Run 19:21:12 19:21:

Run 19:21:53 19:22:44

Page 5 of 44

portable solutions outside
the core. Security can be maintained as an inherent feature of the device, without

ding system performance, enabling device manufacturers to build security
applications, such as DRM or mobile payment as protected applications that run on

PikeOS supports this technology for ARMv7 architecture and

Currently Juno board is supported officially in PikeOS 4.1 with the following features and

allows establish basic communication
between target and host. Usually it is used for debugging and administration

ary adaptations to be able to run
kernels contain some

BSP Test Suite.

This test suite is used for a regression testing as well as for a product testing.

 Result

:38 OK

17:54:17 OK

17:54:54 OK

17:56:13 OK

19:03:48 OK

19:04:31 OK

19:05:53 OK

19:06:45 OK

19:07:47 OK

19:09:04 OK

19:10:06 OK

19:21:12 Error

19:21:53 OK

19:22:44 OK

D4.1 - Alpha OA & RTE prototypes

SAFURE D4.1

Test

network-bench

p4bus-bench

p4bus-console-test

p4bus-ethDriver-network-test

p4bus-iomem-test

p4bus-mmaplseek-specvmem-test

p4bus-mmaplseek-test

p4bus-multiApp-vmchar-test

p4bus-multiFD-vmchar-test

p4bus-muxa-test

p4bus-network-test

p4bus-nonblock-vmchar-test

p4bus-severalMem-test

p4bus-sigkill-vmchar-test

p4bus-test

p4bus-vmapi-sysfs-test

p4bus-vmapi-test

p4bus-vmchar-fp-test

p4guest-console-test

p4guest-multiApp-test

p4guest-vmfp-test

stress-test

stress-test-smp

virtio-test

2.2 Fixed-priority and EDF for mixed

2.2.1 PikeOS Scheduling

PikeOS is a virtualising embedded real
ensuring isolation of different applications is partitioning, which enforces isolation both
spatially and temporally. This way, mixed
guarantees the PikeOS partitioning provides.

Partitioning in PikeOS is two
partitioning is available, while other resources like memory, I/O access, and communication
rights management are handled
concentrate on the scheduling functionality provided by PikeOS. The top
scheduling in PikeOS is time
schedule to determine which partitions are scheduled at which point in time. For some kind of
dynamics to react to different system states or situations, PikeOS supports different time
partition schedules that can be switched by a system partition, but there is no way to
construct new time partition schemata at run
intentionally to ease argumentation about guarantees needed for certification of the temporal

Alpha OA & RTE prototypes

Operation Start End

Run 19:22:44 19:24:49

Run 19:24:49 19:28:25

Run 19:28:25 19:29:19

Run 19:29:19 19:31:26

Run 19:31:27 19:32:38

test Run 19:32:38 19:34:47

Run 19:34:47 19:36:56

Run 19:36:56 19:37:49

Run 19:37:49 19:39:33

Run 19:39:33 19:41:53

Run 19:41:53 19:45:46

Run 19:45:46 19:46:59

Run 19:46:59 19:48:46

Run 19:48:46 19:53:50

Run 19:53:50 19:56:45

Run 19:56:45 19:57:50

Run 19:57:50 19:58:55

Run 19:58:55 20:00:09

Run 20:00:09 20:01:01

Run 20:01:01 20:01:50

Run 20:01:50 20:02:34

Run 20:02:34 20:03:44

Run 20:03:44 20:05:32

Run 20:05:32 20:06:15

Table 2: Benchmarks

priority and EDF for mixed-critical VM/task scheduler

PikeOS Scheduling

a virtualising embedded real-time operating system. It’s basic mechanism for
ensuring isolation of different applications is partitioning, which enforces isolation both
spatially and temporally. This way, mixed-criticality systems can be constructed based
guarantees the PikeOS partitioning provides.

Partitioning in PikeOS is two-fold: to partition CPU time, an ARINC653 based time
partitioning is available, while other resources like memory, I/O access, and communication
rights management are handled by resource partitioning. In this technical paper, we will
concentrate on the scheduling functionality provided by PikeOS. The top
scheduling in PikeOS is time-partitioning, which uses a static round-robin fixed sequence

e which partitions are scheduled at which point in time. For some kind of
dynamics to react to different system states or situations, PikeOS supports different time
partition schedules that can be switched by a system partition, but there is no way to

truct new time partition schemata at run-time. This static configuration is done
intentionally to ease argumentation about guarantees needed for certification of the temporal

Page 6 of 44

 Result

19:24:49 OK

19:28:25 OK

19:29:19 OK

19:31:26 OK

32:38 OK

19:34:47 OK

19:36:56 OK

19:37:49 OK

19:39:33 OK

19:41:53 OK

19:45:46 OK

19:46:59 OK

19:48:46 OK

19:53:50 OK

19:56:45 OK

19:57:50 OK

19:58:55 OK

20:00:09 OK

20:01:01 OK

20:01:50 OK

20:02:34 OK

20:03:44 OK

20:05:32 OK

20:06:15 OK

critical VM/task scheduler

time operating system. It’s basic mechanism for
ensuring isolation of different applications is partitioning, which enforces isolation both

criticality systems can be constructed based on the

fold: to partition CPU time, an ARINC653 based time
partitioning is available, while other resources like memory, I/O access, and communication

by resource partitioning. In this technical paper, we will
concentrate on the scheduling functionality provided by PikeOS. The top-level system

robin fixed sequence
e which partitions are scheduled at which point in time. For some kind of

dynamics to react to different system states or situations, PikeOS supports different time
partition schedules that can be switched by a system partition, but there is no way to

time. This static configuration is done
intentionally to ease argumentation about guarantees needed for certification of the temporal

D4.1 - Alpha OA & RTE prototypes

SAFURE D4.1

isolation and timing properties of the system. I.e., for simplicity, this paper w
view to a single static time partition schedule.

The time partition scheduling in PikeOS has an extension over the ARINC653 partitioning: a
time partition that is always active,
time partition plus those from tp0 are eligible to thread scheduling.
PikeOS time partitioning works: the time partition scheduler selects, based on th
round robin schedule, one of the time partitions, and additional to that, tp0 is also active.
From the set of threads selected this way, the second level scheduler, which is priority
based, selects the thread with the highest priority.

TP0 is an important concept in PikeOS, because it can be used for two major tasks:

1. To run background tasks at low priority, i.e., a Linux partition that should be active
only whenever the system has nothing else to do. This way, free CPU resources can
be utilised without allocating explicit CPU time. This possibility is best
time critical tasks. Figure

2. To run high-priority error handlers that are mostly inactive except in critical situations.
E.g., a power failure handler could be allocated to tp0 with high priority, so that it can
react quickly if necessary. Again, no CPU time would have to be pre
tasks, because in the normal case, the error handler is expected not to run, and in the
exceptional case, it can still react with minimal delay. Because such error handler
have highest priority, they are automatically in the highest criticality class of the
system, because it tp0, they are always active and could disrupt the whole system in
case they went out of control.

Alpha OA & RTE prototypes

isolation and timing properties of the system. I.e., for simplicity, this paper w
view to a single static time partition schedule.

Figure 2: PikeOS time partitioning

The time partition scheduling in PikeOS has an extension over the ARINC653 partitioning: a
time partition that is always active, which is called tp0. At any time, threads from the current
time partition plus those from tp0 are eligible to thread scheduling. Figure
PikeOS time partitioning works: the time partition scheduler selects, based on th
round robin schedule, one of the time partitions, and additional to that, tp0 is also active.
From the set of threads selected this way, the second level scheduler, which is priority
based, selects the thread with the highest priority.

mportant concept in PikeOS, because it can be used for two major tasks:

To run background tasks at low priority, i.e., a Linux partition that should be active
only whenever the system has nothing else to do. This way, free CPU resources can

hout allocating explicit CPU time. This possibility is best
Figure 3 shows this possibility.

priority error handlers that are mostly inactive except in critical situations.
ower failure handler could be allocated to tp0 with high priority, so that it can

react quickly if necessary. Again, no CPU time would have to be pre
tasks, because in the normal case, the error handler is expected not to run, and in the
exceptional case, it can still react with minimal delay. Because such error handler
have highest priority, they are automatically in the highest criticality class of the
system, because it tp0, they are always active and could disrupt the whole system in
ase they went out of control. Figure 4 shows this use case of tp0 in PikeOS.

Page 7 of 44

isolation and timing properties of the system. I.e., for simplicity, this paper will restrict the

The time partition scheduling in PikeOS has an extension over the ARINC653 partitioning: a
which is called tp0. At any time, threads from the current

Figure 2 shows how
PikeOS time partitioning works: the time partition scheduler selects, based on the static
round robin schedule, one of the time partitions, and additional to that, tp0 is also active.
From the set of threads selected this way, the second level scheduler, which is priority

mportant concept in PikeOS, because it can be used for two major tasks:

To run background tasks at low priority, i.e., a Linux partition that should be active
only whenever the system has nothing else to do. This way, free CPU resources can

hout allocating explicit CPU time. This possibility is best-suited for non-

priority error handlers that are mostly inactive except in critical situations.
ower failure handler could be allocated to tp0 with high priority, so that it can

react quickly if necessary. Again, no CPU time would have to be pre-allocated to such
tasks, because in the normal case, the error handler is expected not to run, and in the
exceptional case, it can still react with minimal delay. Because such error handler
have highest priority, they are automatically in the highest criticality class of the
system, because it tp0, they are always active and could disrupt the whole system in

shows this use case of tp0 in PikeOS.

D4.1 - Alpha OA & RTE prototypes

SAFURE D4.1

Figure 3: Background task in tp0, as an extension to traditional ARINC653 time partitioning

Figure 4: Fault handler in tp0, another extension to ARINC653 time partitioning

2.2.2 Earliest Deadline First (EDF)

Earliest deadline first (EDF) is a dynamic scheduling algorithm used in real
systems to place processes in a priority queue. Whenever a
finishes, new task released, etc.) the queue will be searched for the process closest to its
deadline. This process is the next to be scheduled for execution

In the course of the project, we
time system. Together with our research partners, we want to pair up to implement and
evaluate how EDF scheduling could improve the real
real-time operating system that uses time partitioning.

Scheduling with
Background Time
Partition

-> 4 ms additional buffer
for critical applications

-> 6 ms additional buffer
for non-critical partition
in the normal case

Traditional ARINC 653
Scheduling

Priority

Scheduling with Background Time

Partition

-> Minimal delay for fault handler
-> Running partition is preempted
-> Fault handler would typically

switch to different operating mode

Traditional ARINC 653

Schedulig

-> Large delay for fault handler
due to time partitioning

Alpha OA & RTE prototypes

Background task in tp0, as an extension to traditional ARINC653 time partitioning

Fault handler in tp0, another extension to ARINC653 time partitioning

Earliest Deadline First (EDF)

is a dynamic scheduling algorithm used in real
systems to place processes in a priority queue. Whenever a scheduling event occurs (task
finishes, new task released, etc.) the queue will be searched for the process closest to its
deadline. This process is the next to be scheduled for execution [4].

In the course of the project, we want to evaluate more possibilities of scheduling in a real
time system. Together with our research partners, we want to pair up to implement and
evaluate how EDF scheduling could improve the real-time properties and guarantees in a

stem that uses time partitioning.

Part A Part B Part C

7 ms5 ms5 ms

Part A Part B

9 ms9 ms

Part D (Time Partition 0, low priority thread

Priority

Part A Part B Part C

Scheduling with Background Time

handler
Running partition is preempted

switch to different operating mode

Response time

Part A Part B Part C

Power Fail

Power Fail

Fault Handler
(Time Partition 0, high priority thread)

Priority

Page 8 of 44

Background task in tp0, as an extension to traditional ARINC653 time partitioning

Fault handler in tp0, another extension to ARINC653 time partitioning

is a dynamic scheduling algorithm used in real-time operating
scheduling event occurs (task

finishes, new task released, etc.) the queue will be searched for the process closest to its

want to evaluate more possibilities of scheduling in a real-
time system. Together with our research partners, we want to pair up to implement and

time properties and guarantees in a

Part D

8 ms

7 ms

Part C

low priority thread)

Fault
Handler

Spare

D4.1 - Alpha OA & RTE prototypes

SAFURE D4.1

2.2.2.1 Event Handling in PikeOS

EDF is most attractive for sporadic, event
particularly time-critical, but for which starvation must be ruled out. It makes less sense for
purely periodic activities, as such activities can be budgeted for in the time partition table.
Therefore, EDF is most attractive for latency
preempt threads in other time partitions.

Application threads are routinely assigned to TP0 to serve as low
(e.g., interrupt threads). Such threads are typically lightweight, but there is no enforcement
mechanism. In the case of an “interrupt storm,” high
could starve other time partitions (in the current system).

By coupling EDF with mandatory budget enforcement, it is possible to assign threads to TP0
that previously would have been too dangerous to allow the ability to run at any time:
starvation of threads in other time partitions can be prevented. In particular, this makes
sense if the replenishment period of an event
partition cycle. If the budget of an event
starvation is still possible. By making the replenishment period (substantially) shorter than
the length of a time partition, it is ensure that no partition is starved in its entirety.

2.2.2.2 Design Considerations

Any EDF scheme needs to be opt
POSIX must not be affected. For practical legacy/adoption reasons, it is highly desirable that
older “EDF-oblivious” components continue to work even if some newer developments make
use of the new EDF interfaces.

For efficiency reasons, it is desirable to assign multiple event
reservation. Requiring an individual reservation
pessimism. The classic fixed
delay me” (modulo controlled priority inversions).

EDF somehow needs to fit into this view of the system. Always prioritizing EDF above fixed
priority tasks would be too intrusive. Always prioritizing fixed
threads defeats the purpose of introducing EDF. Thus, EDF threads and FP threads need to
co-exist within a shared priority space.

In the classic FP design, threads of equal priority are typically queued in FIFO order (at each
priority level). There are some exceptions
inheritance as defined by POSIX. Round
e.g, again POSIX. When integrating EDF into the design, three basic options exist: at
configuration or integration time, declare one or more of the existing fixed priority levels to be

1. a “pure EDF priority level,” with the obvious interpretation that threads (or
reservations) of that (fixed) priority are queued in EDF order, and not FIFO order (with
possible “deadline inheritance” exceptions),

2. a “shared EDF/FP priority level,” where both EDF threads (or reservations) and fixed
priority threads exist, and where fixed
“infinite deadline” (i.e., EDF threads/reservations always
priority level), or

1
 For example, on a single-CPU system, a single task attached to a reservation of 10ms every 100ms

is guaranteed to be scheduled on the CPU for 10ms every 100ms

Alpha OA & RTE prototypes

Event Handling in PikeOS

EDF is most attractive for sporadic, event-driven tasks, and for background activity that is not
critical, but for which starvation must be ruled out. It makes less sense for

urely periodic activities, as such activities can be budgeted for in the time partition table.
Therefore, EDF is most attractive for latency-sensitive threads in TP0 that should be able to
preempt threads in other time partitions.

outinely assigned to TP0 to serve as low-latency event handlers
(e.g., interrupt threads). Such threads are typically lightweight, but there is no enforcement
mechanism. In the case of an “interrupt storm,” high-priority event handlers assigned to TP0

d starve other time partitions (in the current system).

By coupling EDF with mandatory budget enforcement, it is possible to assign threads to TP0
that previously would have been too dangerous to allow the ability to run at any time:

in other time partitions can be prevented. In particular, this makes
sense if the replenishment period of an event-driven thread in TP0 is shorter than the
partition cycle. If the budget of an event-driven thread is larger than a time partition’s slice,

arvation is still possible. By making the replenishment period (substantially) shorter than
the length of a time partition, it is ensure that no partition is starved in its entirety.

Design Considerations

Any EDF scheme needs to be opt-in, as compliance with standards such as ARINC 653 and
POSIX must not be affected. For practical legacy/adoption reasons, it is highly desirable that

oblivious” components continue to work even if some newer developments make
use of the new EDF interfaces.

iciency reasons, it is desirable to assign multiple event-driven threads to the same
reservation. Requiring an individual reservation1 for each thread introduces additional
pessimism. The classic fixed-priority view of the system is: “nothing of lower prio
delay me” (modulo controlled priority inversions).

EDF somehow needs to fit into this view of the system. Always prioritizing EDF above fixed
priority tasks would be too intrusive. Always prioritizing fixed-priority threads over EDF

ts the purpose of introducing EDF. Thus, EDF threads and FP threads need to
exist within a shared priority space.

In the classic FP design, threads of equal priority are typically queued in FIFO order (at each
priority level). There are some exceptions to this basic rule, e.g., in the case of priority
inheritance as defined by POSIX. Round-robin with fixed time slices is also not uncommon,
e.g, again POSIX. When integrating EDF into the design, three basic options exist: at

ime, declare one or more of the existing fixed priority levels to be

a “pure EDF priority level,” with the obvious interpretation that threads (or
reservations) of that (fixed) priority are queued in EDF order, and not FIFO order (with

nheritance” exceptions),

a “shared EDF/FP priority level,” where both EDF threads (or reservations) and fixed
priority threads exist, and where fixed-priority threads are treated as if they had an
“infinite deadline” (i.e., EDF threads/reservations always have precedence at that

CPU system, a single task attached to a reservation of 10ms every 100ms
is guaranteed to be scheduled on the CPU for 10ms every 100ms [12].

Page 9 of 44

driven tasks, and for background activity that is not
critical, but for which starvation must be ruled out. It makes less sense for

urely periodic activities, as such activities can be budgeted for in the time partition table.
sensitive threads in TP0 that should be able to

latency event handlers
(e.g., interrupt threads). Such threads are typically lightweight, but there is no enforcement

priority event handlers assigned to TP0

By coupling EDF with mandatory budget enforcement, it is possible to assign threads to TP0
that previously would have been too dangerous to allow the ability to run at any time:

in other time partitions can be prevented. In particular, this makes
driven thread in TP0 is shorter than the

driven thread is larger than a time partition’s slice,
arvation is still possible. By making the replenishment period (substantially) shorter than

the length of a time partition, it is ensure that no partition is starved in its entirety.

ith standards such as ARINC 653 and
POSIX must not be affected. For practical legacy/adoption reasons, it is highly desirable that

oblivious” components continue to work even if some newer developments make

driven threads to the same
for each thread introduces additional

priority view of the system is: “nothing of lower priority can

EDF somehow needs to fit into this view of the system. Always prioritizing EDF above fixed-
priority threads over EDF

ts the purpose of introducing EDF. Thus, EDF threads and FP threads need to

In the classic FP design, threads of equal priority are typically queued in FIFO order (at each
to this basic rule, e.g., in the case of priority

robin with fixed time slices is also not uncommon,
e.g, again POSIX. When integrating EDF into the design, three basic options exist: at

ime, declare one or more of the existing fixed priority levels to be

a “pure EDF priority level,” with the obvious interpretation that threads (or
reservations) of that (fixed) priority are queued in EDF order, and not FIFO order (with

a “shared EDF/FP priority level,” where both EDF threads (or reservations) and fixed-
priority threads are treated as if they had an

have precedence at that

CPU system, a single task attached to a reservation of 10ms every 100ms

D4.1 - Alpha OA & RTE prototypes

SAFURE D4.1

3. a “shared FP/EDF priority level,” where both EDF threads/reservations and fixed
priority threads exist, and where fixed
deadline of zero (i.e., fixed
level).

Of the three possible designs, only the second option makes sense. The third option is
equivalent to having a pure FP level
priority level), and the second options subsumes the first option if the user d
threads at the same priority level (which the first option entails anyway).

2.2.3 Evaluation Aspects

The implementation of the new PikeOS EDF scheduling will be subject to several evaluation
metrics. Obviously, the most question to be answered is w
customers when designing a system. By careful consideration, we believe this to be true, and
it just remains to be shown that EDF actually works well together with time partitioning.

Secondly of all, we will evaluate whether
one. There may be a scheduling overhead due to the more complex selection criterion. We
want to evaluate how much difference this means. The numbers will help system designers
to decide whether the overhead is worth the gain.

Thirdly, we will evaluate how well an EDF implementation is embeddable into a certified real
time operation system like PikeOS. To the best of our knowledge, there is no data indicating
whether EDF can be easily certified according to
PikeOS. To evaluate this, SYSGO will use some of its certification experts to examine the
source code of the implementation and to see whether it would be usable in a certification
environment.

2.2.4 Implementation

It is conceptually possible to implement an EDF scheduler in user space, but this may
introduce overheads that may be too great to be useful. Therefore, an in
implementation will be targeted.

In PikeOS 4.0, SYSGO introduced pluggable kernel drivers. The des
configuration time, the final PikeOS kernel binary is linked together from the core kernel
binary, plus the platform support package (PSP), containing lowest level timer and boot
support, plus user defined kernel driver modules. This me
so no special support needs to be given when developing a kernel driver.

A kernel driver for scheduling would be special, because it needs to plug into the PikeOS
kernel’s scheduler algorithm. For this, no direct support
SYSGO will have to extend the kernel driver concept in such a way that the PikeOS
scheduler can invoke callbacks into a pluggable scheduler driver to extend the scheduling.

Once such pluggable scheduler functionality is
as a kernel driver. The PikeOS kernel driver framework provides mechanisms for
configuration of drivers using an XSD/XML based approach. This can be used by the EDF
driver to establish the global reservation ta
from the system integrator. Configuration information can be global and per
PikeOS configuration concept supports both.

Alpha OA & RTE prototypes

a “shared FP/EDF priority level,” where both EDF threads/reservations and fixed
priority threads exist, and where fixed-priority threads are treated as if they had a
deadline of zero (i.e., fixed-priority threads always have precedence at that priority

Of the three possible designs, only the second option makes sense. The third option is
equivalent to having a pure FP level π and a pure EDF level π − 1 (i.e, at the next lower
priority level), and the second options subsumes the first option if the user d
threads at the same priority level (which the first option entails anyway).

Evaluation Aspects

The implementation of the new PikeOS EDF scheduling will be subject to several evaluation
metrics. Obviously, the most question to be answered is whether EDF is a gain for SYSGO
customers when designing a system. By careful consideration, we believe this to be true, and
it just remains to be shown that EDF actually works well together with time partitioning.

Secondly of all, we will evaluate whether the scheduler is as efficient as the current PikeOS
one. There may be a scheduling overhead due to the more complex selection criterion. We
want to evaluate how much difference this means. The numbers will help system designers

ad is worth the gain.

Thirdly, we will evaluate how well an EDF implementation is embeddable into a certified real
time operation system like PikeOS. To the best of our knowledge, there is no data indicating
whether EDF can be easily certified according to the high standards that are used for
PikeOS. To evaluate this, SYSGO will use some of its certification experts to examine the
source code of the implementation and to see whether it would be usable in a certification

nceptually possible to implement an EDF scheduler in user space, but this may
introduce overheads that may be too great to be useful. Therefore, an in
implementation will be targeted.

In PikeOS 4.0, SYSGO introduced pluggable kernel drivers. The design is such that at
configuration time, the final PikeOS kernel binary is linked together from the core kernel
binary, plus the platform support package (PSP), containing lowest level timer and boot
support, plus user defined kernel driver modules. This mechanism is available to customers,
so no special support needs to be given when developing a kernel driver.

A kernel driver for scheduling would be special, because it needs to plug into the PikeOS
kernel’s scheduler algorithm. For this, no direct support is currently available in PikeOS, so
SYSGO will have to extend the kernel driver concept in such a way that the PikeOS
scheduler can invoke callbacks into a pluggable scheduler driver to extend the scheduling.

Once such pluggable scheduler functionality is available, the EDF driver can be implemented
as a kernel driver. The PikeOS kernel driver framework provides mechanisms for
configuration of drivers using an XSD/XML based approach. This can be used by the EDF
driver to establish the global reservation table and to pass in any other configuration data
from the system integrator. Configuration information can be global and per
PikeOS configuration concept supports both.

Page 10 of 44

a “shared FP/EDF priority level,” where both EDF threads/reservations and fixed-
priority threads are treated as if they had a

always have precedence at that priority

Of the three possible designs, only the second option makes sense. The third option is
− 1 (i.e, at the next lower

priority level), and the second options subsumes the first option if the user does not mix

The implementation of the new PikeOS EDF scheduling will be subject to several evaluation
hether EDF is a gain for SYSGO

customers when designing a system. By careful consideration, we believe this to be true, and
it just remains to be shown that EDF actually works well together with time partitioning.

the scheduler is as efficient as the current PikeOS
one. There may be a scheduling overhead due to the more complex selection criterion. We
want to evaluate how much difference this means. The numbers will help system designers

Thirdly, we will evaluate how well an EDF implementation is embeddable into a certified real-
time operation system like PikeOS. To the best of our knowledge, there is no data indicating

the high standards that are used for
PikeOS. To evaluate this, SYSGO will use some of its certification experts to examine the
source code of the implementation and to see whether it would be usable in a certification

nceptually possible to implement an EDF scheduler in user space, but this may
introduce overheads that may be too great to be useful. Therefore, an in-kernel

ign is such that at
configuration time, the final PikeOS kernel binary is linked together from the core kernel
binary, plus the platform support package (PSP), containing lowest level timer and boot

chanism is available to customers,

A kernel driver for scheduling would be special, because it needs to plug into the PikeOS
is currently available in PikeOS, so

SYSGO will have to extend the kernel driver concept in such a way that the PikeOS
scheduler can invoke callbacks into a pluggable scheduler driver to extend the scheduling.

available, the EDF driver can be implemented
as a kernel driver. The PikeOS kernel driver framework provides mechanisms for
configuration of drivers using an XSD/XML based approach. This can be used by the EDF

ble and to pass in any other configuration data
from the system integrator. Configuration information can be global and per-partition, the

D4.1 - Alpha OA & RTE prototypes

SAFURE D4.1

2.2.5 Summary

In the project, we want to implement and evaluate EDF scheduli
combination with time partitioning. We have identified that it is best an addition to the tp0
concept of PikeOS, for sporadic, not particularly time critical tasks for which starvation needs
to be ruled out. Latency-sensitive threa

Within the PikeOS 4.0 kernel driver framework, it will be possible to implement the EDF
scheduler extensions that the PikeOS kernel will need for EDF. The framework also provides
the necessary means to config

Alpha OA & RTE prototypes

, we want to implement and evaluate EDF scheduling as part of PikeOS, in
combination with time partitioning. We have identified that it is best an addition to the tp0
concept of PikeOS, for sporadic, not particularly time critical tasks for which starvation needs

sensitive threads in TP0 are most suited for running with EDF.

Within the PikeOS 4.0 kernel driver framework, it will be possible to implement the EDF
scheduler extensions that the PikeOS kernel will need for EDF. The framework also provides

ans to configure the scheduling.

Page 11 of 44

ng as part of PikeOS, in
combination with time partitioning. We have identified that it is best an addition to the tp0
concept of PikeOS, for sporadic, not particularly time critical tasks for which starvation needs

ds in TP0 are most suited for running with EDF.

Within the PikeOS 4.0 kernel driver framework, it will be possible to implement the EDF
scheduler extensions that the PikeOS kernel will need for EDF. The framework also provides

D4.1 - Alpha OA & RTE prototypes

SAFURE D4.1

Chapter 3 Security for Mixed

3.1 CycurLIB on PikeOS

In order to meet the security requirements defined in the D1.2, (i.e. system integrity that both
the operating system and the run
cryptographic algorithms (like AES, SHA
cryptographic algorithms provide application programmers an easy and standard way to add
security to applications, and SAFURE will integrate the most relevant algorithms into the run
time environment of PikeOS.

3.1.1 CycurLIB

CycurLIB is a cryptographic library developed by ESCRYPT, which is a collection of common
cryptographic algorithms used in embedded systems where resources are particularly
limited.

The library meets the following design

• Minimized ROM size

• Minimized RAM usage

• Compliance with MISRA

• No dependencies on external libraries (including the C standard library)

• No dependencies on a particular microcontroller or operating system (e.g.
independence of endianness, no

• No dynamic memory allocation

• Fully re-entrant

• Easy to integrate in existing systems

3.1.2 Cryptographic Algorithms

Currently the cryptographic algorithms being ported into PikeOS are selected from CycurLIB
according to discussion result of data

• Symmetric key encryption/decryption algorithm (i.e. AES, ChaCha20, Salsa20)

• Asymmetric key encryption/decryption algorithm (i.e. RSA, ECDSA)

• Message Authentication Codes (MAC) (i.e. HMAC, CMAC, Poly130

Please note that the cryptographic algorithms listed here are only the suggestion. The real
ported cryptographic algorithms could be extended or reduced according to the real design
and the use of PikeOS.

3.1.3 PikeOS File Provider

The PikeOS System Software allows applications to register themselves as
the rest of the system. They can then be accessed using standard file system semantics to

Alpha OA & RTE prototypes

Security for Mixed-Criticality

CycurLIB on PikeOS

In order to meet the security requirements defined in the D1.2, (i.e. system integrity that both
the operating system and the run-time environment are not manipulated.), standard

graphic algorithms (like AES, SHA-2, RSA, and ECC) are required. These
cryptographic algorithms provide application programmers an easy and standard way to add
security to applications, and SAFURE will integrate the most relevant algorithms into the run

CycurLIB is a cryptographic library developed by ESCRYPT, which is a collection of common
cryptographic algorithms used in embedded systems where resources are particularly

The library meets the following design criteria:

Minimized RAM usage

Compliance with MISRA-C:2012

No dependencies on external libraries (including the C standard library)

No dependencies on a particular microcontroller or operating system (e.g.
independence of endianness, no assembly code)

No dynamic memory allocation

Easy to integrate in existing systems

Cryptographic Algorithms

Currently the cryptographic algorithms being ported into PikeOS are selected from CycurLIB
according to discussion result of data integrity in D3.1. There are basically three aspects:

Symmetric key encryption/decryption algorithm (i.e. AES, ChaCha20, Salsa20)

Asymmetric key encryption/decryption algorithm (i.e. RSA, ECDSA)

Message Authentication Codes (MAC) (i.e. HMAC, CMAC, Poly130

Please note that the cryptographic algorithms listed here are only the suggestion. The real
ported cryptographic algorithms could be extended or reduced according to the real design

PikeOS File Provider

e allows applications to register themselves as
the rest of the system. They can then be accessed using standard file system semantics to

Page 12 of 44

Criticality

In order to meet the security requirements defined in the D1.2, (i.e. system integrity that both
time environment are not manipulated.), standard

2, RSA, and ECC) are required. These
cryptographic algorithms provide application programmers an easy and standard way to add
security to applications, and SAFURE will integrate the most relevant algorithms into the run-

CycurLIB is a cryptographic library developed by ESCRYPT, which is a collection of common
cryptographic algorithms used in embedded systems where resources are particularly

No dependencies on external libraries (including the C standard library)

No dependencies on a particular microcontroller or operating system (e.g.

Currently the cryptographic algorithms being ported into PikeOS are selected from CycurLIB
integrity in D3.1. There are basically three aspects:

Symmetric key encryption/decryption algorithm (i.e. AES, ChaCha20, Salsa20)

Asymmetric key encryption/decryption algorithm (i.e. RSA, ECDSA)

Message Authentication Codes (MAC) (i.e. HMAC, CMAC, Poly1305)

Please note that the cryptographic algorithms listed here are only the suggestion. The real
ported cryptographic algorithms could be extended or reduced according to the real design

e allows applications to register themselves as file providers to
the rest of the system. They can then be accessed using standard file system semantics to

D4.1 - Alpha OA & RTE prototypes

SAFURE D4.1

implement all kinds of file systems. File providers
such as for Ethernet, serial or CAN.
and configurable file providers.

• Internal file providers are part of the PikeOS System Software and are available as

soon as the system starts up.

o ROM File System (rfs prefix)

o Shared Memory File System (shm prefix)

o Property File System (prop prefix)

• External file providers are applications running in a partition. They allow the

functionality of PikeOS to be extended

• System extension file pro

allow to extend the file system.

3.1.4 Porting CycurLIB using PikeOS File Provider

In order to provide an easy and standard way for application programmers to add security
applications, the cryptographic algorithms from CycurLIB are integrated into PikeOS by using
the structure of File Provider.

The PikeOS applications can use the functionality of the File Provider through the PikeOS
File System API. Different types of f

The cryptographic algorithms from CycurLIB will be integrated into PikeOS in the form of
external File Providers which are applications running in a partition. Each function of the
algorithm is implemented as a file. The
through the PikeOS File System API. For example, AES_CBC encryption function is
implemented as a file called
AES_CBC encryption function, the
vm_close(), etc. to access the file
from the file.

By using File Provider, the applications do not need to know how the cryptographic funct
are implemented. Instead, they just need to know the file name of the cryptographic
functions.

In order to make it easy to use, a CycurLIB_Api interface will also be implemented. The
interface will look similar as the normal cryptographic function wi
parameters. This interface will take care of the sequence of calling the PikeOS File System
API for each cryptographic function to set the corresponding parameters through the file
provider to the CycurLIB function. In this way, PikeOS
CyurLIB_Api without the knowledge about File Provider.

3.2 Architecture for Secure

Secure boot is of interest for devices, where a malfunction has disastrous consequences for
the user. Medical devices for example mostly
right level of safety and security. By instrumenting the firmware or the operating system, the
hacker is able to bypass every software security mechanism and to modify the functionality
of the device, so that an infusion pump may provide too much medication to a patient,
causing possible catastrophic consequences.

Alpha OA & RTE prototypes

implement all kinds of file systems. File providers are also used as the interface to I/O drivers
ch as for Ethernet, serial or CAN. PikeOS comes with a number of ready

providers. [5]

Internal file providers are part of the PikeOS System Software and are available as

arts up.

ROM File System (rfs prefix)

Shared Memory File System (shm prefix)

Property File System (prop prefix)

External file providers are applications running in a partition. They allow the

functionality of PikeOS to be extended

System extension file provider are running in the PikeOS System Software. They also

allow to extend the file system. [6]

Porting CycurLIB using PikeOS File Provider

In order to provide an easy and standard way for application programmers to add security
applications, the cryptographic algorithms from CycurLIB are integrated into PikeOS by using

The PikeOS applications can use the functionality of the File Provider through the PikeOS
File System API. Different types of file are managed by File Providers.

The cryptographic algorithms from CycurLIB will be integrated into PikeOS in the form of
external File Providers which are applications running in a partition. Each function of the
algorithm is implemented as a file. The file can be accessed by the other PikeOS application
through the PikeOS File System API. For example, AES_CBC encryption function is
implemented as a file called file_aes_cbc_enc. If other PikeOS applications want to using
AES_CBC encryption function, they can use vm_open(), vm_ioctl(), vm_write(), vm_read(),

to access the file file_aes_cbc_enc, write inputs to the file and read output

By using File Provider, the applications do not need to know how the cryptographic funct
are implemented. Instead, they just need to know the file name of the cryptographic

In order to make it easy to use, a CycurLIB_Api interface will also be implemented. The
interface will look similar as the normal cryptographic function with input and output
parameters. This interface will take care of the sequence of calling the PikeOS File System
API for each cryptographic function to set the corresponding parameters through the file
provider to the CycurLIB function. In this way, PikeOS applications can directly use
CyurLIB_Api without the knowledge about File Provider.

Architecture for Secure Boot

Secure boot is of interest for devices, where a malfunction has disastrous consequences for
the user. Medical devices for example mostly use segregation (separation) to provide the
right level of safety and security. By instrumenting the firmware or the operating system, the
hacker is able to bypass every software security mechanism and to modify the functionality

infusion pump may provide too much medication to a patient,
causing possible catastrophic consequences.

Page 13 of 44

the interface to I/O drivers
PikeOS comes with a number of ready-to-use built-in

Internal file providers are part of the PikeOS System Software and are available as

External file providers are applications running in a partition. They allow the

vider are running in the PikeOS System Software. They also

In order to provide an easy and standard way for application programmers to add security to
applications, the cryptographic algorithms from CycurLIB are integrated into PikeOS by using

The PikeOS applications can use the functionality of the File Provider through the PikeOS

The cryptographic algorithms from CycurLIB will be integrated into PikeOS in the form of
external File Providers which are applications running in a partition. Each function of the

file can be accessed by the other PikeOS application
through the PikeOS File System API. For example, AES_CBC encryption function is

If other PikeOS applications want to using
vm_open(), vm_ioctl(), vm_write(), vm_read(),

write inputs to the file and read output

By using File Provider, the applications do not need to know how the cryptographic functions
are implemented. Instead, they just need to know the file name of the cryptographic

In order to make it easy to use, a CycurLIB_Api interface will also be implemented. The
th input and output

parameters. This interface will take care of the sequence of calling the PikeOS File System
API for each cryptographic function to set the corresponding parameters through the file

applications can directly use

Secure boot is of interest for devices, where a malfunction has disastrous consequences for
use segregation (separation) to provide the

right level of safety and security. By instrumenting the firmware or the operating system, the
hacker is able to bypass every software security mechanism and to modify the functionality

infusion pump may provide too much medication to a patient,

D4.1 - Alpha OA & RTE prototypes

SAFURE D4.1

Secure boot is not only a means for securing the boot process. It can also be used to protect
intellectual property and system secrets by encrypting th
security the attacker will neither be able to start the system with instrumented code (in order
to analyse the image content) nor will they be able to reverse engineer the application image,
which they may read from the F

This section describes the secure boot principles and illustrates how the boot process for a
PikeOS system is secured and how application loading can be secured in a chain of trust.

Some companies (e.g. Texas Instruments, Qualcomm etc.) don’t
about Secure Boot implementation in their SoCs without a NDA agreement. Therefore for the
first development to achieve quick and portable results, we have chosen Freescale QorIQ
platform as one with well documented implementation o
Boot concept is platform independent and will be portable with very limited resources to other
platforms.

3.2.1 Secure Boot Components

While looking at the Trust Architecture, we will focus only on the components required for
secure boot process. A more detailed description of the Trust Architecture can be found in
[7]. The Software and Hardware components, which are essential for the secure boot
process, are:

Security Engine (SEC): The primar
operations. The SEC also supports a security violation detection function known as the Run
Time Integrity Checker (RTIC). The RTIC uses the SEC’s cryptographic hashing capability to
periodically check the integrity of designated sections of system memory.

Security Fuse Processor (SFP):
secret values to other hardware blocks of the QorIQ processor. The values in a locked SFP
cannot be read, modified or scanned.

Security Monitor: The Sec_Mon senses and controls the security state of the QorIQ. If a
security violation is detected, configurable actions are executed. The possible actions range
from SoC reset to more severe lock

Pre-Boot Loader (PBL): Before the local cores are permitted to boot, the pre
(PBL) loads a reset configuration word (RCW) and Pre
from a non-volatile memory interface and does some basic c

Internal Secure Boot Code (ISBC):
function is to validate a signature over the next code to execute.

External Secure Boot Code (ESBC):
is usually a boot loader, which implements functionality to validate the next software to be
loaded. Freescale provides a modified U
OEM.

Code Signing Tool (CST): The CST enables manufacturers to sign or
for their products to ensure that only authentic software is allowed to run on the end product.

Secure boot is usually initiated by putting the processor into a specific state by setting the
Intend To Secure (ITS) bit in the security
during power-on, the system jumps to an unmodifiable Internal Boot ROM, which contains
the Internal Secure Boot Code (ISBC). The function of the ISBC is to validate the authenticity
of the next code to be executed. The described sequence of operation is designed to be
unmodifiable and is called the root of trust.

Alpha OA & RTE prototypes

Secure boot is not only a means for securing the boot process. It can also be used to protect
intellectual property and system secrets by encrypting the boot image. With this additional
security the attacker will neither be able to start the system with instrumented code (in order
to analyse the image content) nor will they be able to reverse engineer the application image,
which they may read from the Flash device.

This section describes the secure boot principles and illustrates how the boot process for a
PikeOS system is secured and how application loading can be secured in a chain of trust.

Some companies (e.g. Texas Instruments, Qualcomm etc.) don’t provide any information
about Secure Boot implementation in their SoCs without a NDA agreement. Therefore for the
first development to achieve quick and portable results, we have chosen Freescale QorIQ
platform as one with well documented implementation of Secure Boot. The designed Secure
Boot concept is platform independent and will be portable with very limited resources to other

Components

While looking at the Trust Architecture, we will focus only on the components required for
secure boot process. A more detailed description of the Trust Architecture can be found in

. The Software and Hardware components, which are essential for the secure boot

The primary function of the SEC is to accelerate cryptographic
operations. The SEC also supports a security violation detection function known as the Run
Time Integrity Checker (RTIC). The RTIC uses the SEC’s cryptographic hashing capability to

e integrity of designated sections of system memory.

Security Fuse Processor (SFP): The SFP is used to program fuses passing keys and other
secret values to other hardware blocks of the QorIQ processor. The values in a locked SFP

or scanned.

The Sec_Mon senses and controls the security state of the QorIQ. If a
security violation is detected, configurable actions are executed. The possible actions range
from SoC reset to more severe lock-out options, which can make the SoC unusable.

Before the local cores are permitted to boot, the pre
(PBL) loads a reset configuration word (RCW) and Pre-Boot Initialization (PBI) commands

volatile memory interface and does some basic chip configuration.

Internal Secure Boot Code (ISBC): The ISBC is an unmodifiable internal boot ROM. Its
function is to validate a signature over the next code to execute.

External Secure Boot Code (ESBC): The ESBC is whatever the OEM programs it to be an
is usually a boot loader, which implements functionality to validate the next software to be
loaded. Freescale provides a modified U-Boot, which can be adapted to the hardware by the

The CST enables manufacturers to sign or encrypt the software
for their products to ensure that only authentic software is allowed to run on the end product.

Secure boot is usually initiated by putting the processor into a specific state by setting the
Intend To Secure (ITS) bit in the security Fuse Processor (SFP). If the ITS bit is sensed

on, the system jumps to an unmodifiable Internal Boot ROM, which contains
the Internal Secure Boot Code (ISBC). The function of the ISBC is to validate the authenticity

cuted. The described sequence of operation is designed to be
unmodifiable and is called the root of trust.

Page 14 of 44

Secure boot is not only a means for securing the boot process. It can also be used to protect
e boot image. With this additional

security the attacker will neither be able to start the system with instrumented code (in order
to analyse the image content) nor will they be able to reverse engineer the application image,

This section describes the secure boot principles and illustrates how the boot process for a
PikeOS system is secured and how application loading can be secured in a chain of trust.

provide any information
about Secure Boot implementation in their SoCs without a NDA agreement. Therefore for the
first development to achieve quick and portable results, we have chosen Freescale QorIQ

f Secure Boot. The designed Secure
Boot concept is platform independent and will be portable with very limited resources to other

While looking at the Trust Architecture, we will focus only on the components required for the
secure boot process. A more detailed description of the Trust Architecture can be found in

. The Software and Hardware components, which are essential for the secure boot

y function of the SEC is to accelerate cryptographic
operations. The SEC also supports a security violation detection function known as the Run
Time Integrity Checker (RTIC). The RTIC uses the SEC’s cryptographic hashing capability to

The SFP is used to program fuses passing keys and other
secret values to other hardware blocks of the QorIQ processor. The values in a locked SFP

The Sec_Mon senses and controls the security state of the QorIQ. If a
security violation is detected, configurable actions are executed. The possible actions range

e the SoC unusable.

Before the local cores are permitted to boot, the pre-boot loader
Boot Initialization (PBI) commands

hip configuration.

The ISBC is an unmodifiable internal boot ROM. Its

The ESBC is whatever the OEM programs it to be and
is usually a boot loader, which implements functionality to validate the next software to be

Boot, which can be adapted to the hardware by the

encrypt the software
for their products to ensure that only authentic software is allowed to run on the end product.

Secure boot is usually initiated by putting the processor into a specific state by setting the
Fuse Processor (SFP). If the ITS bit is sensed

on, the system jumps to an unmodifiable Internal Boot ROM, which contains
the Internal Secure Boot Code (ISBC). The function of the ISBC is to validate the authenticity

cuted. The described sequence of operation is designed to be

D4.1 - Alpha OA & RTE prototypes

SAFURE D4.1

3.2.2 Code Signing

In order to guarantee authenticity of the code to be executed, secure boot relies on validating
a signature, which has been generated f
The Freescale Code Signing Tool (CST) provides all required means to digitally sign code
and apply encryption. The RSA
also used in the Freescale CST. The CST can establish a Public Key Infrastructure (PKI) tree
of keys and certificates needed for code signing in addition to generating digital signatures
across data provided by the OEM. The signatures generated by the CST can then be
included as part of the end product software image
process for a “System Image” using the Code Signing Tool. The generic signature process
can be summarized as:

1. Calculate a hash over the system image

2. Sign the previously generated hash with the private key

3. Calculate hash over public key and burn this into Super Root Key (SRK) fuse

Rather than signing the whole image, a ha
hash over the System Image. Then the hash is signed with the RSA private key and
appended to a header, which is known as the CSF
public key will be used to validate the h
written to the flash. Therefore a hash is generated from the public key, and programmed into
a fuse block. Although Figure
possible (even advantageous) to encrypt portions of the image with the One
Programmable- Master-Key (OTPMK), which is a persistent secret value held in the SFP.
This prevents attackers from stealing code from flash for reverse engineering.

3.2.3 The Secure Boot Process

Starting from the root of trust, secure boot shall make sure that the firmware to be loaded is
authentic. Either it is the original image or it is an updated image, which must have gone
through the same code signature process as described in
boot process can be divided into two steps. The pre

Alpha OA & RTE prototypes

In order to guarantee authenticity of the code to be executed, secure boot relies on validating
a signature, which has been generated from the system image (which shall be validated).
The Freescale Code Signing Tool (CST) provides all required means to digitally sign code
and apply encryption. The RSA-algorithm is the most common sign and verify tool, which is

ST. The CST can establish a Public Key Infrastructure (PKI) tree
of keys and certificates needed for code signing in addition to generating digital signatures
across data provided by the OEM. The signatures generated by the CST can then be

of the end product software image [8]. Figure 5 shows the code signing
process for a “System Image” using the Code Signing Tool. The generic signature process

over the system image

Sign the previously generated hash with the private key

Calculate hash over public key and burn this into Super Root Key (SRK) fuse

Figure 5: Code signing process

Rather than signing the whole image, a hash algorithm (e.g. SHA256) is used to generate a
hash over the System Image. Then the hash is signed with the RSA private key and
appended to a header, which is known as the CSF- header. During the boot process the
public key will be used to validate the hash. The header and the system image are then
written to the flash. Therefore a hash is generated from the public key, and programmed into

Figure 5 shows the hash being calculated over system image, it is
ssible (even advantageous) to encrypt portions of the image with the One

Key (OTPMK), which is a persistent secret value held in the SFP.
This prevents attackers from stealing code from flash for reverse engineering.

Boot Process

Starting from the root of trust, secure boot shall make sure that the firmware to be loaded is
authentic. Either it is the original image or it is an updated image, which must have gone
through the same code signature process as described in the previous chapter. The secure
boot process can be divided into two steps. The pre-boot phase, which initializes the SoC for

Page 15 of 44

In order to guarantee authenticity of the code to be executed, secure boot relies on validating
rom the system image (which shall be validated).

The Freescale Code Signing Tool (CST) provides all required means to digitally sign code
algorithm is the most common sign and verify tool, which is

ST. The CST can establish a Public Key Infrastructure (PKI) tree
of keys and certificates needed for code signing in addition to generating digital signatures
across data provided by the OEM. The signatures generated by the CST can then be

shows the code signing
process for a “System Image” using the Code Signing Tool. The generic signature process

Calculate hash over public key and burn this into Super Root Key (SRK) fuse

sh algorithm (e.g. SHA256) is used to generate a
hash over the System Image. Then the hash is signed with the RSA private key and

header. During the boot process the
ash. The header and the system image are then

written to the flash. Therefore a hash is generated from the public key, and programmed into
shows the hash being calculated over system image, it is

ssible (even advantageous) to encrypt portions of the image with the One-Time-
Key (OTPMK), which is a persistent secret value held in the SFP.

This prevents attackers from stealing code from flash for reverse engineering.

Starting from the root of trust, secure boot shall make sure that the firmware to be loaded is
authentic. Either it is the original image or it is an updated image, which must have gone

the previous chapter. The secure
boot phase, which initializes the SoC for

D4.1 - Alpha OA & RTE prototypes

SAFURE D4.1

the secure boot process and the ISBC phase, which performs the signature validation over
the firmware, which was named system ima

Freescale provides reference firmware code, which can be adapted by the OEM to support
the customer’s hardware. This firmware code is logically divided in two parts. The fir
which is executed by the ISBC, performs further device configuration and code
authentication using similar mechanisms as the ISBC. This part is called External Secure
Boot Code (ESBC). As Freescale uses U
second logical part is the “Trusted U
the ESBC and loaded into main memory for execution.

Pre-Boot phase

Before the local cores are permitted to boot, the reset control logic blocks all ac
fuse values are sensed. The fuse value, which indicates the intention to use secure boot, is
the Intend To Secure (ITS) bit. If the ITS bit is set, interfaces, memory permissions and MMU
configurations are locked down.

The Pre-Boot-Loader (PBL) loads the configuration values from the Reset Configuration
Word (RCW) and the Pre- Boot
chip configuration, making sure that the ISBC knows the location of the CSF header. After
this setup, the PBL enables Core 0, which begins executing code from the hard wired ISBC.

ISBC phase

As described earlier, the ISBC is considered inherently trusted, because it cannot be
modified.

Apart from some platform self
signature validation of the firmware. As shown in
validation of the firmware is taken from the CSF header. The validation process uses CPU 0
to execute the ISBC code, whi

Alpha OA & RTE prototypes

the secure boot process and the ISBC phase, which performs the signature validation over
the firmware, which was named system image for code signing.

Figure 6: The secure boot process

Freescale provides reference firmware code, which can be adapted by the OEM to support
the customer’s hardware. This firmware code is logically divided in two parts. The fir
which is executed by the ISBC, performs further device configuration and code
authentication using similar mechanisms as the ISBC. This part is called External Secure
Boot Code (ESBC). As Freescale uses U-Boot code, it is also named “Trusted U
second logical part is the “Trusted U-Boot Client”. This Trusted U-Boot client is validated by
the ESBC and loaded into main memory for execution.

Before the local cores are permitted to boot, the reset control logic blocks all ac
fuse values are sensed. The fuse value, which indicates the intention to use secure boot, is
the Intend To Secure (ITS) bit. If the ITS bit is set, interfaces, memory permissions and MMU
configurations are locked down.

PBL) loads the configuration values from the Reset Configuration
Boot-Initialization (PBI) commands, thereby performing minimum

chip configuration, making sure that the ISBC knows the location of the CSF header. After
e PBL enables Core 0, which begins executing code from the hard wired ISBC.

As described earlier, the ISBC is considered inherently trusted, because it cannot be

Apart from some platform self-test and policy checks, the main task of the ISBC is the
signature validation of the firmware. As shown in Figure 7, the information needed for the
validation of the firmware is taken from the CSF header. The validation process uses CPU 0
to execute the ISBC code, while the security monitor monitors the security state during this

Page 16 of 44

the secure boot process and the ISBC phase, which performs the signature validation over

Freescale provides reference firmware code, which can be adapted by the OEM to support
the customer’s hardware. This firmware code is logically divided in two parts. The first part,
which is executed by the ISBC, performs further device configuration and code
authentication using similar mechanisms as the ISBC. This part is called External Secure

Boot code, it is also named “Trusted U-Boot”. The
Boot client is validated by

Before the local cores are permitted to boot, the reset control logic blocks all activities until
fuse values are sensed. The fuse value, which indicates the intention to use secure boot, is
the Intend To Secure (ITS) bit. If the ITS bit is set, interfaces, memory permissions and MMU

PBL) loads the configuration values from the Reset Configuration
Initialization (PBI) commands, thereby performing minimum

chip configuration, making sure that the ISBC knows the location of the CSF header. After
e PBL enables Core 0, which begins executing code from the hard wired ISBC.

As described earlier, the ISBC is considered inherently trusted, because it cannot be

of the ISBC is the
, the information needed for the

validation of the firmware is taken from the CSF header. The validation process uses CPU 0
le the security monitor monitors the security state during this

D4.1 - Alpha OA & RTE prototypes

SAFURE D4.1

process and the Security Engine is used to decrypt the image or the hash values. The
detailed execution process is shown in

1. The ISBC executes self-tests

2. A hash is calculated over the public key, taken from the CSF header

3. The calculated hash is compared with the hash in the Super Root Key (SRK)

(see Figure 5)

4. If the hashes are identical, the hash for the C
calculated

5. Using the public key, the system image signature (see
decrypted

6. The hashes of the signatures from step 4 and 5 are compared

7. If the hashes are equal, the exe

ESBC validation process

The ESBC is mainly a Freescale modified U
configuration such as mapping physical memory, initializing the network interfaces, data path
infrastructure and loading next

In Freescale’s reference code, this client validation process uses the same mechanisms as
the ISBC (security monitor to monitor the security state and the Security Engine to decrypt
the image or the hash values). The ESBC has the same CSF header format prepended to it.
The public key used for this validation can be the same as used by the ISBC, or it can be a
new public key from the trusted U

If the signature passes, the Trusted U
Boot Client and begins execution. At this point, the developer’s authentic device
configurations, OS and applications can be started

Alpha OA & RTE prototypes

process and the Security Engine is used to decrypt the image or the hash values. The
detailed execution process is shown in Figure 7 and has the following steps:

tests

A hash is calculated over the public key, taken from the CSF header

The calculated hash is compared with the hash in the Super Root Key (SRK)

If the hashes are identical, the hash for the CSF header and the system image is

Using the public key, the system image signature (see Figure 5) from CSF header is

The hashes of the signatures from step 4 and 5 are compared

If the hashes are equal, the execution is passed to the ESBC

The ESBC is mainly a Freescale modified U-Boot, which performs minimal additional chip
configuration such as mapping physical memory, initializing the network interfaces, data path

oading next-stage software (Trusted U-Boot Client) into main memory.

In Freescale’s reference code, this client validation process uses the same mechanisms as
the ISBC (security monitor to monitor the security state and the Security Engine to decrypt

image or the hash values). The ESBC has the same CSF header format prepended to it.
The public key used for this validation can be the same as used by the ISBC, or it can be a
new public key from the trusted U-Boot client’s CSF header.

sses, the Trusted U-Boot jumps to the entry point within the Trusted U
Boot Client and begins execution. At this point, the developer’s authentic device
configurations, OS and applications can be started [9]

Figure 7: The validation process

Page 17 of 44

process and the Security Engine is used to decrypt the image or the hash values. The
and has the following steps:

The calculated hash is compared with the hash in the Super Root Key (SRK)

SF header and the system image is

) from CSF header is

Boot, which performs minimal additional chip
configuration such as mapping physical memory, initializing the network interfaces, data path

Boot Client) into main memory.

In Freescale’s reference code, this client validation process uses the same mechanisms as
the ISBC (security monitor to monitor the security state and the Security Engine to decrypt

image or the hash values). The ESBC has the same CSF header format prepended to it.
The public key used for this validation can be the same as used by the ISBC, or it can be a

Boot jumps to the entry point within the Trusted U-
Boot Client and begins execution. At this point, the developer’s authentic device

D4.1 - Alpha OA & RTE prototypes

SAFURE D4.1

Chain of Trust

The ISBC is SoC internal unchangeable code and thus called the root of trust of the secure
boot process. The ESBC is the first external piece of code, which runs through a validation
process and thus is also secure. If each software module is validated by the previously
loaded software, we build a chain of trust, which guarantees that each software module is
authentic and trusted (Figure 8

The ESBC is the first link in the chain of trust verified by the ISBC. By implementing
appropriate validation algorithms in the ESBC, this can validate the operating system, and by
implementing appropriate validation algorithms in the O
used to validate the application.

3.2.4 PikeOS Security

PikeOS is a real-time hypervisor, which is based on separation kernel architecture. Besides
offering real-time capabilities, PikeOS can separate and isolate a defined
resources (e.g. memory, CPU
9). This separation of resources ensures that partitions do not interfere with each other. The
communication between the
communication is only possible, if the communication means are generated and strictly
assigned for the communicating partitions. A partition can host user applications in several
flavours. Hosting legacy code in a bare metal environment is also possible as hosting several
APIs for PikeOS (ARINC653, AUTOSAR, POSIX, JAVA, ADA, etc). Even complete operating
systems like Linux can operate in a partition. Of course, multiple instances of the
aforementioned runtime systems can reside in its own PikeOS partition with each owning its
dedicated resources.

Alpha OA & RTE prototypes

The ISBC is SoC internal unchangeable code and thus called the root of trust of the secure
boot process. The ESBC is the first external piece of code, which runs through a validation

s is also secure. If each software module is validated by the previously
loaded software, we build a chain of trust, which guarantees that each software module is

8).

Figure 8: Chain of Trust

The ESBC is the first link in the chain of trust verified by the ISBC. By implementing
appropriate validation algorithms in the ESBC, this can validate the operating system, and by
implementing appropriate validation algorithms in the Operating system image, this can be
used to validate the application.

time hypervisor, which is based on separation kernel architecture. Besides
time capabilities, PikeOS can separate and isolate a defined

resources (e.g. memory, CPU-cores, processing time, interrupts, etc.) into partitions (
). This separation of resources ensures that partitions do not interfere with each other. The

communication between the partitions follow a white list policy, which ensures that
communication is only possible, if the communication means are generated and strictly
assigned for the communicating partitions. A partition can host user applications in several

legacy code in a bare metal environment is also possible as hosting several
APIs for PikeOS (ARINC653, AUTOSAR, POSIX, JAVA, ADA, etc). Even complete operating
systems like Linux can operate in a partition. Of course, multiple instances of the

ed runtime systems can reside in its own PikeOS partition with each owning its

Page 18 of 44

The ISBC is SoC internal unchangeable code and thus called the root of trust of the secure
boot process. The ESBC is the first external piece of code, which runs through a validation

s is also secure. If each software module is validated by the previously
loaded software, we build a chain of trust, which guarantees that each software module is

The ESBC is the first link in the chain of trust verified by the ISBC. By implementing
appropriate validation algorithms in the ESBC, this can validate the operating system, and by

perating system image, this can be

time hypervisor, which is based on separation kernel architecture. Besides
time capabilities, PikeOS can separate and isolate a defined set of hardware

cores, processing time, interrupts, etc.) into partitions (Figure
). This separation of resources ensures that partitions do not interfere with each other. The

partitions follow a white list policy, which ensures that
communication is only possible, if the communication means are generated and strictly
assigned for the communicating partitions. A partition can host user applications in several

legacy code in a bare metal environment is also possible as hosting several
APIs for PikeOS (ARINC653, AUTOSAR, POSIX, JAVA, ADA, etc). Even complete operating
systems like Linux can operate in a partition. Of course, multiple instances of the

ed runtime systems can reside in its own PikeOS partition with each owning its

D4.1 - Alpha OA & RTE prototypes

SAFURE D4.1

Figure 9: Security by separation and controlled information flow

Partition separation and isolation restricts hacker attacks us
software on one partition, isolating them from all other partitions on PikeOS.

The strict control of PikeOS over hardware resources, processing time and communication
channels adds “security by separation” to the “security by des
For a state of the art microkernel based operating system, security by design includes
aspects like malware protection, encryption, monitoring, etc. In addition, PikeOS offers
security by separating sensitive data from insensi
a PikeOS Linux Partition through a known security leak, will neither be able to access
hardware resources, which are not assigned to the partition, nor will he be able to access
PikeOS resources and also he will
explicitly configured for the infected partition.

3.2.5 PikeOS Secure-Boot

As PikeOS increases the cost and effort for hacking a system disproportionately, the
modification of firmware, operating sy
for hackers to break into a PikeOS system. Application of secure boot to a PikeOS system
will ensure that nobody can change the system software without help and information from
the OEM.

The PikeOS partitioning concepts allows the integration of third party applications into a
partition. When involving a third party into application development, we need to add the third
party code into the chain of trust. Thus, we need modularity of the software compo
which are loaded one after the other. Another important aspect is that we do not want to
share the private keys, which we have used for signing own code (boot loader and PikeOS
image). Either the third party has his own pair of keys or we need to pr
the third party. The third party will use these keys for generating the CSF header for his
application. In order to keep the system modular and flexible, each component (Bootloader,
PikeOS image and application) will be a standalone
volatile memory. The validation of the boot loader and the PikeOS image follow the earlier
described secure boot process. The validation process for the third party application is
implemented as a user application runnin

Alpha OA & RTE prototypes

Security by separation and controlled information flow

Partition separation and isolation restricts hacker attacks using malicious application
software on one partition, isolating them from all other partitions on PikeOS.

The strict control of PikeOS over hardware resources, processing time and communication
channels adds “security by separation” to the “security by design” concept for IoT devices.
For a state of the art microkernel based operating system, security by design includes
aspects like malware protection, encryption, monitoring, etc. In addition, PikeOS offers
security by separating sensitive data from insensitive data. A hacker who is able to penetrate
a PikeOS Linux Partition through a known security leak, will neither be able to access
hardware resources, which are not assigned to the partition, nor will he be able to access
PikeOS resources and also he will not be able to access other partitions, if this has not been
explicitly configured for the infected partition.

Boot

As PikeOS increases the cost and effort for hacking a system disproportionately, the
modification of firmware, operating system or application image might be a viable alternative
for hackers to break into a PikeOS system. Application of secure boot to a PikeOS system
will ensure that nobody can change the system software without help and information from

artitioning concepts allows the integration of third party applications into a
partition. When involving a third party into application development, we need to add the third
party code into the chain of trust. Thus, we need modularity of the software compo
which are loaded one after the other. Another important aspect is that we do not want to
share the private keys, which we have used for signing own code (boot loader and PikeOS
image). Either the third party has his own pair of keys or we need to provide a pair of keys to
the third party. The third party will use these keys for generating the CSF header for his
application. In order to keep the system modular and flexible, each component (Bootloader,
PikeOS image and application) will be a standalone executable, which is stored in non
volatile memory. The validation of the boot loader and the PikeOS image follow the earlier
described secure boot process. The validation process for the third party application is
implemented as a user application running in a PikeOS partition (Figure 10

Page 19 of 44

Security by separation and controlled information flow

ing malicious application
software on one partition, isolating them from all other partitions on PikeOS.

The strict control of PikeOS over hardware resources, processing time and communication
ign” concept for IoT devices.

For a state of the art microkernel based operating system, security by design includes
aspects like malware protection, encryption, monitoring, etc. In addition, PikeOS offers

tive data. A hacker who is able to penetrate
a PikeOS Linux Partition through a known security leak, will neither be able to access
hardware resources, which are not assigned to the partition, nor will he be able to access

not be able to access other partitions, if this has not been

As PikeOS increases the cost and effort for hacking a system disproportionately, the
stem or application image might be a viable alternative

for hackers to break into a PikeOS system. Application of secure boot to a PikeOS system
will ensure that nobody can change the system software without help and information from

artitioning concepts allows the integration of third party applications into a
partition. When involving a third party into application development, we need to add the third
party code into the chain of trust. Thus, we need modularity of the software components,
which are loaded one after the other. Another important aspect is that we do not want to
share the private keys, which we have used for signing own code (boot loader and PikeOS

ovide a pair of keys to
the third party. The third party will use these keys for generating the CSF header for his
application. In order to keep the system modular and flexible, each component (Bootloader,

executable, which is stored in non-
volatile memory. The validation of the boot loader and the PikeOS image follow the earlier
described secure boot process. The validation process for the third party application is

10).

D4.1 - Alpha OA & RTE prototypes

SAFURE D4.1

Figure 10:

This user application loader will need the ability to control the execution in other partitions. To
validate the user application image, the application loader needs to implement functionality to
use the cryptographic accelerator of the security engine. It will also be required to access the
SFP, which stores the key hashes burned into the fuses. If the validat
monitor may be used to indicate the error and take appropriate action. The first step of the
loader is to read the following information from an internal PikeOS file system:

• The location of a CSF header, which will be used for the
corresponding user application.

• The hash of the Public Key.

• The partition number which will host the validated user application.

After validating the user application, the loader copies it into the corresponding partitions
memory and starts the partition.

3.2.6 Conclusion

Using secure boot is an effective way to protect an IoT device against firmware level
modifications, which are neither visible to the operating system nor to the user applications.
A SoC internal hardware makes sure, that
secure root of trust and validates the software, which will be loaded and operated in the next
step. By enabling the validated software to validate the next software package, the very last
software package can rely on a chain of trust, which is authentic and secure.

Adding the user application to the secure boot chain of trust, is achieved easily by isolating
these application into a PikeOS partition. Loading and execution the user application is
performed by an application loader, which ensures that only validated applications are
executed. Compared to a standard microkernel based OS, the PikeOS real

Alpha OA & RTE prototypes

: PikeOS Secure boot with application validation

This user application loader will need the ability to control the execution in other partitions. To
e the user application image, the application loader needs to implement functionality to

use the cryptographic accelerator of the security engine. It will also be required to access the
SFP, which stores the key hashes burned into the fuses. If the validation fails, the security
monitor may be used to indicate the error and take appropriate action. The first step of the
loader is to read the following information from an internal PikeOS file system:

The location of a CSF header, which will be used for the
corresponding user application.

The hash of the Public Key.

The partition number which will host the validated user application.

After validating the user application, the loader copies it into the corresponding partitions
tarts the partition.

Using secure boot is an effective way to protect an IoT device against firmware level
modifications, which are neither visible to the operating system nor to the user applications.
A SoC internal hardware makes sure, that the secure boot process starts from a guaranteed
secure root of trust and validates the software, which will be loaded and operated in the next
step. By enabling the validated software to validate the next software package, the very last

can rely on a chain of trust, which is authentic and secure.

Adding the user application to the secure boot chain of trust, is achieved easily by isolating
these application into a PikeOS partition. Loading and execution the user application is

by an application loader, which ensures that only validated applications are
executed. Compared to a standard microkernel based OS, the PikeOS real

Page 20 of 44

This user application loader will need the ability to control the execution in other partitions. To
e the user application image, the application loader needs to implement functionality to

use the cryptographic accelerator of the security engine. It will also be required to access the
ion fails, the security

monitor may be used to indicate the error and take appropriate action. The first step of the
loader is to read the following information from an internal PikeOS file system:

The location of a CSF header, which will be used for the validation of the

The partition number which will host the validated user application.

After validating the user application, the loader copies it into the corresponding partitions

Using secure boot is an effective way to protect an IoT device against firmware level
modifications, which are neither visible to the operating system nor to the user applications.

the secure boot process starts from a guaranteed
secure root of trust and validates the software, which will be loaded and operated in the next
step. By enabling the validated software to validate the next software package, the very last

can rely on a chain of trust, which is authentic and secure.

Adding the user application to the secure boot chain of trust, is achieved easily by isolating
these application into a PikeOS partition. Loading and execution the user application is

by an application loader, which ensures that only validated applications are
executed. Compared to a standard microkernel based OS, the PikeOS real-time hypervisor

D4.1 - Alpha OA & RTE prototypes

SAFURE D4.1

offers additional security by its partitioning capabilities. The partitioning concept of Pik
well recognized by the security certification authorities to be certifiable up to Common
Criteria Evaluation Assurance Level 6.

Here is described the configuration and execution of secure boot on QorIQ architecture.
Comparable features of course ex
architecture. PikeOS of course runs on these SoC’s and provides the full bandwidth of
security described in this section.

3.3 Architecture for Secure Flash Update

Currently, software updates for automotive
service intervals within the service station. However, in order to react timely against
emerging vulnerabilities and new threats, it is desirable to perform updates more frequently,
ideally using a wireless connectio
the firmware, security becomes a crucial part of the firmware update process.

The firmware update system consists of a Backend Server (operated by the OEM or a
service provider) and the firmware upd

First, the firmware has to be transferred from the Backend Server to the embedded ECU.
This can be done using a regular Internet connection (e.g., via GSM) to the Backend Server.
In order to preserve the integrity
can be used. Optionally, the firmware can also be encrypted in order to perverse the
confidentiality and thus prevent reverse engineering of the software functions. Hence, the
transferred data include the firmware itself (possibly encrypted) and a digital signature or
MAC value which is attached to the end of the firmware.

Second, the firmware update is forwarded to a Secure Update application that (optionally)
decrypts the firmware update. Then,
place. To accomplish this, the transferred digital signature is verified using standard
cryptographic algorithms (like RSA, ECDSA, EdDSA) or
value of the message is calculated and checked against the transferred value. If both values
are identical, the firmware update is considered authentic and the flashing of the firmware
can be performed.

The architecture allows both asymmetric and symmetric algorithms. Depending on t
platform (RAM size, ROM size, CPU speed), either the first or the latter is better suited. In
the case of asymmetric cryptography, only the public key has to be stored in the embedded
system. It is no problem if a potential attacker can read this public
ensured that this key cannot be modified, because otherwise an attacker could replace it with
his own public key. Similarly, the key used to generate the MAC value has to be securely
stored and even protected from read
an attacker could use the key to calculate a legitimate MAC value for a manipulated firmware
update.

Alpha OA & RTE prototypes

offers additional security by its partitioning capabilities. The partitioning concept of Pik
well recognized by the security certification authorities to be certifiable up to Common
Criteria Evaluation Assurance Level 6.

Here is described the configuration and execution of secure boot on QorIQ architecture.
Comparable features of course exist on other SoC like the Intel Core-
architecture. PikeOS of course runs on these SoC’s and provides the full bandwidth of
security described in this section.

Architecture for Secure Flash Update

Currently, software updates for automotive ECUs are predominantly performed during
service intervals within the service station. However, in order to react timely against
emerging vulnerabilities and new threats, it is desirable to perform updates more frequently,
ideally using a wireless connection to a remote server. To prevent attackers from modifying
the firmware, security becomes a crucial part of the firmware update process.

The firmware update system consists of a Backend Server (operated by the OEM or a
service provider) and the firmware update components within the embedded system.

First, the firmware has to be transferred from the Backend Server to the embedded ECU.
This can be done using a regular Internet connection (e.g., via GSM) to the Backend Server.
In order to preserve the integrity and authenticity of the firmware, digital signatures or MACs
can be used. Optionally, the firmware can also be encrypted in order to perverse the
confidentiality and thus prevent reverse engineering of the software functions. Hence, the

nclude the firmware itself (possibly encrypted) and a digital signature or
MAC value which is attached to the end of the firmware.

Second, the firmware update is forwarded to a Secure Update application that (optionally)
decrypts the firmware update. Then, the verification of the digital signature or MAC takes
place. To accomplish this, the transferred digital signature is verified using standard
cryptographic algorithms (like RSA, ECDSA, EdDSA) or – in the case of MACs

culated and checked against the transferred value. If both values
are identical, the firmware update is considered authentic and the flashing of the firmware

The architecture allows both asymmetric and symmetric algorithms. Depending on t
platform (RAM size, ROM size, CPU speed), either the first or the latter is better suited. In
the case of asymmetric cryptography, only the public key has to be stored in the embedded
system. It is no problem if a potential attacker can read this public key. However, it has to be
ensured that this key cannot be modified, because otherwise an attacker could replace it with
his own public key. Similarly, the key used to generate the MAC value has to be securely
stored and even protected from read-out by an unauthorized party. The rationale here is that
an attacker could use the key to calculate a legitimate MAC value for a manipulated firmware

Page 21 of 44

offers additional security by its partitioning capabilities. The partitioning concept of PikeOS is
well recognized by the security certification authorities to be certifiable up to Common

Here is described the configuration and execution of secure boot on QorIQ architecture.
-i or the TI OMAP

architecture. PikeOS of course runs on these SoC’s and provides the full bandwidth of

ECUs are predominantly performed during
service intervals within the service station. However, in order to react timely against
emerging vulnerabilities and new threats, it is desirable to perform updates more frequently,

n to a remote server. To prevent attackers from modifying
the firmware, security becomes a crucial part of the firmware update process.

The firmware update system consists of a Backend Server (operated by the OEM or a
ate components within the embedded system.

First, the firmware has to be transferred from the Backend Server to the embedded ECU.
This can be done using a regular Internet connection (e.g., via GSM) to the Backend Server.

and authenticity of the firmware, digital signatures or MACs
can be used. Optionally, the firmware can also be encrypted in order to perverse the
confidentiality and thus prevent reverse engineering of the software functions. Hence, the

nclude the firmware itself (possibly encrypted) and a digital signature or

Second, the firmware update is forwarded to a Secure Update application that (optionally)
the verification of the digital signature or MAC takes

place. To accomplish this, the transferred digital signature is verified using standard
in the case of MACs – the MAC

culated and checked against the transferred value. If both values
are identical, the firmware update is considered authentic and the flashing of the firmware

The architecture allows both asymmetric and symmetric algorithms. Depending on the
platform (RAM size, ROM size, CPU speed), either the first or the latter is better suited. In
the case of asymmetric cryptography, only the public key has to be stored in the embedded

key. However, it has to be
ensured that this key cannot be modified, because otherwise an attacker could replace it with
his own public key. Similarly, the key used to generate the MAC value has to be securely

unauthorized party. The rationale here is that
an attacker could use the key to calculate a legitimate MAC value for a manipulated firmware

D4.1 - Alpha OA & RTE prototypes

SAFURE D4.1

Chapter 4 Mixed

4.1 Hardware Support for Mixed

4.1.1 Hardware Counters

The number of hardware performance monitoring counters (PMCs) available in the
SnapDragon processor is very limited. For instance, cache and memory accesses can be
counted, but not whether L1 and L2 cache accesses turn out to be hits or misses. This
complicates the development of our methodology to measure the impact of contention in the
access to shared resources.

In order to interface PMCs we have developed a library with the following interface to
read/write PMCs (only main functions listed here). Names
details are provided in the library source code and will be conveniently documented in the
final prototype:

void pmu_start();

void pmu_stop();

void pmu_reset_counters();

void pmu_set_counter(unsigned int event, unsigned int

void pmu_activate_counter(unsigned int counter);

void pmu_stop_counter(unsigned int counter);

uint64_t pmu_read_counter(int counter);

void pmu_write_counter(int counter, uint64_t value);

Such library can be found in
In order to quantify the impact of contention in the access to the different shared resources
we have developed several microbenchmarks devised to stress each specific resource
separately. This allows estimating the maximum delay a requ
resource can suffer, and so these data is used to feed the templates/signatures needed for
upper-bounding contention impact.

So far stressing benchmarks have been devised to account for contention in the access to
the shared L2 cache and to the shared memory controller. Those benchmarks have the
following structure:

R1 = 0;

for (i=0; i<N; i++) {

 reset PMCs

 for (j=0; j<M; j++) {

 R2 = Load [@A+R1]

 R1 = R1+STRIDE

 R2 = Load [@A+R1]

 R1 = R1+STRIDE

 …

 R2 = Load [@A+R1]

 R1 = R1+STRIDE

 }

 read PMCs

}

Alpha OA & RTE prototypes

Mixed-Critical Run Time Engine

Hardware Support for Mixed-Criticality Multicore Systems

Hardware Counters

The number of hardware performance monitoring counters (PMCs) available in the
SnapDragon processor is very limited. For instance, cache and memory accesses can be
counted, but not whether L1 and L2 cache accesses turn out to be hits or misses. This

icates the development of our methodology to measure the impact of contention in the

In order to interface PMCs we have developed a library with the following interface to
read/write PMCs (only main functions listed here). Names are self-explanatory. Further
details are provided in the library source code and will be conveniently documented in the

void pmu_set_counter(unsigned int event, unsigned int counter);

void pmu_activate_counter(unsigned int counter);

void pmu_stop_counter(unsigned int counter);

uint64_t pmu_read_counter(int counter);

void pmu_write_counter(int counter, uint64_t value);

Such library can be found in BSCmicrobenchmarks.zip under src/pmu.h
In order to quantify the impact of contention in the access to the different shared resources
we have developed several microbenchmarks devised to stress each specific resource
separately. This allows estimating the maximum delay a request to a particular shared
resource can suffer, and so these data is used to feed the templates/signatures needed for

bounding contention impact.

So far stressing benchmarks have been devised to account for contention in the access to
ache and to the shared memory controller. Those benchmarks have the

for (j=0; j<M; j++) {

R2 = Load [@A+R1]

R1 = R1+STRIDE

R2 = Load [@A+R1]

E

R2 = Load [@A+R1]

R1 = R1+STRIDE

Page 22 of 44

Critical Run Time Engine

Criticality Multicore Systems

The number of hardware performance monitoring counters (PMCs) available in the
SnapDragon processor is very limited. For instance, cache and memory accesses can be
counted, but not whether L1 and L2 cache accesses turn out to be hits or misses. This

icates the development of our methodology to measure the impact of contention in the

In order to interface PMCs we have developed a library with the following interface to
explanatory. Further

details are provided in the library source code and will be conveniently documented in the

rc/pmu.h, src/pmu.c
In order to quantify the impact of contention in the access to the different shared resources
we have developed several microbenchmarks devised to stress each specific resource

est to a particular shared
resource can suffer, and so these data is used to feed the templates/signatures needed for

So far stressing benchmarks have been devised to account for contention in the access to
ache and to the shared memory controller. Those benchmarks have the

D4.1 - Alpha OA & RTE prototypes

SAFURE D4.1

Those benchmarks use a sufficiently large data vector starting in address @A.
Measurements are collected N times (e.g., 10) since a measurement can be polluted, from
time to time, by the Linux OS running below. M and the number of LOAD operations in the
loop are set to values sufficiently high so that the overheads of the loop and to fill the
instruction L1 cache become negligible (e.g., M=1000 and 16 LOAD operations). The
particular PMCs read and reset depend on the contention that is to be measured in a
particular experiment. Finally, STRIDE relates to the distance between memory objects
accessed so as to make sure that they either
and L2.

Some details of those microbenchmarks are omitted in this description for the sake of
simplifying the explanation. The actual microbenchmarks developed so far can be found in
BSCmicrobenchmarks.zip under
one of them can be found under

4.1.2 Signatures and Templates

As described in D3.1 (delivered by M15), timing integrity due to multicore contention is
accounted for developing resource usage signatures and templates. We refer
D3.1 for details on signatures and templates.

We can build our signatures and templates either by running microbenchmarks with the
specific number of requests that we want to upper
requests to be upper-bounded and multiplying it by the maximum per
experience on a different architecture shows that the former approach may not be fully
precise under some circumstances, so we build upon the latter.

Signatures and templates will be built upon t
microbenchmarks presented in previous subsection.

4.2 Alpha RTE Prototype

Time Critical Systems are characterized by stringent timing requirements expressed as
deadlines for the applications running in the system. Clas
full time isolation that should guarantee that no task or application can delay another task or
application.

With mixed-critical time-critical systems, the applications / tasks composing the system run
with a different level of criticality. As a consequence, the global timing requirement of the
system would now translates into no task should be allowed to delay any task with equal or
higher degree of criticality.

We further relax this requirement by allowing low critical
behaviour of high critical tasks, as long as it does not endanger the high
deadlines.

The Run Time Engine (RTE)
proactively acting during each t
three different kinds of task appearing in

Alpha OA & RTE prototypes

Those benchmarks use a sufficiently large data vector starting in address @A.
Measurements are collected N times (e.g., 10) since a measurement can be polluted, from

time, by the Linux OS running below. M and the number of LOAD operations in the
loop are set to values sufficiently high so that the overheads of the loop and to fill the
instruction L1 cache become negligible (e.g., M=1000 and 16 LOAD operations). The

rticular PMCs read and reset depend on the contention that is to be measured in a
particular experiment. Finally, STRIDE relates to the distance between memory objects
accessed so as to make sure that they either hit in L1, miss in L1 and hit in L2, or mis

Some details of those microbenchmarks are omitted in this description for the sake of
simplifying the explanation. The actual microbenchmarks developed so far can be found in

under src/ folder. Preliminary documentation describing each
one of them can be found under src/doc/ folder.

Signatures and Templates

As described in D3.1 (delivered by M15), timing integrity due to multicore contention is
accounted for developing resource usage signatures and templates. We refer
D3.1 for details on signatures and templates.

We can build our signatures and templates either by running microbenchmarks with the
specific number of requests that we want to upper-bound or by counting the number of

ded and multiplying it by the maximum per-request delay. Our
experience on a different architecture shows that the former approach may not be fully
precise under some circumstances, so we build upon the latter.

Signatures and templates will be built upon the delay per request obtained from those
microbenchmarks presented in previous subsection.

Alpha RTE Prototype

Time Critical Systems are characterized by stringent timing requirements expressed as
deadlines for the applications running in the system. Classical time-critical systems require
full time isolation that should guarantee that no task or application can delay another task or

critical systems, the applications / tasks composing the system run
evel of criticality. As a consequence, the global timing requirement of the

system would now translates into no task should be allowed to delay any task with equal or

We further relax this requirement by allowing low critical tasks to alter (slow) the timing
behaviour of high critical tasks, as long as it does not endanger the high

Run Time Engine (RTE) is in charge of guaranteeing the high-critical task deadlines by
proactively acting during each time slot on the lower critical task scheduling. We consider
three different kinds of task appearing in Figure 11:

Page 23 of 44

Those benchmarks use a sufficiently large data vector starting in address @A.
Measurements are collected N times (e.g., 10) since a measurement can be polluted, from

time, by the Linux OS running below. M and the number of LOAD operations in the
loop are set to values sufficiently high so that the overheads of the loop and to fill the
instruction L1 cache become negligible (e.g., M=1000 and 16 LOAD operations). The

rticular PMCs read and reset depend on the contention that is to be measured in a
particular experiment. Finally, STRIDE relates to the distance between memory objects

hit in L1, miss in L1 and hit in L2, or miss in L1

Some details of those microbenchmarks are omitted in this description for the sake of
simplifying the explanation. The actual microbenchmarks developed so far can be found in

on describing each

As described in D3.1 (delivered by M15), timing integrity due to multicore contention is
accounted for developing resource usage signatures and templates. We refer the reader to

We can build our signatures and templates either by running microbenchmarks with the
bound or by counting the number of

request delay. Our
experience on a different architecture shows that the former approach may not be fully

he delay per request obtained from those

Time Critical Systems are characterized by stringent timing requirements expressed as
critical systems require

full time isolation that should guarantee that no task or application can delay another task or

critical systems, the applications / tasks composing the system run
evel of criticality. As a consequence, the global timing requirement of the

system would now translates into no task should be allowed to delay any task with equal or

tasks to alter (slow) the timing
behaviour of high critical tasks, as long as it does not endanger the high-critical task

critical task deadlines by
ime slot on the lower critical task scheduling. We consider

D4.1 - Alpha OA & RTE prototypes

SAFURE D4.1

• High critical task, which deadlines have to be guaranteed. The
be altered by the RTE.

• Low critical task is allowed to run up to an available budget in term of resource
access. If the low-critical task can complete without spending the entire allocated
budget, it does so, else it is suspended by
(when a new budget will be available).

• QoS-aware Firm real time tasks are low critical tasks that adapt their behaviour to the
remaining resource budget. Rather than reactively suspending the task when it
reaches its budget, the task can shift to some kind of degraded mode that is less time
consuming but usually provides a less accurate result.

The available budget for low
phase of the critical application and the target architecture relying on the signatures
presented in this chapter. It heavily relies on Performance Monitor Counters to determine the
number of access to each shared resource.

The first release of the RTE will only encompass High
QoS-aware tasks will be added in a later time. The whole time
in Chapter 5, including the hardware and software environment.

We will also mainly focus on resource a
design such as the requirements can easily be shifted to power and temperature
requirements. In such a context, thermal models as defined in WP2 will be used to compute
the available budget, and hardware t
counters.

4.3 Adding thermal protection to mixed criticality scheduling

Temperature adds a new dimension to the Mixed
hardware platform will cause thermal inte
what we mean by thermal interferences we first explain thermal constraints and thermal
protection mechanisms which are in place in modern processing platforms.

Modern processing platforms tend to have hig
processor activity, switching too many transistors at a time generates more heat than can be
dissipated, possibly damaging the chip due to exceeding the maximum safe temperature. To
alleviate this, hardware driven Dynamic Thermal Management (DTM) is used. DTM resorts to
techniques (e.g., sharp speed throttling) that severely impair performance.

Alpha OA & RTE prototypes

Figure 11: RTE Behaviour

, which deadlines have to be guaranteed. Their scheduling shall not
be altered by the RTE.

is allowed to run up to an available budget in term of resource
critical task can complete without spending the entire allocated

budget, it does so, else it is suspended by the RTE at least until the next time slot
(when a new budget will be available).

Firm real time tasks are low critical tasks that adapt their behaviour to the
remaining resource budget. Rather than reactively suspending the task when it

its budget, the task can shift to some kind of degraded mode that is less time
consuming but usually provides a less accurate result.

The available budget for low-critical and QoS-aware task is defined during a first profiling
ation and the target architecture relying on the signatures

presented in this chapter. It heavily relies on Performance Monitor Counters to determine the
number of access to each shared resource.

The first release of the RTE will only encompass High-Critical and Low
aware tasks will be added in a later time. The whole time-critical prototype is presented

, including the hardware and software environment.

We will also mainly focus on resource access and timing budget first, but the RTE will be
design such as the requirements can easily be shifted to power and temperature
requirements. In such a context, thermal models as defined in WP2 will be used to compute
the available budget, and hardware thermal probes will be used in lieu of classical hardware

Adding thermal protection to mixed criticality scheduling

Temperature adds a new dimension to the Mixed-Criticality scheduling problem. Sharing a
hardware platform will cause thermal interferences between criticality levels. To understand
what we mean by thermal interferences we first explain thermal constraints and thermal
protection mechanisms which are in place in modern processing platforms.

Modern processing platforms tend to have high power densities. Therefore, in periods of high
processor activity, switching too many transistors at a time generates more heat than can be
dissipated, possibly damaging the chip due to exceeding the maximum safe temperature. To

driven Dynamic Thermal Management (DTM) is used. DTM resorts to
techniques (e.g., sharp speed throttling) that severely impair performance.

Page 24 of 44

ir scheduling shall not

is allowed to run up to an available budget in term of resource
critical task can complete without spending the entire allocated

the RTE at least until the next time slot

Firm real time tasks are low critical tasks that adapt their behaviour to the
remaining resource budget. Rather than reactively suspending the task when it

its budget, the task can shift to some kind of degraded mode that is less time

aware task is defined during a first profiling
ation and the target architecture relying on the signatures

presented in this chapter. It heavily relies on Performance Monitor Counters to determine the

al and Low-Critical tasks, and
critical prototype is presented

ccess and timing budget first, but the RTE will be
design such as the requirements can easily be shifted to power and temperature
requirements. In such a context, thermal models as defined in WP2 will be used to compute

hermal probes will be used in lieu of classical hardware

Adding thermal protection to mixed criticality scheduling

Criticality scheduling problem. Sharing a
rferences between criticality levels. To understand

what we mean by thermal interferences we first explain thermal constraints and thermal
protection mechanisms which are in place in modern processing platforms.

h power densities. Therefore, in periods of high
processor activity, switching too many transistors at a time generates more heat than can be
dissipated, possibly damaging the chip due to exceeding the maximum safe temperature. To

driven Dynamic Thermal Management (DTM) is used. DTM resorts to
techniques (e.g., sharp speed throttling) that severely impair performance.

D4.1 - Alpha OA & RTE prototypes

SAFURE D4.1

In a mixed-critical setting, DTM significantly complicates the scheduling problem. We can
imagine a scenario where a low criticality task over exercises the CPU and causes DTM to
be triggered. Now, while DTM is active, a high criticality task may be scheduled for
execution. Consequently, the high criticality task will experience degraded performance;
which in the worst-case, may lead to a deadline miss. In this manner, the low criticality task
can interfere with the execution of hi criticality task.

4.3.1 Thermal protection mechanism

To ensure thermal protection, we adopt a thermal analysis based approach. Based on the
application and task model, we characterize the worst
Critical tasks. If the worst-case temperature is higher than the temperature threshold where
DTM is enabled, the mixed criticality taskset is deemed “unsafe”. If the worst
temperature is lower than the temperature threshold, the additional temperature margin is
used to assign a thermal budget

4.3.1.1 Thermal model

We assume that the processor has active and idle states; with each state having
power consumption. We approximate the heat flow in a system by the following differential
equation:

Ω

Where Ω, P, G and Tamb are thermal capacity, power consumption, thermal conducta
ambient temperature respectively. If power consumption is assumed constant within a given
interval, then Equation 1 has the following closed form solution:

T (t)

4.3.1.2 Adding thermal protection to RTE Prototype

We can use [10] to determine the worst
Critical tasks are executing on the system.
execution trace which would lead to maximum system temperature; given task scheduling
constraints and system thermal model. This
simulated to determine the maximum temperature. The maximum te
to determine/assign thermal budgets
defined as the maximum allowed temperature increase caused by the execution of a Lo
Critical/QoS-aware task. Thermal budget is chosen such th
runtime, a Lo-critical task will be suspended if it exceeds its thermal budget. A QoS
task may degrade its service to meet thermal budget constraints.

Alpha OA & RTE prototypes

critical setting, DTM significantly complicates the scheduling problem. We can
a low criticality task over exercises the CPU and causes DTM to

be triggered. Now, while DTM is active, a high criticality task may be scheduled for
execution. Consequently, the high criticality task will experience degraded performance;

case, may lead to a deadline miss. In this manner, the low criticality task
can interfere with the execution of hi criticality task.

Thermal protection mechanism

To ensure thermal protection, we adopt a thermal analysis based approach. Based on the
cation and task model, we characterize the worst-case temperature for executing Hi

case temperature is higher than the temperature threshold where
DTM is enabled, the mixed criticality taskset is deemed “unsafe”. If the worst
temperature is lower than the temperature threshold, the additional temperature margin is

thermal budget to the remaining Lo-Critical tasks.

We assume that the processor has active and idle states; with each state having
power consumption. We approximate the heat flow in a system by the following differential

Ω
dT

dt
= − G(T − T

amb
)+P

Equation 1

are thermal capacity, power consumption, thermal conducta
ambient temperature respectively. If power consumption is assumed constant within a given

has the following closed form solution:

)= T
∞
+(T (t

0
)− T

∞
). e

− a .(t− t
0
)

Equation 2

Adding thermal protection to RTE Prototype

to determine the worst-case maximum system temperature, when only Hi
Critical tasks are executing on the system. [10] presents an approach to determine the task
execution trace which would lead to maximum system temperature; given task scheduling
constraints and system thermal model. This thermal worst-case execution trace is then
simulated to determine the maximum temperature. The maximum temperature is then used

thermal budgets to Lo-Critical and QoS-aware tasks. A thermal budget is
defined as the maximum allowed temperature increase caused by the execution of a Lo

aware task. Thermal budget is chosen such that DTM is never triggered. At
critical task will be suspended if it exceeds its thermal budget. A QoS

task may degrade its service to meet thermal budget constraints.

Page 25 of 44

critical setting, DTM significantly complicates the scheduling problem. We can
a low criticality task over exercises the CPU and causes DTM to

be triggered. Now, while DTM is active, a high criticality task may be scheduled for
execution. Consequently, the high criticality task will experience degraded performance;

case, may lead to a deadline miss. In this manner, the low criticality task

To ensure thermal protection, we adopt a thermal analysis based approach. Based on the
case temperature for executing Hi-

case temperature is higher than the temperature threshold where
DTM is enabled, the mixed criticality taskset is deemed “unsafe”. If the worst-case
temperature is lower than the temperature threshold, the additional temperature margin is

We assume that the processor has active and idle states; with each state having a different
power consumption. We approximate the heat flow in a system by the following differential

are thermal capacity, power consumption, thermal conductance and
ambient temperature respectively. If power consumption is assumed constant within a given

case maximum system temperature, when only Hi-
to determine the task

execution trace which would lead to maximum system temperature; given task scheduling
execution trace is then
mperature is then used

aware tasks. A thermal budget is
defined as the maximum allowed temperature increase caused by the execution of a Lo-

at DTM is never triggered. At
critical task will be suspended if it exceeds its thermal budget. A QoS-aware

D4.1 - Alpha OA & RTE prototypes

SAFURE D4.1

Chapter 5 WP4 Time

As presented in previous chapter, the t
critical, qos-aware tasks as well as the RTE engine.
for this WP4 prototype.

Mixed-critical tasks as well as the RTE will run as single
threads on top of the PikeOS operating system. We will develop a driver for PikeOS to
provide privileged access to the PMC hardware counters. The prototype will target the
Dragonboard 810 architecture thought the ARM
system.

Figure 12: Target environment for the Time

As the ARM PSP will first be developed for the Juno board, we will start with a baremetal
prototype where the RTE will a
consequence, several versions of the application will be provided. The selected applications
are presented in the next subsections.

5.1 Hard Real Time High
System

The selected hard real-time high
mark-up Flight Management System (FMS) application from the avionics domain.

The purpose of the Flight Management System (FMS) in modern avionics is to provide
crew with centralized control for the aircraft navigation sensors, computer based flight
planning, fuel management, radio navigation management,
information. Taking charge of a wide variety of in
the workload of the flight crew allowing us to reduce crew size.

The FMS is especially responsible for services that allow in
From pre-set flightplans (take
localization, trajectory computation allowing the plane to follow the flightplan, and reaction to
pilot directives.

The FMS application is constituted by 25 time
task groups as presented in Figure

Alpha OA & RTE prototypes

WP4 Time-Critical Prototype

As presented in previous chapter, the time-critical prototype encompasses high
aware tasks as well as the RTE engine. Figure 12 details the target environment

critical tasks as well as the RTE will run as single or multiple partitions applications or
threads on top of the PikeOS operating system. We will develop a driver for PikeOS to
provide privileged access to the PMC hardware counters. The prototype will target the
Dragonboard 810 architecture thought the ARM64 PSP present in the PikeOS operating

Target environment for the Time-Critical prototype

As the ARM PSP will first be developed for the Juno board, we will start with a baremetal
prototype where the RTE will also be in charge of scheduling the baremetal tasks. As a
consequence, several versions of the application will be provided. The selected applications
are presented in the next subsections.

Hard Real Time High-critical Application: Flight Management

high-critical application for the WP4 time-critical prototype is a
up Flight Management System (FMS) application from the avionics domain.

The purpose of the Flight Management System (FMS) in modern avionics is to provide
crew with centralized control for the aircraft navigation sensors, computer based flight
planning, fuel management, radio navigation management, and geographical situation
information. Taking charge of a wide variety of in-flight tasks, the FMS allows
the workload of the flight crew allowing us to reduce crew size.

The FMS is especially responsible for services that allow in-flight guidance of the plane.
set flightplans (take-off airport to landing airport), the FMS is responsible

localization, trajectory computation allowing the plane to follow the flightplan, and reaction to

The FMS application is constituted by 25 time-critical tasks that are regrouped into different
Figure 13.

Page 26 of 44

Critical Prototype

critical prototype encompasses high-critical, low-
details the target environment

or multiple partitions applications or
threads on top of the PikeOS operating system. We will develop a driver for PikeOS to
provide privileged access to the PMC hardware counters. The prototype will target the

64 PSP present in the PikeOS operating

Critical prototype

As the ARM PSP will first be developed for the Juno board, we will start with a baremetal
lso be in charge of scheduling the baremetal tasks. As a

consequence, several versions of the application will be provided. The selected applications

critical Application: Flight Management

critical prototype is a
up Flight Management System (FMS) application from the avionics domain.

The purpose of the Flight Management System (FMS) in modern avionics is to provide the
crew with centralized control for the aircraft navigation sensors, computer based flight

and geographical situation
flight tasks, the FMS allows us to reduce

flight guidance of the plane.
off airport to landing airport), the FMS is responsible for plane

localization, trajectory computation allowing the plane to follow the flightplan, and reaction to

critical tasks that are regrouped into different

D4.1 - Alpha OA & RTE prototypes

SAFURE D4.1

The Sensors task group is in charge of generating all the localization data from various
sensors (Anemo-barometric sensors, IRS (Pure Inertia Reference System), GPS (Global
Positioning System), HYB (Hybrid Inertia Reference

The Localization task group is in charge of analysing outputs of sensors to generate the
most probable position of the aircraft (BCP). This localization data is composed of: Position
(latitude, longitude, and altitude), Attitude (P
(Ground speed and Vertical Speed), Acceleration (lateral and longitudinal), and Wind related
data (speed and angle).

Note that a single sensor may not provide the full Localization information. The Doppler
sensor for instance does not provide any position related information such as longitude and
latitude. It however provides very accurate velocity (speed related) information. The role of
the Localization task group is therefore to merge information from the sens
trustworthiness levels.

The purpose of the Nearest
airports, during the flight. This information is useful in case the pilot decides to have an
impromptu landing for some reason. The tasks from this task group do not participate directly
in flight management, and the computed output only has to be sent to the display.

The Flightplan task group is in charge of managing and processing modification requests on
the flightplans that are pre-set routes used to guide the airplane. Three different flightplans
coexist concurrently on the system:

• The active flightplan is the flightplan currently used to guide the aircraft.

• The secondary flightplan is an alternative route toward the de

consider for instance an alternative

has a significant impact on the target airport approach procedure.

• The temporary flightplan is an intermediate flightplan allowing the crew to enter a

flightplan and check for the modification before applying.

The flightplan task group is only composed of aperiodic tasks that correspond to the pilot’s
modifications to the pre-set flightplans.

Alpha OA & RTE prototypes

task group is in charge of generating all the localization data from various
barometric sensors, IRS (Pure Inertia Reference System), GPS (Global

Positioning System), HYB (Hybrid Inertia Reference System), Doppler sensor)

task group is in charge of analysing outputs of sensors to generate the
most probable position of the aircraft (BCP). This localization data is composed of: Position
(latitude, longitude, and altitude), Attitude (Pitch, Roll and Yaw angular rates), Velocity
(Ground speed and Vertical Speed), Acceleration (lateral and longitudinal), and Wind related

Note that a single sensor may not provide the full Localization information. The Doppler
for instance does not provide any position related information such as longitude and

latitude. It however provides very accurate velocity (speed related) information. The role of
the Localization task group is therefore to merge information from the sens

 Airports task group is to continually build a list of the nearest
airports, during the flight. This information is useful in case the pilot decides to have an

reason. The tasks from this task group do not participate directly
in flight management, and the computed output only has to be sent to the display.

task group is in charge of managing and processing modification requests on
set routes used to guide the airplane. Three different flightplans

coexist concurrently on the system:

The active flightplan is the flightplan currently used to guide the aircraft.

The secondary flightplan is an alternative route toward the de

consider for instance an alternative-landing runway on the destination airport, which

has a significant impact on the target airport approach procedure.

The temporary flightplan is an intermediate flightplan allowing the crew to enter a

flightplan and check for the modification before applying.

The flightplan task group is only composed of aperiodic tasks that correspond to the pilot’s
set flightplans.

Page 27 of 44

task group is in charge of generating all the localization data from various
barometric sensors, IRS (Pure Inertia Reference System), GPS (Global

System), Doppler sensor)

task group is in charge of analysing outputs of sensors to generate the
most probable position of the aircraft (BCP). This localization data is composed of: Position

itch, Roll and Yaw angular rates), Velocity
(Ground speed and Vertical Speed), Acceleration (lateral and longitudinal), and Wind related

Note that a single sensor may not provide the full Localization information. The Doppler
for instance does not provide any position related information such as longitude and

latitude. It however provides very accurate velocity (speed related) information. The role of
the Localization task group is therefore to merge information from the sensors with different

Airports task group is to continually build a list of the nearest
airports, during the flight. This information is useful in case the pilot decides to have an

reason. The tasks from this task group do not participate directly
in flight management, and the computed output only has to be sent to the display.

task group is in charge of managing and processing modification requests on
set routes used to guide the airplane. Three different flightplans

The active flightplan is the flightplan currently used to guide the aircraft.

The secondary flightplan is an alternative route toward the destination. It could

landing runway on the destination airport, which

The temporary flightplan is an intermediate flightplan allowing the crew to enter a new

The flightplan task group is only composed of aperiodic tasks that correspond to the pilot’s

D4.1 - Alpha OA & RTE prototypes

SAFURE D4.1

Figure 13: FMS Application Task flow graph

Page 28 of 44

D4.1 - Alpha OA & RTE prototypes

SAFURE D4.1

The Trajectory task group aims at computing both lateral and vertical profiles for the three
flightplans set by the flightplan task. The lateral profile is composed of waypoints as well as
leg information (path before, after and between the waypoints). The vertical profile provides
altitude information (cruise altitude interceptions, crossing altitudes and slope angles) as well
as performance information (estimated time of arrival, estimated fuel on board).

Trajectory computation is performed for each of the three above defined flightplans. The
inputs of trajectory computation are both the flightplan and the best computed position (BCP)
of the plane that comes from the localization task group. The computed trajectory tri
tangent the pre-set flightplan while respecting passenger wellness (limiting roll and pitch) as
well as physical limitation of the plane actuators such as flaps. The trajectory information is
later used by the plane autopilot to actually interact wit

The FMS application also embeds a large
cache structure. It is both linearly and regularly accessed by task from the Nearest airport
task group, as well as randomly and sporadically accessed b
group. Accesses to this database in the main memory is very interference prone.

All the tasks composing the FMS have stringent
4 respectively show the time requirements of periodic and aperiodic tasks composing the
application.

Periodic Task

SENSC1

LOCC1

LOCC2

LOCC3

LOCC4

TRAJR1

TRAJR2

TRAJR3

NEARP1

Table 3

In the FMS, periodic tasks are characterized by an activation period as well as a deadline
that always corresponds to the next activation period.

Aperiodic

Task

SENSA1

SENSA2

SENSA3

SENSA4

LOCA1

LOCA2

LOCA3

FPLNA1

FPLNA2

FPLNA3

FPLNA4

FPLNA5

FPLNA6

Alpha OA & RTE prototypes

task group aims at computing both lateral and vertical profiles for the three
flightplans set by the flightplan task. The lateral profile is composed of waypoints as well as

after and between the waypoints). The vertical profile provides
altitude information (cruise altitude interceptions, crossing altitudes and slope angles) as well
as performance information (estimated time of arrival, estimated fuel on board).

omputation is performed for each of the three above defined flightplans. The
inputs of trajectory computation are both the flightplan and the best computed position (BCP)
of the plane that comes from the localization task group. The computed trajectory tri

set flightplan while respecting passenger wellness (limiting roll and pitch) as
well as physical limitation of the plane actuators such as flaps. The trajectory information is
later used by the plane autopilot to actually interact with these actuators.

The FMS application also embeds a large Navigation Database that does not fit in any
cache structure. It is both linearly and regularly accessed by task from the Nearest airport
task group, as well as randomly and sporadically accessed by tasks of the Flightplan task
group. Accesses to this database in the main memory is very interference prone.

All the tasks composing the FMS have stringent real-time requirements.
spectively show the time requirements of periodic and aperiodic tasks composing the

Periodic Task Period / Deadline

200ms

200ms

1.6s

5s

1s

200ms

300ms

300ms

1s

3: FMS: Time requirements of periodic tasks

In the FMS, periodic tasks are characterized by an activation period as well as a deadline
that always corresponds to the next activation period.

Maximum activations Deadline

2 per 200ms 50ms

2 per 200ms 50ms

2 per 200ms 50ms

2 per 200ms 50ms

2 per 200ms 100ms

5 per 5s 50ms

5 per 1s 50ms

once at initialization 1s

1 per 1s 1s

once at initialization 1s

1 per 1s 1s

1 per 1s 1s

1 per 1s 50ms

Page 29 of 44

task group aims at computing both lateral and vertical profiles for the three
flightplans set by the flightplan task. The lateral profile is composed of waypoints as well as

after and between the waypoints). The vertical profile provides
altitude information (cruise altitude interceptions, crossing altitudes and slope angles) as well
as performance information (estimated time of arrival, estimated fuel on board).

omputation is performed for each of the three above defined flightplans. The
inputs of trajectory computation are both the flightplan and the best computed position (BCP)
of the plane that comes from the localization task group. The computed trajectory tries to

set flightplan while respecting passenger wellness (limiting roll and pitch) as
well as physical limitation of the plane actuators such as flaps. The trajectory information is

that does not fit in any
cache structure. It is both linearly and regularly accessed by task from the Nearest airport

y tasks of the Flightplan task
group. Accesses to this database in the main memory is very interference prone.

. Table 3 and Table
spectively show the time requirements of periodic and aperiodic tasks composing the

In the FMS, periodic tasks are characterized by an activation period as well as a deadline

D4.1 - Alpha OA & RTE prototypes

SAFURE D4.1

FPLNA7

FPLNA8

TRAJA1

Table 4

All aperiodic tasks are sporadic, and are cha
per period of time. This period of time is usually defined by the period of the periodic task
consuming the data produced by the aperiodic task. Aperiodic tasks also have to respect a
deadline provided by Table 4.

We will develop both a baremetal and a single
application.

5.2 Soft Real Time Low
Distributed Control System

The selected soft low-critical
control-command application implementing a bi
tasks composing the applications, appearing in

• The Generator process is generat
on the first pass, or iterates on the received data on the next passes.

• The Splitter process splits the data received from a
to all the filtering tasks.

• The LoPass and the HiPass
data.

• The Aggregator process fuses the previously computed filtered data and sends it
back as feedback to the generator task.

• The Display process finally displays the fused data.

Figure 14: Partitioned BiQuad application implemented in PikeOS

Figure 14 illustrates the multi-
different partitions and 6 PikeOS threads imple
exhibits the use of the possible communication mediums available in PikeOS, both for
intra/inter-partition communication and for performing heavy load floating

Several other implementations are a
single-partition version.

Alpha OA & RTE prototypes

1 per 1s 50ms

1 per 1s 50ms

once at initialization 50ms

4: FMS: Time requirements of aperiodic tasks

All aperiodic tasks are sporadic, and are characterized by a maximum number of activation
per period of time. This period of time is usually defined by the period of the periodic task
consuming the data produced by the aperiodic task. Aperiodic tasks also have to respect a

We will develop both a baremetal and a single-partition PikeOS native version of the

Soft Real Time Low-critical Application: Bi
Distributed Control System

critical real-time application for the WP4 time-critical prototype is a
command application implementing a bi-quadratic distributed control system. The

tasks composing the applications, appearing in Figure 14, are:

process is generating the input data. It either self-
on the first pass, or iterates on the received data on the next passes.

process splits the data received from a FIFO to make it globally available
to all the filtering tasks.

HiPass processes are applying some bi quadratic filtering to the

process fuses the previously computed filtered data and sends it
back as feedback to the generator task.

process finally displays the fused data.

Partitioned BiQuad application implemented in PikeOS

-partition PikeOS version of this application. It is composed of 3
different partitions and 6 PikeOS threads implementing the different tasks. This example
exhibits the use of the possible communication mediums available in PikeOS, both for

partition communication and for performing heavy load floating-point computation.

Several other implementations are also realized, including a bare metal version, and a

Page 30 of 44

racterized by a maximum number of activation
per period of time. This period of time is usually defined by the period of the periodic task
consuming the data produced by the aperiodic task. Aperiodic tasks also have to respect a

partition PikeOS native version of the

pplication: Bi-Quadratic

critical prototype is a
quadratic distributed control system. The

-generates the data
on the first pass, or iterates on the received data on the next passes.

to make it globally available

processes are applying some bi quadratic filtering to the

process fuses the previously computed filtered data and sends it

Partitioned BiQuad application implemented in PikeOS

partition PikeOS version of this application. It is composed of 3
menting the different tasks. This example

exhibits the use of the possible communication mediums available in PikeOS, both for
point computation.

lso realized, including a bare metal version, and a

D4.1 - Alpha OA & RTE prototypes

SAFURE D4.1

All the tasks composing the BiQuad application have soft
in term of data throughput. The quantity of data manipulated, the complexity of the
computation, and the throughput requirements can all be parameterized in the application.
We will select these requirements such that the high
the generated interference without the RTE. The runtime engine will degrade t
behaviour of the BiQuad application to ensure correct execution of the critical application.

5.3 Firm Real Time QOS

The implementation of the last application composing the prototype has not started yet, but
we already defined its specification. Contrary to the soft real
if the resource budget is spent, the firm real time application reactively adapt
available budget.

We selected a video broadcasting application based on t
vary the decoded frame rate accordingly to the resource available. The task graph of the
application is presented in Figure

Figure 15

Before decoding each frame composing the video, this application will receive from the RTE
the available resource budget, and decide if the current frame should be decoded or skipped.
This way, rather than freezing the video because of more c
reduced, providing the user with a more acceptable experience.

As a baseline, this application will also be run without the QoS mechanism enabled, and we
will compare the number of frame skipped with QoS versus the numb
introduced latency without QoS (letting the RTE consider that the application is soft
time).

The initial timing requirements
per second, as per standard video broadcasti

Alpha OA & RTE prototypes

All the tasks composing the BiQuad application have soft real-time requirements
in term of data throughput. The quantity of data manipulated, the complexity of the

utation, and the throughput requirements can all be parameterized in the application.
We will select these requirements such that the high-critical application can be impacted by
the generated interference without the RTE. The runtime engine will degrade t
behaviour of the BiQuad application to ensure correct execution of the critical application.

Firm Real Time QOS-aware Application: Video broadcasting

The implementation of the last application composing the prototype has not started yet, but
already defined its specification. Contrary to the soft real-time application that is stopped

if the resource budget is spent, the firm real time application reactively adapt

We selected a video broadcasting application based on the MJPEG format that allows us to
vary the decoded frame rate accordingly to the resource available. The task graph of the

Figure 15.

15: Firm Real Time Application Task Flow Graph

Before decoding each frame composing the video, this application will receive from the RTE
the available resource budget, and decide if the current frame should be decoded or skipped.
This way, rather than freezing the video because of more critical tasks, the framerate will be
reduced, providing the user with a more acceptable experience.

As a baseline, this application will also be run without the QoS mechanism enabled, and we
will compare the number of frame skipped with QoS versus the number of frame delayed and
introduced latency without QoS (letting the RTE consider that the application is soft

timing requirements of the MJPEG application correspond to decoding 25 frames
per second, as per standard video broadcasting.

Page 31 of 44

time requirements expressed
in term of data throughput. The quantity of data manipulated, the complexity of the

utation, and the throughput requirements can all be parameterized in the application.
critical application can be impacted by

the generated interference without the RTE. The runtime engine will degrade the timing
behaviour of the BiQuad application to ensure correct execution of the critical application.

pplication: Video broadcasting

The implementation of the last application composing the prototype has not started yet, but
time application that is stopped

if the resource budget is spent, the firm real time application reactively adapts to the

he MJPEG format that allows us to
vary the decoded frame rate accordingly to the resource available. The task graph of the

Before decoding each frame composing the video, this application will receive from the RTE
the available resource budget, and decide if the current frame should be decoded or skipped.

ritical tasks, the framerate will be

As a baseline, this application will also be run without the QoS mechanism enabled, and we
er of frame delayed and

introduced latency without QoS (letting the RTE consider that the application is soft-real

of the MJPEG application correspond to decoding 25 frames

D4.1 - Alpha OA & RTE prototypes

SAFURE D4.1

Chapter 6 Freedom f

mixed-critical systems

In automotive systems, Safety Analysis is based on the ISO 26262 standard
26262 provides design guidelines to accomplish at SW level “Freedom of Interfer
allowing to avoid that safety-relevant components and data could be corrupted by non
components.
In fact, the “Freedom of Interference”
software partition to another software partitio
Automotive standard, like AUTOSAR, defines and designs safety mechanisms to guarantee
“Freedom of Interference” (see
system thought they affect system performances.
by ISO-26262, like "Freedom of interference”, can take a real advantage from the hardware
separation (e.g. different private memories) provided by multi
The SAFURE Automotive multicore use case
concept into account. In particular,
the same device to reduce cost. The special safety requirements of the Engine and
Transmission Control functionality mus
isolation of the two parts. In order to achieve these requirements MAG, for SAFURE WP4,
designed two optimized firmware drivers: TPROT and MPU (see

6.1 Safety and freedo

In automotive systems, Safety Analysis is based on the ISO 26262 standard
standard consists of 9 normative parts and a guideline for the ISO 26262 as the 10th part.
Here some extracts from ISO 26262 are provided, that describe different Safety Analysis
area covered by ISO-26262, for details please refer to the full ISO 26262 documentation

ISO-26262 provides design guidelines to accomplish at SW level “F
thus allowing to avoid that safety
ASIL components.

Automotive Scenario related to SAFURE Project will implement protection mechanisms
aligned to these ISO guidelines.

6.1.1 ISO 26262 – Timing Protection

ISO 26262-6, chapter 7 [11]
analyse the dynamic design aspects (temporal constraints) of the software components. To
determine the dynamic behavio
needs to consider:

• the different operating states (e.g. power up, shut down, normal operation, calibration
and diagnosis).

• the communication relationships and their allocation to the system hardw

CPU and communication channels).

Alpha OA & RTE prototypes

Freedom from Interferences for

critical systems

In automotive systems, Safety Analysis is based on the ISO 26262 standard
26262 provides design guidelines to accomplish at SW level “Freedom of Interfer

relevant components and data could be corrupted by non

“Freedom of Interference” objective is to prevent propagation of a failure in one
software partition to another software partition.

AUTOSAR, defines and designs safety mechanisms to guarantee
(see chapter 6.3), these mechanisms are necessary on multicore

system thought they affect system performances. Moreover, some of the issues addressed
26262, like "Freedom of interference”, can take a real advantage from the hardware

separation (e.g. different private memories) provided by multi-core microcontrollers.
The SAFURE Automotive multicore use case (see D1.1) takes “Freedom of Interference”
concept into account. In particular, Engine Control and Transmission Control are realized on
the same device to reduce cost. The special safety requirements of the Engine and
Transmission Control functionality must be covered by ensuring spatial and temporal
isolation of the two parts. In order to achieve these requirements MAG, for SAFURE WP4,
designed two optimized firmware drivers: TPROT and MPU (see chapter 6.3

Safety and freedom from interferences mechanisms

In automotive systems, Safety Analysis is based on the ISO 26262 standard
standard consists of 9 normative parts and a guideline for the ISO 26262 as the 10th part.

rom ISO 26262 are provided, that describe different Safety Analysis
26262, for details please refer to the full ISO 26262 documentation

26262 provides design guidelines to accomplish at SW level “Freedom of Interference”,
thus allowing to avoid that safety-relevant components and data could be corrupted by non

Automotive Scenario related to SAFURE Project will implement protection mechanisms
aligned to these ISO guidelines.

Timing Protection

[11] covers software architectural design and describes how to
analyse the dynamic design aspects (temporal constraints) of the software components. To
determine the dynamic behaviour (e.g. of tasks, time slices and interrupts) the developer

the different operating states (e.g. power up, shut down, normal operation, calibration

the communication relationships and their allocation to the system hardw

CPU and communication channels).

Page 32 of 44

nces for

In automotive systems, Safety Analysis is based on the ISO 26262 standard [11]. The ISO
26262 provides design guidelines to accomplish at SW level “Freedom of Interference”, thus

relevant components and data could be corrupted by non-ASIL

objective is to prevent propagation of a failure in one

AUTOSAR, defines and designs safety mechanisms to guarantee
these mechanisms are necessary on multicore

some of the issues addressed
26262, like "Freedom of interference”, can take a real advantage from the hardware

core microcontrollers.
“Freedom of Interference”

Engine Control and Transmission Control are realized on
the same device to reduce cost. The special safety requirements of the Engine and

t be covered by ensuring spatial and temporal
isolation of the two parts. In order to achieve these requirements MAG, for SAFURE WP4,

6.3).

interferences mechanisms

In automotive systems, Safety Analysis is based on the ISO 26262 standard [11]. The
standard consists of 9 normative parts and a guideline for the ISO 26262 as the 10th part.

rom ISO 26262 are provided, that describe different Safety Analysis
26262, for details please refer to the full ISO 26262 documentation [11].

reedom of Interference”,
relevant components and data could be corrupted by non-

Automotive Scenario related to SAFURE Project will implement protection mechanisms

covers software architectural design and describes how to
analyse the dynamic design aspects (temporal constraints) of the software components. To

ur (e.g. of tasks, time slices and interrupts) the developer

the different operating states (e.g. power up, shut down, normal operation, calibration

the communication relationships and their allocation to the system hardware (e.g.

D4.1 - Alpha OA & RTE prototypes

SAFURE D4.1

The determination of the dynamic behaviour of multicore systems is possible with a
simulation approach. Temporal isolation is required to protect the execution time of critical
tasks (software partitions) from unw
faults) such as blocking of execution, deadlocks, livelocks, incorrect allocation of execution
time, and incorrect synchronization between software elements.

Complementing the runtime mechanisms for tim
tolerant strategies and architectural approaches for fault isolation.

The normative regulation enumerates that these faults can be prevented by using traditional
approaches like time triggered scheduling, cycling
priority based scheduling. In this research project also dynamic scheduling approaches will
be analysed.

Following annex D of ISO 26262
has to be supervised by monitoring of processor execution time of software partitions in
accordance with their allocation, program sequence monitoring and arrival rate monitoring.

6.1.2 ISO 26262 – Memory and exchange of information Protection

With respect to memory, the effects of faults such as those listed below can be considered
for software elements executed in each software partition:

• corruption of content (it can cause a hardware reset),

• read or write access to memory allocated to another software e

an unpredictable behavior

Mechanisms such as memory protection

redundancy check (CRC), redundant storage, restricted access to memory, static analysis of

memory accessing software and static allocation can be used to prevent faults.

With respect to the exchange of information, the causes for faults or effects of faults such as
those listed below can be considered for each sender or each receiver:

• repetition of information,

• loss of information,

• delay of information,

• insertion of information,

• masquerade or incorrect addressing of information,

• incorrect sequence of information,

• corruption of information,

• asymmetric information sent from a sender to multiple receivers,

• information from a sender received by only a subset of the receivers, and

• blocking access to a communication channel.

6.2 AUTOSAR OS-Application and Protection Support

AUTOSAR specifications introduce OS

COUNTERs, ALARMS, Schedule Tables), that could resemble to processes (without

memory virtualization).

The Operating System module is responsible for scheduling the available processing

resource between the OS-Applications that share the processor. If OS

Alpha OA & RTE prototypes

The determination of the dynamic behaviour of multicore systems is possible with a
simulation approach. Temporal isolation is required to protect the execution time of critical
tasks (software partitions) from unwanted interference caused by faults (including timing

blocking of execution, deadlocks, livelocks, incorrect allocation of execution
time, and incorrect synchronization between software elements.

Complementing the runtime mechanisms for time isolation, we will also investigate fault
tolerant strategies and architectural approaches for fault isolation.

The normative regulation enumerates that these faults can be prevented by using traditional
approaches like time triggered scheduling, cycling execution scheduling policy and fixed
priority based scheduling. In this research project also dynamic scheduling approaches will

Following annex D of ISO 26262-6 [11] freedom from interference by software partiti
has to be supervised by monitoring of processor execution time of software partitions in
accordance with their allocation, program sequence monitoring and arrival rate monitoring.

Memory and exchange of information Protection

t to memory, the effects of faults such as those listed below can be considered
for software elements executed in each software partition:

corruption of content (it can cause a hardware reset),

read or write access to memory allocated to another software element (it can cause

behavior of the Control Unit).

memory protection, parity bits, error-correcting code (ECC), cyclic

redundancy check (CRC), redundant storage, restricted access to memory, static analysis of

cessing software and static allocation can be used to prevent faults.

With respect to the exchange of information, the causes for faults or effects of faults such as
those listed below can be considered for each sender or each receiver:

mation,

insertion of information,

masquerade or incorrect addressing of information,

incorrect sequence of information,

corruption of information,

asymmetric information sent from a sender to multiple receivers,

nformation from a sender received by only a subset of the receivers, and

blocking access to a communication channel.

Application and Protection Support

AUTOSAR specifications introduce OS-Applications as entities containers (TASKs, ISR2s,

ERs, ALARMS, Schedule Tables), that could resemble to processes (without

The Operating System module is responsible for scheduling the available processing

Applications that share the processor. If OS

Page 33 of 44

The determination of the dynamic behaviour of multicore systems is possible with a
simulation approach. Temporal isolation is required to protect the execution time of critical

anted interference caused by faults (including timing
blocking of execution, deadlocks, livelocks, incorrect allocation of execution

e isolation, we will also investigate fault-

The normative regulation enumerates that these faults can be prevented by using traditional
execution scheduling policy and fixed

priority based scheduling. In this research project also dynamic scheduling approaches will

freedom from interference by software partitioning
has to be supervised by monitoring of processor execution time of software partitions in
accordance with their allocation, program sequence monitoring and arrival rate monitoring.

Memory and exchange of information Protection

t to memory, the effects of faults such as those listed below can be considered

lement (it can cause

correcting code (ECC), cyclic

redundancy check (CRC), redundant storage, restricted access to memory, static analysis of

cessing software and static allocation can be used to prevent faults.

With respect to the exchange of information, the causes for faults or effects of faults such as

nformation from a sender received by only a subset of the receivers, and

Application and Protection Support

Applications as entities containers (TASKs, ISR2s,

ERs, ALARMS, Schedule Tables), that could resemble to processes (without

The Operating System module is responsible for scheduling the available processing

Applications that share the processor. If OS-Application(s) are

D4.1 - Alpha OA & RTE prototypes

SAFURE D4.1

used, all TASKs, ISRs, COUNTERs, ALARMs and Schedule tables must belong to an OS

Application. All objects which belong to the same OS

The right to access objects from other OS

An event is accessible if the TASK for which the EVENT can be set is accessible. Access

means that these Operating System objects are allowed as parameters to API services.

The above are the fundamentals of

There are two classes of OS-Application:

1. Trusted OS-Applications

disabled at runtime. They may have unrestricted access to memory, the Operating

System module’s API, and NEED NOT have their timing behaviou

runtime. They are allowed to run in privileged mode when supported by the

processor.

2. Non-Trusted OS-Applications

features disabled at runtime. They have restricted access to memory, restri

access to the Operating System module’s API and have their timing behaviour

enforced at runtime. They are not allowed to run in privileged mode when supported

by the processor.

Operating System module itself is a TRUSTED OS

The running OS-Application is defined as the OS

Task or ISR belongs. In case of a hook routine the Task or ISR which caused the call of the

hook routine defines the running OS

There are services offered by the AUTO

access rights and the membership of objects and memory variables. These services are

intended to be used in case of an inter

arguments.

OS-Applications have a state which defines the scope of accessibility of its Operating

System objects from other OS

following states:

• Active and accessible

may be accessed from other OS

• Currently in restart phase

cannot be accessed from other OS

calls AllowAccess().

• Terminated and not accessible

objects cannot be accessed from other OS

Protection is only possible for Operating System managed objects. This means that:

• It is not possible to provide protection during runtime of OSEK Category 1 ISRs

because the operating system is not aware of any Category 1 ISRs being invoked.

Therefore, if any protection is required, Category 1 ISRs have to be avoided. If

Category 1 interrupts AND OS

must belong to a trusted OS

Alpha OA & RTE prototypes

used, all TASKs, ISRs, COUNTERs, ALARMs and Schedule tables must belong to an OS

Application. All objects which belong to the same OS-Application have access to each other.

objects from other OS-Applications may be granted d

An event is accessible if the TASK for which the EVENT can be set is accessible. Access

means that these Operating System objects are allowed as parameters to API services.

The above are the fundamentals of Service Protection.

Application:

Applications: Are allowed to run with monitoring or protection features

disabled at runtime. They may have unrestricted access to memory, the Operating

System module’s API, and NEED NOT have their timing behaviou

runtime. They are allowed to run in privileged mode when supported by the

Applications: Are not allowed to run with monitoring or protection

features disabled at runtime. They have restricted access to memory, restri

access to the Operating System module’s API and have their timing behaviour

enforced at runtime. They are not allowed to run in privileged mode when supported

Operating System module itself is a TRUSTED OS-Application.

Application is defined as the OS-Application to which the currently running

Task or ISR belongs. In case of a hook routine the Task or ISR which caused the call of the

hook routine defines the running OS-Application.

There are services offered by the AUTOSAR OS which give the caller information about the

access rights and the membership of objects and memory variables. These services are

intended to be used in case of an inter-OS-Application call for checking access rights and

ve a state which defines the scope of accessibility of its Operating

System objects from other OS-Applications. Each OS-Application is always in one of the

Active and accessible (APPLICATION_ACCESSIBLE): Operating System objects

cessed from other OS-Applications. This is the default state at start up.

Currently in restart phase (APPLICATION_RESTART): Operating System objects

cannot be accessed from other OS-Applications. State is valid until the OSApplication

Terminated and not accessible (APPLICATION_TERMINATED): Operating System

objects cannot be accessed from other OS-Applications. State will not change.

Protection is only possible for Operating System managed objects. This means that:

provide protection during runtime of OSEK Category 1 ISRs

because the operating system is not aware of any Category 1 ISRs being invoked.

Therefore, if any protection is required, Category 1 ISRs have to be avoided. If

gory 1 interrupts AND OS-Applications are used together then all Category 1 ISR

must belong to a trusted OS-Application.

Page 34 of 44

used, all TASKs, ISRs, COUNTERs, ALARMs and Schedule tables must belong to an OS-

Application have access to each other.

Applications may be granted during configuration.

An event is accessible if the TASK for which the EVENT can be set is accessible. Access

means that these Operating System objects are allowed as parameters to API services.

: Are allowed to run with monitoring or protection features

disabled at runtime. They may have unrestricted access to memory, the Operating

System module’s API, and NEED NOT have their timing behaviour enforced at

runtime. They are allowed to run in privileged mode when supported by the

: Are not allowed to run with monitoring or protection

features disabled at runtime. They have restricted access to memory, restricted

access to the Operating System module’s API and have their timing behaviour

enforced at runtime. They are not allowed to run in privileged mode when supported

Application to which the currently running

Task or ISR belongs. In case of a hook routine the Task or ISR which caused the call of the

SAR OS which give the caller information about the

access rights and the membership of objects and memory variables. These services are

Application call for checking access rights and

ve a state which defines the scope of accessibility of its Operating

Application is always in one of the

(APPLICATION_ACCESSIBLE): Operating System objects

Applications. This is the default state at start up.

(APPLICATION_RESTART): Operating System objects

Applications. State is valid until the OSApplication

(APPLICATION_TERMINATED): Operating System

Applications. State will not change.

Protection is only possible for Operating System managed objects. This means that:

provide protection during runtime of OSEK Category 1 ISRs [12],

because the operating system is not aware of any Category 1 ISRs being invoked.

Therefore, if any protection is required, Category 1 ISRs have to be avoided. If

Applications are used together then all Category 1 ISR

D4.1 - Alpha OA & RTE prototypes

SAFURE D4.1

• It is not possible to provide protection between functions called from the body of the

same Task/Category 2 ISR

AUTOSAR specify four protection features:

• Service Protection: Protect the Object Access (TASK, ALARMs, Schedule Table,

Resources) between OS

• Memory Protection: Protect

possible corruption by Non

• Stack Monitoring: On processors that do not provide any memory protection hardware

it may still be necessary to provide a “best effort with available resources” scheme for

detectable classes of memory faults. Stack monitoring will identify where a task or

ISR has exceeded a specified stack usage at context switch time.

• Timing Protection: A timing fault in a real

misses its deadline at

that let the software understand which TASK or ISR2 is causing a deadline missing.

6.3 Freedom from Interferences OS

For SAFURE, the Automotive Multicore Use Case prototype guarantees at firmwar
freedom from interferences compliant with ISO 26262. In particular, for SAFURE WP4 MAG
has studied and developed two firmware drivers (
protection and memory protection to guarantee
applications that run on two different cores (
RealTime OS supports.

6.3.1 Timing Isolation OS

MAG has designed a FW component (
support from a Real-time OS. From a Safety point of view, this allow to use Timing Protection
(AUTOSAR -like) but with a QM RTOS

AUTOSAR Timing Protection concept is built on the fo
in order to be used without any OS supports:

1. The execution time of Task/ISRs in the system

The measure of Task execution time can be performed without the need of OS, if this

measure is triggered by the Task itself. T

Resource of the uC. Execution Budget violation can trigger Time Protection Error.

• Execution Budget:

2. The blocking time that Task/ISRs suffers from lower priority Task

resources or disabling interrupts

The TPROT component can execute a measure of resources locked by lower priority

tasks, if the measure is triggered by the lower priority task itself. Time violation can trigger

Time Protection Error.

• Lock Time : Maximum permitted Interrupt Lock Time or Resource Lock Time

Alpha OA & RTE prototypes

It is not possible to provide protection between functions called from the body of the

same Task/Category 2 ISR [12].

specify four protection features:

: Protect the Object Access (TASK, ALARMs, Schedule Table,

Resources) between OS-Application, if the permission is not explicitly granted.

: Protect Global Data and Stacks of an OS

possible corruption by Non-Trusted OS-Application.

: On processors that do not provide any memory protection hardware

it may still be necessary to provide a “best effort with available resources” scheme for

ctable classes of memory faults. Stack monitoring will identify where a task or

ISR has exceeded a specified stack usage at context switch time.

: A timing fault in a real-time system occurs when a task or interrupt

misses its deadline at runtime. AUTOSAR OS supply a mechanism based on budget

that let the software understand which TASK or ISR2 is causing a deadline missing.

Interferences OS-extension

For SAFURE, the Automotive Multicore Use Case prototype guarantees at firmwar
compliant with ISO 26262. In particular, for SAFURE WP4 MAG

has studied and developed two firmware drivers (AUTOSAR -like) to implement timing
protection and memory protection to guarantee freedom from interferences
applications that run on two different cores (chapter 6.2). This is an optimized alternative to

Timing Isolation OS-extension

MAG has designed a FW component (TPROT) to realize Timing Protecti
time OS. From a Safety point of view, this allow to use Timing Protection

like) but with a QM RTOS (Part 3: Concept phase [11]).

Timing Protection concept is built on the following monitors that will be adjusted
in order to be used without any OS supports:

The execution time of Task/ISRs in the system

The measure of Task execution time can be performed without the need of OS, if this

measure is triggered by the Task itself. The measure can be performed using a Timer

Resource of the uC. Execution Budget violation can trigger Time Protection Error.

: Maximum permitted execution time for a Task/ISR.

The blocking time that Task/ISRs suffers from lower priority Tasks/ISRs locking shared

resources or disabling interrupts

The TPROT component can execute a measure of resources locked by lower priority

tasks, if the measure is triggered by the lower priority task itself. Time violation can trigger

: Maximum permitted Interrupt Lock Time or Resource Lock Time

Page 35 of 44

It is not possible to provide protection between functions called from the body of the

: Protect the Object Access (TASK, ALARMs, Schedule Table,

Application, if the permission is not explicitly granted.

of an OS-Application from

: On processors that do not provide any memory protection hardware

it may still be necessary to provide a “best effort with available resources” scheme for

ctable classes of memory faults. Stack monitoring will identify where a task or

time system occurs when a task or interrupt

OS supply a mechanism based on budget

that let the software understand which TASK or ISR2 is causing a deadline missing.

For SAFURE, the Automotive Multicore Use Case prototype guarantees at firmware level the
compliant with ISO 26262. In particular, for SAFURE WP4 MAG

like) to implement timing
freedom from interferences between two

). This is an optimized alternative to

) to realize Timing Protection without any
time OS. From a Safety point of view, this allow to use Timing Protection

llowing monitors that will be adjusted

The measure of Task execution time can be performed without the need of OS, if this

he measure can be performed using a Timer

Resource of the uC. Execution Budget violation can trigger Time Protection Error.

Maximum permitted execution time for a Task/ISR.

s/ISRs locking shared

The TPROT component can execute a measure of resources locked by lower priority

tasks, if the measure is triggered by the lower priority task itself. Time violation can trigger

: Maximum permitted Interrupt Lock Time or Resource Lock Time

D4.1 - Alpha OA & RTE prototypes

SAFURE D4.1

3. The inter-arrival rate of Task/ISRs in the system

TPROT will measure inter

each transition to READY STATE for each ta

just check that the time elapsed between two consecutive execution of the task is inside

a determined upper bound. Again it is needed that the measure is triggered inside the

Task.

• Time Period: The maximum time

activation of the same task.

6.3.1.1 TPROT Design Draft: Concept and API

TPROT introduce the concept of TimerSet that is a logical identifier bound to one or more uC

timing resources. The number of uC resources needed may v

uC model. TimerSet will also encapsulate all the timing protection budgets and measures.

One task should always use the same TimerSet. Different Tasks should always use different

TimerSet.

Some sample API:

TPROT_SetExecBudget (<TimerSet> Tx, <ExecutionBudget_uS> ExecBudget)

TPROT_SetTimePeriod(<TimerSet> Tx, <TimePeriod_uS> TimePeriod)

TPROT_SetLockBudget (<TimerSet> Tx , <LockBudget_uS> LockBudget)

TPROT_StartExecBudget (<TimerSet> Tx)

TPROT_StopExecBudget (<Time

TPROT_StartLockBudget (<TimerSet> Tx)

TPROT_StopLockBudget (<TimerSet> Tx)

TPROT_CheckExecBudget (<TimerSet> Tx)

TPROT_CheckTimePeriod (<TimerSet> Tx)

TPROT_CheckLockBudget (<TimerSet> Tx)

TPROT_ClearTimerSet (<TimerSet> Tx)

TPROT_TimingProtection_Error (<ErrorId> E)

An example of usage for TPROT:

Alpha OA & RTE prototypes

arrival rate of Task/ISRs in the system

TPROT will measure inter-arrival rate not in the strict meaning of Autosar (that will count

each transition to READY STATE for each task and define a lower bound for it), but will

just check that the time elapsed between two consecutive execution of the task is inside

a determined upper bound. Again it is needed that the measure is triggered inside the

: The maximum time elapsed admitted between two successive

activation of the same task.

TPROT Design Draft: Concept and API

TPROT introduce the concept of TimerSet that is a logical identifier bound to one or more uC

timing resources. The number of uC resources needed may vary depending on the specific

uC model. TimerSet will also encapsulate all the timing protection budgets and measures.

One task should always use the same TimerSet. Different Tasks should always use different

(<TimerSet> Tx, <ExecutionBudget_uS> ExecBudget)

TPROT_SetTimePeriod(<TimerSet> Tx, <TimePeriod_uS> TimePeriod)

TPROT_SetLockBudget (<TimerSet> Tx , <LockBudget_uS> LockBudget)

TPROT_StartExecBudget (<TimerSet> Tx)

TPROT_StopExecBudget (<TimerSet> Tx)

TPROT_StartLockBudget (<TimerSet> Tx)

TPROT_StopLockBudget (<TimerSet> Tx)

TPROT_CheckExecBudget (<TimerSet> Tx) � Reset Execution Budget counting.

TPROT_CheckTimePeriod (<TimerSet> Tx) � Reset Time Period counting.

udget (<TimerSet> Tx) � Reset Lock Budget counting.

TPROT_ClearTimerSet (<TimerSet> Tx)

TPROT_TimingProtection_Error (<ErrorId> E)

An example of usage for TPROT:

Page 36 of 44

arrival rate not in the strict meaning of Autosar (that will count

sk and define a lower bound for it), but will

just check that the time elapsed between two consecutive execution of the task is inside

a determined upper bound. Again it is needed that the measure is triggered inside the

elapsed admitted between two successive

TPROT introduce the concept of TimerSet that is a logical identifier bound to one or more uC

ary depending on the specific

uC model. TimerSet will also encapsulate all the timing protection budgets and measures.

One task should always use the same TimerSet. Different Tasks should always use different

(<TimerSet> Tx, <ExecutionBudget_uS> ExecBudget)

TPROT_SetTimePeriod(<TimerSet> Tx, <TimePeriod_uS> TimePeriod)

TPROT_SetLockBudget (<TimerSet> Tx , <LockBudget_uS> LockBudget)

Reset Execution Budget counting.

Reset Time Period counting.

Reset Lock Budget counting.

D4.1 - Alpha OA & RTE prototypes

SAFURE D4.1

Figure 16: TPROT Design Draft (example explained with Se

6.3.2 Memory Protection OS

MAG has designed a FW driver to support memory protection at Task level, to guarantee
that data structures inside the protected Task (or part of it) cannot be accessed by untrusted
operations. This implementation makes use of microcontroller MPU device. This mechanism
is ISO 26262 compliant and AUTOSAR

Here is the Memory Protection concept described in

Alpha OA & RTE prototypes

: TPROT Design Draft (example explained with Sequence Diagram)

Memory Protection OS-extension

FW driver to support memory protection at Task level, to guarantee
that data structures inside the protected Task (or part of it) cannot be accessed by untrusted

tion makes use of microcontroller MPU device. This mechanism
AUTOSAR-like.

Here is the Memory Protection concept described in AUTOSAR [13]:

Page 37 of 44

quence Diagram)

FW driver to support memory protection at Task level, to guarantee
that data structures inside the protected Task (or part of it) cannot be accessed by untrusted

tion makes use of microcontroller MPU device. This mechanism

D4.1 - Alpha OA & RTE prototypes

SAFURE D4.1

Figure 17: Memory protection app

6.3.2.1 Memory Protection Design Draft: Concept

Here is the concept implemented by MAG FW MPU Driver:

Suppose that the Figure 17 represents RAM partitioning (P0, P1 and P2) we want to obtain,

giving the following requirements:

• Total of 256 KB of RAM.

• P0, P1, P2 are running on the same core.

• There is a real-time OS running. All the partitions P0, P1, P2 are preemptive.

• P2 is the default partition

Alpha OA & RTE prototypes

: Memory protection applied at OS Application level.

Memory Protection Design Draft: Concept

Here is the concept implemented by MAG FW MPU Driver:

represents RAM partitioning (P0, P1 and P2) we want to obtain,

giving the following requirements:

256 KB of RAM.

P0, P1, P2 are running on the same core.

time OS running. All the partitions P0, P1, P2 are preemptive.

default partition (see MPU Static Configuration section for details).

Page 38 of 44

lied at OS Application level.

represents RAM partitioning (P0, P1 and P2) we want to obtain,

time OS running. All the partitions P0, P1, P2 are preemptive.

(see MPU Static Configuration section for details).

D4.1 - Alpha OA & RTE prototypes

SAFURE D4.1

Figure 19: The diagram shows activation of P1 & P2 only, but the same apply when

Alpha OA & RTE prototypes

Figure 18: partitioning example.

The diagram shows activation of P1 & P2 only, but the same apply when
activating a task owned by P0.

Page 39 of 44

The diagram shows activation of P1 & P2 only, but the same apply when

D4.1 - Alpha OA & RTE prototypes

SAFURE D4.1

Chapter 7 AUTOSAR OS

7.1 AUTOSAR OS support for mixed criticality

Currently, most of the AUTOSAR OS support for mixed critical application relies on a set of
mechanisms (with reference to the 4.3 definition of the standard)

• mechanisms for timing isolation. Providing support for preventing timing faults from
one application components from affecting other components

• mechanisms for monitoring. Providing support for check
on the execution time of runnable, ISRs and critical sections

• mechanisms for predictable scheduling. Providing support for the implementation of
scheduling policies that allow for predicatble interferences and blocking times.

Among these mechanisms, we are interested in those for which an open source
implementation exists or can be obtained by extending the Erika OS
(AUTOSAR) system.

Hence, in the analysis of the services, we are
availability in Erika (for the architectures of interest for S
commercial implementation of AUTOSAR OS exist from several vendors in Europe and
outside, but an open source kernel offers oppor
experimentation by academics and the industry.

Mechanisms for timing protection

AUTOSAR OS guarantees a statically configured upper bound, called the Execution Budget,
on the execution time of tasks and category 2 ISRs

AUTOSAR OS prevents guarantees a statically configured upper bound, called the Lock
Budget, on the time that resources are held by tasks or Category 2 ISRs

AUTOSAR OS enforces an inter
lower bound, called the Time Frame, on the time between a task being permitted to transitio
into the READY state due to activation or release

Mechanisms for monitoring

AUTOSAR OS mechanisms for monitoring include hooks and events that are invoked or
activated in correspondence to an attempt at policy violation.

Mechanisms for predictable scheduling

AUTOSAR OS mechanisms for predictable scheduling include scheduling tables and priority
based scheduling with ceiling mechanisms for local resource protection and locks
intercore resource protection (to be supplemented by a mechanism for global ceilings or an
equivalent bounded blocking time mechanism). In their basic configuration both of them are
not sufficient to provide isolation but must be supplemented.

7.2 AUTOSAR RTE generation for mixed

The AUTOSAR RTE is the layer of automatically generated code that bridges the gap
between the application SW components (and their code implementation) and the services of
the basic SW, including the operating syst
services.

Alpha OA & RTE prototypes

AUTOSAR OS

AUTOSAR OS support for mixed criticality

Currently, most of the AUTOSAR OS support for mixed critical application relies on a set of
ms (with reference to the 4.3 definition of the standard)

mechanisms for timing isolation. Providing support for preventing timing faults from
one application components from affecting other components

mechanisms for monitoring. Providing support for checking violations of assumptions
on the execution time of runnable, ISRs and critical sections

mechanisms for predictable scheduling. Providing support for the implementation of
scheduling policies that allow for predicatble interferences and blocking times.

Among these mechanisms, we are interested in those for which an open source
implementation exists or can be obtained by extending the Erika OS [14] open source OSEK

Hence, in the analysis of the services, we are especially interested in verifying their
availability in Erika (for the architectures of interest for SAFURE). Of course other
commercial implementation of AUTOSAR OS exist from several vendors in Europe and
outside, but an open source kernel offers opportunities for better dissemination and
experimentation by academics and the industry.

Mechanisms for timing protection

AUTOSAR OS guarantees a statically configured upper bound, called the Execution Budget,
asks and category 2 ISRs

AUTOSAR OS prevents guarantees a statically configured upper bound, called the Lock
esources are held by tasks or Category 2 ISRs

AUTOSAR OS enforces an inter-arrival time protection to guarantee a statically configured
nd, called the Time Frame, on the time between a task being permitted to transitio

activation or release

Mechanisms for monitoring

AUTOSAR OS mechanisms for monitoring include hooks and events that are invoked or
orrespondence to an attempt at policy violation.

Mechanisms for predictable scheduling

AUTOSAR OS mechanisms for predictable scheduling include scheduling tables and priority
based scheduling with ceiling mechanisms for local resource protection and locks
intercore resource protection (to be supplemented by a mechanism for global ceilings or an
equivalent bounded blocking time mechanism). In their basic configuration both of them are
not sufficient to provide isolation but must be supplemented.

RTE generation for mixed-critical systems

The AUTOSAR RTE is the layer of automatically generated code that bridges the gap
between the application SW components (and their code implementation) and the services of
the basic SW, including the operating system, (most of) the drivers and the communication

Page 40 of 44

Currently, most of the AUTOSAR OS support for mixed critical application relies on a set of

mechanisms for timing isolation. Providing support for preventing timing faults from

ing violations of assumptions

mechanisms for predictable scheduling. Providing support for the implementation of
scheduling policies that allow for predicatble interferences and blocking times.

Among these mechanisms, we are interested in those for which an open source
open source OSEK

especially interested in verifying their
). Of course other

commercial implementation of AUTOSAR OS exist from several vendors in Europe and
tunities for better dissemination and

AUTOSAR OS guarantees a statically configured upper bound, called the Execution Budget,

AUTOSAR OS prevents guarantees a statically configured upper bound, called the Lock

arrival time protection to guarantee a statically configured
nd, called the Time Frame, on the time between a task being permitted to transition

AUTOSAR OS mechanisms for monitoring include hooks and events that are invoked or

AUTOSAR OS mechanisms for predictable scheduling include scheduling tables and priority-
based scheduling with ceiling mechanisms for local resource protection and locks for
intercore resource protection (to be supplemented by a mechanism for global ceilings or an
equivalent bounded blocking time mechanism). In their basic configuration both of them are

critical systems

The AUTOSAR RTE is the layer of automatically generated code that bridges the gap
between the application SW components (and their code implementation) and the services of

em, (most of) the drivers and the communication

D4.1 - Alpha OA & RTE prototypes

SAFURE D4.1

The idea is that application developers should not use the OS (and scheduling) services
directly, since before the composition of the system by the integrator, the runnable code is
not assigned to any task or ECU and therefore cannot fully define its scheduling or
scheduling conditions.

In mixed-critical systems the application SW components have additional characteristics that
characterize them, including (time) criticality levels and the need for p
and a guarantee of their timing budgets or deadlines.

These requirements are expressed in the AUTOSAR component and runnable model, either
directly, or by making use of the extensions developed in WP2.

Our planned development consist

A parser that analyses the ARXML code of a model with components a different criticality
levels and build an internal representation of the AUTOSAR model with the proposed
extensions.

The parser will be developed in Eclipse by leveragin
AUTOSAR consortium, or by defining a custom metamodel matching the AUTOSAR
metamodel v4.3 and then using the Eclipse mechanisms for serialization and deserialization.

The second component is a co
automatically selects the OS services identified in the previous section for the protection of
the timing characteristics of the critical tasks and for guaranteeing isolation.

The generator will be validated with a set of sample models, defined in Rhapsody.

7.3 Adaptive Autosar

Adaptive policies for future support for mixed criticality include hierarchical scheduling
support with possibly server policies on t

Alpha OA & RTE prototypes

The idea is that application developers should not use the OS (and scheduling) services
directly, since before the composition of the system by the integrator, the runnable code is

ny task or ECU and therefore cannot fully define its scheduling or

critical systems the application SW components have additional characteristics that
characterize them, including (time) criticality levels and the need for protection by isolation
and a guarantee of their timing budgets or deadlines.

These requirements are expressed in the AUTOSAR component and runnable model, either
directly, or by making use of the extensions developed in WP2.

Our planned development consists of the following:

A parser that analyses the ARXML code of a model with components a different criticality
levels and build an internal representation of the AUTOSAR model with the proposed

The parser will be developed in Eclipse by leveraging the Artop framework
AUTOSAR consortium, or by defining a custom metamodel matching the AUTOSAR
metamodel v4.3 and then using the Eclipse mechanisms for serialization and deserialization.

The second component is a code generator tool that takes the model of the application and
automatically selects the OS services identified in the previous section for the protection of
the timing characteristics of the critical tasks and for guaranteeing isolation.

be validated with a set of sample models, defined in Rhapsody.

Adaptive Autosar and future support for mixed-critical

Adaptive policies for future support for mixed criticality include hierarchical scheduling
support with possibly server policies on top of EDF.

Page 41 of 44

The idea is that application developers should not use the OS (and scheduling) services
directly, since before the composition of the system by the integrator, the runnable code is

ny task or ECU and therefore cannot fully define its scheduling or

critical systems the application SW components have additional characteristics that
rotection by isolation

These requirements are expressed in the AUTOSAR component and runnable model, either

A parser that analyses the ARXML code of a model with components a different criticality
levels and build an internal representation of the AUTOSAR model with the proposed

g the Artop framework [15] by the
AUTOSAR consortium, or by defining a custom metamodel matching the AUTOSAR
metamodel v4.3 and then using the Eclipse mechanisms for serialization and deserialization.

de generator tool that takes the model of the application and
automatically selects the OS services identified in the previous section for the protection of
the timing characteristics of the critical tasks and for guaranteeing isolation.

be validated with a set of sample models, defined in Rhapsody.

criticality

Adaptive policies for future support for mixed criticality include hierarchical scheduling

D4.1 - Alpha OA & RTE prototypes

SAFURE D4.1

Chapter 8 Summary and conclusion

This report is complementing the Alpha version of Operation System and Runt Time Engines
prototype. We have reported on the current status and future work within work package four.
The technologies developed for the f
Telecom Use Case demonstrator in work package six.

Alpha OA & RTE prototypes

Summary and conclusion

This report is complementing the Alpha version of Operation System and Runt Time Engines
prototype. We have reported on the current status and future work within work package four.
The technologies developed for the final version of prototype will be implemented in the
Telecom Use Case demonstrator in work package six.

Page 42 of 44

This report is complementing the Alpha version of Operation System and Runt Time Engines
prototype. We have reported on the current status and future work within work package four.

inal version of prototype will be implemented in the

D4.1 - Alpha OA & RTE prototypes

SAFURE D4.1

Chapter 9 List of Abbreviations

BSP Board Support Packages

EDF Earliest Deadline First

TP0 Time Partit

FP Fixed Priority

PSP Platform Support Package

NDA Non

SEC Security Engine

SFP Security Fuse Processor

PBL Pre-

RCW reset configuration word

PBI Pre-

ISBC Internal Secure Boot Code

ESBC External Secure Boot Code

CST Code Signing Tool

ITS Intend To Secure

PKI Public Key Infrastructure

SRK Super Root Key

ECU Engine control unit

PMC performance monitoring counters

RTE Run Time Engine

DTM Dynamic Thermal Management

FMS Flight Management

BCP Best Computed Position

QoS Quality of Service

QM Quality Management

RTOS Real

ASIL Automotive Safety Integrity Level

TPROT Timing Protection FW Driver

MPU Memory Protection Unit

ECC Error

CRC Cycl

ISR Interrupt Service Routine

OSEC Offene Systeme und deren Schnittstellen für die Elektronik in
Kraftfahrzeugen (German)
English: "Open Systems and their Interfaces for the Electronics
in Motor Vehicles"

Alpha OA & RTE prototypes

List of Abbreviations

Board Support Packages

Earliest Deadline First

Time Partition 0

Fixed Priority

Platform Support Package

Non-disclosure Agreement

Security Engine

Security Fuse Processor

-Boot Loader

reset configuration word

-Boot Initialization

Internal Secure Boot Code

ernal Secure Boot Code

Code Signing Tool

Intend To Secure

Public Key Infrastructure

Super Root Key

Engine control unit

performance monitoring counters

Run Time Engine

Dynamic Thermal Management

Flight Management System

Best Computed Position

Quality of Service

Quality Management

Real-time Operating System

Automotive Safety Integrity Level

Timing Protection FW Driver

Memory Protection Unit

Error-correcting Code

Cyclic Redundancy Check

Interrupt Service Routine

Offene Systeme und deren Schnittstellen für die Elektronik in
Kraftfahrzeugen (German)
English: "Open Systems and their Interfaces for the Electronics
in Motor Vehicles"

Table 5: List of Abbreviations

Page 43 of 44

Offene Systeme und deren Schnittstellen für die Elektronik in

English: "Open Systems and their Interfaces for the Electronics

D4.1 - Alpha OA & RTE prototypes

SAFURE D4.1

Chapter 10 Bibliography

[1] ARM, «Fixed Virtual Platforms FVP Reference Guide,» [Online]. Available:
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.subset.models.vplatfo
rms/index.html.

[2] «https://en.wikipedia.org/wiki/Virtualization,» [Online].

[3] «www.openvirtualization.org/open

[4] «Earliest deadline first scheduling,» [Online]. Available:
https://en.wikipedia.org/wiki/Earliest_deadline_first_scheduling.

[5] SYSGO, PikeOS Fundamentals, PikeOS 4.0, Document Ve

[6] M. Kosinski e M. Krasikau, «PikeOS Training,» 2015.

[7] Freescale, «P4080 QorIQ Multicore Communication Processor,» 2014.

[8] Freescale, «HAB Code

[9] Freescale, «Secure Boot For QorIQ Commu

[10] L. Schor, I. Bacivarov, H. Yang e L. Thiele,
for Real-Time Applications on Multi
Technology and Applications Symposium, 2012, pp. 87

[11] International Organization for Standardization,
Functional Safety, 2011.

[12] «OSEK/VDX – Operative System,» [Online]. Available: www.osek

[13] A. O. S. A. (AUTOSAR), «Specification of Operating System,» 2011.

[14] «Erika Enteriprise open source OS,» [Online]. Available:
www.evidence.eu.com/products/erika

[15] «Artop - The AUTOSAR Tool Platform User Group,» [Online]. Available:
www.artop.org.

[16] Cucinotta, T.; Checconi, F.;, «The IRMOS realtime scheduler
[Online]. Available: http://lwn.net/Articles/398470/.

Alpha OA & RTE prototypes

Bibliography

ARM, «Fixed Virtual Platforms FVP Reference Guide,» [Online]. Available:
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.subset.models.vplatfo

«https://en.wikipedia.org/wiki/Virtualization,» [Online].

.openvirtualization.org/open-source-arm-trustzone.html,» [Online].

«Earliest deadline first scheduling,» [Online]. Available:
https://en.wikipedia.org/wiki/Earliest_deadline_first_scheduling.

SYSGO, PikeOS Fundamentals, PikeOS 4.0, Document Version 4.0

M. Kosinski e M. Krasikau, «PikeOS Training,» 2015.

Freescale, «P4080 QorIQ Multicore Communication Processor,» 2014.

Freescale, «HAB Code-Signing Tool User's Guide; Rev 2.2».

Freescale, «Secure Boot For QorIQ Communication Processors».

L. Schor, I. Bacivarov, H. Yang e L. Thiele, Worst-Case Temperature Guarantees
Time Applications on Multi-core Systems, Real Time and Embedded

Technology and Applications Symposium, 2012, pp. 87-96.

l Organization for Standardization, ISO 26262: Road Vehicles
2011.

Operative System,» [Online]. Available: www.osek

A. O. S. A. (AUTOSAR), «Specification of Operating System,» 2011.

eriprise open source OS,» [Online]. Available:
www.evidence.eu.com/products/erika-enterprise.html.

The AUTOSAR Tool Platform User Group,» [Online]. Available:

Cucinotta, T.; Checconi, F.;, «The IRMOS realtime scheduler,» 3 August 2010.
[Online]. Available: http://lwn.net/Articles/398470/.

Page 44 of 44

ARM, «Fixed Virtual Platforms FVP Reference Guide,» [Online]. Available:
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.subset.models.vplatfo

trustzone.html,» [Online].

«Earliest deadline first scheduling,» [Online]. Available:

rsion 4.0-134.

Freescale, «P4080 QorIQ Multicore Communication Processor,» 2014.

nication Processors».

Case Temperature Guarantees
Real Time and Embedded

ISO 26262: Road Vehicles -

Operative System,» [Online]. Available: www.osek-vdx.org.

A. O. S. A. (AUTOSAR), «Specification of Operating System,» 2011.

eriprise open source OS,» [Online]. Available:

The AUTOSAR Tool Platform User Group,» [Online]. Available:

,» 3 August 2010.

