
This project has received funding from the European Unions Horizon 2020
research and innovation programme under grant agreement No 644080.

D4.3
Final OS & RTE prototypes

Project number: 644080

Project acronym: SAFURE

Project title: SAFety and secURity by dEsign for interconnected mixed-critical
cyber-physical systems

Project Start Date: 1st February, 2015

Duration: 40 months

Programme: H2020-ICT-2014-1

Deliverable Type: Demonstrator

Reference Number: ICT-644080-D4.3 / 1.0

Work Package: WP 4

Due Date: M38 2018 - March

Actual Submission Date: 16th April, 2018

Responsible Organisation: SYSGO AG

Editor: Mikalai Krasikau

Dissemination Level: PU

Revision: 1.0

Abstract: This deliverable has presented the final implementation work in
WP4.

Keywords: mixed-criticality, OS, hypervisor, ARM, AURIX, RTEs, timing and
temperature covert channels

This work is supported (also) by the Swiss State Secretariat for Education, Research and Innovation (SERI)
under contract number 15.0025. The opinions expressed and arguments employed herein do not necessarily
reflect the official views of the Swiss Government.



D4.3 - Final OS & RTE prototypes

Editor

Mikalai Krasikau(SYSGO AG)

Contributors (ordered according to beneficiary numbers)

Sylvain Girbal (TRT)
Jaume Abella, Francisco J. Cazorla, Enrico Mezzetti (BSC)
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Executive Summary

This deliverable presents a set of very diverse topics for embedded systems development. The
driving idea for this work was to define a toolbox where each tool addresses an aspect for mixed-
critical system design. The following topics were successfully investigated:

• Challenges in the usage of modern commercial of the shelf SoC for embedded system design

• Safety oriented scheduling (EDF) on hypervisor level

• Cryptography and usage of cryptography for mixed-critical systems

• Principles, benchmarks, and implementation of run-time engines for mixed-critical systems un-
der time, space and energy constrains

• Controlling interference among mixed-critical applications

• Mixed-critical support for automotive systems based on AUTOSAR
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Chapter 1 Introduction

This deliverable outlines the final implementation work in WP4. The work is based on the interme-
diate achievements reported in D4.1. The report is structured as follows. In Chapter 3 we describe
the challenges project has encountered during the work on the modern COTS SoC as well as the
analysis and the solutions we have developed. In Chapter 3 we present the porting of the PikeOS as
well as extensions we have implemented in PikeOS. We demonstrate our approach for the platform
security in the Chapter 4. Chapter 5 presents mixed-critical RTE running on PikeOS and the project
ARM platform as well as the project results for mixed-critical approach on the automotive hardware.
Chapter 6 and chapter 7 describe how timing dimension in the mixed-critical system has been ad-
dressed. We present research on mixed-criticality in the automotive context in Chapter 8. Finally, we
conclude the document in the chapter 9.
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Chapter 2 Platform Selection

2.1 Context of the Problem

A number of technologies developed as part of WP4 were intended to be integrated with the Telecom
Use Case (WP6) for their evaluation in a real scenario. This imposed choosing a common hardware
platform where to integrate the different technologies and the use case. The variety of constraints of
the different technologies and software pieces led to a challenging decision process since a platform
was needed including (at least) the following features:

1. Virtualization capabilities.

2. Being multicore (with at least four cores).

3. Performance Monitoring Unit (PMU).

4. Temperature sensors on each core.

5. Security-related hardware modules.

6. Having an industrial exploitation path (thus not purely being a development board).

7. Being affordable in price.

A number of candidate boards were identified and finally, the DragonBoard 810 (which includes
the SnapDragon 810 processor) was initially selected due to the following reasons, related to the
constraints above:

1. It included an ARM-based processor similar (a priori) to the one in the ARM Juno board,
which was known to have the virtualization capabilities needed for the integration of PikeOS
by SYSGO.

2. It included two clusters with four cores each.

3. It included a PMU partly documented in the public documentation from ARM.

4. It included temperature sensors for each of the 8 cores.

5. It included the minimum set of security-related modules.

6. It was not a development board but, instead, a board including features from industrial products.

7. Its price was within the range budgeted by the different partners.

8. The main disadvantage was a risk of accessing some advanced features (e.g. details on Trust-
Zone implementation for HW virtualization) of the SoC, since they are seldom used in public
projects and documented in public documentation. The consortium assessed this risk as rea-
sonable and added and maintained this risk to the project risk table.

Unfortunately, as announced during the project review held in Brussels the 21st of November, a
number of issues appeared during the integration of the different technologies in this platform. These
issues relate mostly to the same problem: documentation available is scarce and, to some extent,
erroneous.

This lack of complete and accurate documentation translated into the following problems, which we
detail next:
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• Information about the virtualization features is not available and they work differently than those
in the ARM Juno board. Despite the many attempts performed by SYSGO to integrate PikeOS
on this board, no success has been achieved since they have had to work blindly: to start the
hypervisor one needs to install own software in the TrustZone or use the proprietary Qualcomm
API, i.e. not ARM API, and this API is not public. The Qualcomm representative in the Advisory
Board helped to setup contacts with the development department in San Diego. After that, we
have contacted further labs such as the Android BSP development department and the CPU
development department. However, no information could be obtained. Thus, the only option
would be guessing how the hardware works and it is simply impossible configuring hardware
features if the specific registers that need to be configured are not documented so that their
addresses, contents and capabilities are unknown.

• Information about the PMU as well as other hardware details are incomplete and often erro-
neous. This processor has two clusters of four cores each, where each cluster shares a local
L2 cache. Those L2 caches are connected to an interface where two memory controllers man-
age DRAM memory accesses. The PMU only provides information about cores, core-local
caches and (limited) information about shared L2 caches. Moreover, some L2-related coun-
ters do not provide the information expected, thus reflecting a mismatch between the actual
hardware and the documentation. Information about memory controllers is unavailable. Also,
this processor has a pre-fetcher. The documentation describes how to disable it, so that this
uncontrolled source of noise can be stopped. However, when trying to disable it as described
by the documentation, the processor crashes. Again, since the only information available be-
longs to ARM, but the processor has been fabricated by Qualcomm and many elements are
implementation-dependent, it seems that some default components have been modified. There-
fore, the documentation available is limited and erroneous to some extent. This makes impos-
sible characterizing the hardware platform and building on-chip contention models by BSC and
TRT.

• This platform was planned as a springboard for the Telecom use-case because the selected
phones were based on the same SoC. Thus, the plan to use the board as the springboard
could not be implemented.

All in all, although the DragonBoard seemed to be the platform fitting everybodys needs, it failed to
fulfil the requirements for its use in SAFURE. In the light of this, a number of actions have been taken
as described in next section.

2.2 Undertaken Mitigation Actions

Initially, all these issues did not imply that the hardware platform did not meet the requirements. It
could simply be the case that documentation, accurately describing the platform, is not publically
available. Therefore, we first asked the Qualcomm representatives to grant us access to the doc-
umentation of the platform. For that purpose we tried several channels, including asking the Qual-
comm representative in the Advisory Board (AB), Mr. Roberto Avanzi during our meeting in May
2016. Eventually, Mr. Roberto Avanzi put us in contact with appropriate Qualcomm representatives
in San Diego, US, to follow the procedures needed to get access to this information. However, after
a number of (very slow) iterations with Qualcomm representatives, we neither got the documentation
required nor a commitment to get documentation in the future. Therefore, in November, we informed
the Project Officer and the Reviewers about this situation during the Review Meeting, to make them
aware of the situation and inform them that we were considering mitigation actions. Finally, part-
ners agreed on looking for alternative hardware platforms despite the wasted time and resources on
the DragonBoard, since simply waiting and polling Qualcomm was not providing any advance (nor a
promise of future progress). The analysis, mostly led by SYSGO, brought on to the table a number
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of candidate platforms, which the partners assessed against their needs and constraints. A sum-
marized result of this analysis is shown in the table below. This analysis required purchasing some
additional boards to speed up technical assessments and skip whitepaper assessments that could
result in erroneous assessment and introduce further delays.

SoC Docum
-entation

HW
access

PikeOS
virt

support
PMU

ETHZ
(thermal

protection)

TRT
WP4 work

(RTE + HWC)

BSC
WP4 work

TRT
WP6 work

(RTE Integr.)

BSC
WP6 work

TCS
WP6 work

Snapdragon 410
(Quad-core ARM

Cortex A53)
no locked

para virt
(hw virt

is blocked
by vendor)

arm instructions
(no registers inf)

Sensors
available

very limited
on HWC.

Not possible
RTE (missing

PikeOS hw virt
support)

very limited n.a. n.a. very limited

Snapdragon 810
(Octa core ARM

Cortex quad A57,
quad A53)

no locked

para virt
(hw virt

is blocked
by vendor)

arm instructions
(no registers inf)

Sensors
available

very limited
on HWC.

Not possible
RTE (missing

PikeOS hw virt
support)

very limited n.a. n.a.

full access
(some compromises

with performance
expected)

juno SoC
(ARM vendor)

(ARM Cortex-A72
or A57 and
Cortex-A53)

full full
hw virt
ARMv8

Full up to
the L2 cache.

Nothing for
memory controller

Sensors available.
Technically doable.

Budget not available
for getting
this board.

Current board
used to develop

the RTE.
Some info missing
about SoC HWC.

Limited but
technically doable.

Effort/time
remaining largely

insufficient

OK.
Match WP4

current board
for RTE.

To be seen
if extrapolation
from WP4 is

possible

n.a.

HiSilicon
Kirin 620

ARM Cortex-A53

poor
(in chinese)

full ARMv8
arm instructions
(no registers inf)

Sensors available.
Technically doable

given PikeOS
support

Can only start
once PikeOS
is available

on the platform.
Any SoC or
HWC info?

At best
very limited

Extrapolation possible
for budget values.

But not for
porting the RTE.

Requires PikeOS driver
and native

pers. Support.

To be seen
if extrapolation

from WP4
is possible

n.a.

Mediatek X20
(2x ARM Cortex-A72

4x Cortex-A53
4x Cortex-A53)

no
full

(not tested)

ARMv8
hw virt expected
(not yet tested,

missing firmware doc
from vednor)

not yet
assessed

Same as
HiKey

Same issue
as HiKey.

At best
as for Juno

Same as
HiKey

To be seen
if extrapolation

from WP4
is possible

n.a.

Infineon
TC27x

full full n.a. full

n.a.
This board includes

low power
microcontrollers
where thermal

protection scheme
is likely

not relevant.

n.a.

Technically doable.
Effort/time

remaining may
be insufficient

Same as
HiKey

Should be done
for MAG use case,

not TCS.
Still to be

assessed with
MAG

n.a.

Table 2.1: Boards Comparison Table

As a summary, we concluded the following about each one of the platforms above:

• All SnapDragon-based boards (e.g. DragonBoard) suffer from the same problem related to the
lack of detailed (and correct) documentation available. Since there is no reason to expect that
this information is made available to the consortium anytime soon, we can only dismiss these
boards.

• The ARM Juno board allows porting PikeOS, as needed by SYSGO, since virtualization fea-
tures are in place. TRT also bought this board and is now familiar with it. BSC does not own
this board and lacks the time and resources to start from scratch with it. On the other hand,
PMU documentation, while being more precise than that for SnapDragon-based boards, is still
incomplete. Finally, since it is a development board, it is not suitable for TCS, so the Telecom
use case cannot be ported on top of it. Due to the cost of this board, ETHZ does not have
budget for it.

• HiSilicon and Mediatek boards allow accessing all hardware features needed. However, either
they lack of publicly available documentation or it is in Chinese. Requests for getting detailed
documentation from the chip vendors have not been answered satisfactorily so far (e.g. some
of them need a bootloader, which will be developed and documented by the open-source com-
munity in the future and the vendor cannot provide the release date), and there is no reason to
expect anything better than in the case of the SnapDragon-based boards.

• The Infineon AURIX TC27x board is the one to be used in the automotive use case by MAG.
BSC technology could be ported to this board, but porting PikeOS or the Telecom use case on
top of it is not doable since its architecture is too fine tuned for automotive and does not provide
support (e.g. MMU, enough RAM) for many of the features in PikeOS and the Telecom use
case.
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As shown, no single board satisfies all partners needs. While this was anticipated by TCS earlier
in the project, the first ambitious attempt was to integrate all technologies in the lowest number of
different platforms. It was clear that the automotive use cases and the Telecom one could not be built
on top of the same hardware platform due to their (too) different nature, however the target was to use
a single platform for the telecom use case and a large fraction of the WP4 technologies. However, as
shown before, this is not possible.

2.3 Final Decision

Since we did not have a single platform that satisfies requirements of all partners, a number of
additional mitigation actions had been done. The consortium decided to use three different boards
to cover all technologies planned for WP4 as well as make an overall WP4 results assessment in
the SAFURE Framework in WP6. The following boards have been used in the WP4 implementation
tasks:

• ARM Juno board: this board has been used to integrate results from SYSGO, ESCRYPT, TRT
RTE scheduling and the WP4 mixed critical prototype (BSC, EZH).

• Sony Xperia: this platform, by being industrial, has been selected by TCS for the use-case in
WP6. The porting of WP4 results (e.g. hypervisor and BSPs) will be described in WP6 to keep
it in one context.

• Infineon AURIX TC27x: this board has been used to implement the automotive part of the
WP4.
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Chapter 3 PikeOS Support

As it has been described in SAFURE-D4.2-delay-justification-M24, it is hard to get to hypervisor
mode on the DragonBoard 810 platform due to closed documentation and poor communication from
Qualcomm side. In this delivery we introduce the results of porting PikeOS on the Juno board.

Since intermediate results of this work have already been presented in Deliverable D4.1, for the
sake of completeness the current chapter will contain an updated content from Deliverable D4.1.

3.1 Juno Board

Within WP4, SYSGO provides support for PikeOS on the ARMv8 architecture. We have structured
the porting work in two phases. The first phase, early development, has been done on Fixed Virtual
Platforms simulator provided by ARM. The second phase has been done on the ARM Juno board.
The ARM Juno board has been chosen as a target for the porting considering the following argu-
ments:

• It is the only fully open development ARMv8 board with industrial support available on the
market (at the time of making the decision on the board)

• It provides required debug facilities (JTAG and trace, serial port) for developing an operating
system and hypervisor

• The support is provided directly by ARM Company.

The characteristics of the board are:

• Compute Subsystem

– Dual Cluster, big.LITTLE, big.LITT configuration

– Cortex-A57 MP2 cluster (r0p0), Overdrive 1.1GHz operating speed, Caches: L1 48KB I,
32KB D, L2 2MB

– Cortex-A53MP4 cluster (r0p0), Overdrive 850MHz operating speed, Caches: L1 32KB, L2
1MB

– Caches: L2 128KB

– Quad Core MALI T624 r1p0, Nominal 600MHz operating speed

– CoreSight ETM/CTI per core

– DVFS and power gating via SCP, 4 energy meters

– DMC-400, dual channel DDR3L interface, 8GB 1600MHz DDR

– Internal CCI-400, 128-bit,533MHz

• Rest of SoC

– Internal NIC-400, 64-bit, 400MHz

– External AXI ports: using Thin-Links
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– DMAC : PL330, 128-bit

– Static Memory Bus Interface : PL354

– 32bit 50MHz to slow speed peripheral

– HDCLCD dual video controllers: 1080p

• Debug

– ARM JTAG: 20-way DIL box header

– ARM 32/16 bit parallel trace

Figure 3.1: Juno SoC architecture

3.1.1 Porting Results for the Fixed Virtual Platforms simulator

As described before, the first porting has been done with using ARM Fixed Virtual Platform simula-
tor for A53-A57 cores. The software models provide Programmers View (PV) models of processors
and devices. The functional behavior of a model is equivalent to real hardware. PV models sacrifice
absolute timing accuracy to achieve fast simulated execution speed. This means that you can use
the PV models for confirming software functionality, but you must not rely on the accuracy of cycle
counts, low-level component interactions, or other hardware-specific behavior [7].

The following features were developed on this simulator:

• Hardware Virtualization
Hardware virtualization or platform virtualization refers to the creation of a virtual machine that
acts like a real computer with an operating system. Software executed on these virtual ma-
chines is separated from the underlying hardware resources [36]. It allows PikeOS to run differ-
ent operating systems on the same hardware simultaneously with just a little (or even without)
modification of the operating system. It also provides almost no overhead in comparison to
software virtualization, so performance of the operating system running under hypervisor sup-
porting hardware virtualization is comparative to the performance of the same native operating
system.

• Trust Zone
TrustZone technology is programmed into the hardware, enabling the protection of memory and
peripherals. Since security is designed into the hardware, TrustZone avoids security vulnerabil-
ities caused by proprietary, non-portable solutions outside the core. Security can be maintained
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as an inherent feature of the device, without degrading system performance, enabling device
manufacturers to build security applications, such as DRM or mobile payment as protected
applications that run on the secure kernel [1]. PikeOS supports this technology for ARMv7
architecture and now it has been ported to ARMv8.

3.1.2 Porting Results Juno

Currently the Juno board is supported officially in PikeOS 4.2 with the following features and inter-
faces:

• Hardware Virtualization

• TrustZone

• Serial driver
Serial driver provides console support and allows to establish basic communication between
target and host. Usually it is used for debugging and administration purposes.

• Ethernet driver
Ethernet driver provides network support.

• ElinOS BSP
Board Support Packages (BSPs) contain the necessary necessary adaptations to be able to
run a Linux kernel on a specific target platform. ElinOS kernels contain some modifications to
ensure a smooth operation with the ElinOS tool.

3.1.3 Testing Juno

Juno board support has been tested with the PikeOS Generic BSP Test Suite. This test suite is used
for a regression testing as well as for a product testing. The results are listed in Table 3.1.

Test Start End Operation Result
arm-config-test 10:04:51 10:05:39 Run OK
basic-linux-test 14:18:37 14:23:52 Run OK
coherency-test 10:14:02 10:14:52 Run OK
context-switch-bench 10:12:38 10:14:01 Run OK
decode-test 10:16:17 10:17:03 Run OK
demo-linux-guest-test 10:14:52 10:16:17 Run OK
directio-test 10:18:30 10:21:22 Run OK
fpu-test 10:21:22 10:22:41 Run OK
hello-world 10:22:42 10:23:46 Run OK
hwvirt-debug 10:08:04 10:09:15 Run OK
interrupt-forward-test 10:37:15 10:37:59 Run OK
memory-test 10:34:14 10:35:05 Run OK
network-bench 10:35:05 10:37:14 Run OK
p4bus-bench 10:40:37 10:44:06 Run OK
p4bus-console-test 14:27:37 14:28:33 Run OK
p4bus-enumerate-test 10:45:05 10:46:39 Run OK
p4bus-mmaplseek-specvmem-test 10:59:49 11:02:03 Run OK
p4bus-mmaplseek-test 11:04:33 11:06:55 Run OK
p4bus-multiApp-vmchar-test 11:07:11 11:08:08 Run OK
tiFD-vmchar-test 11:10:04 11:11:46 Run OK

Continued on next page
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Table 3.1 – Continued from previous page
Test Start End Operation Result
p4bus-muxa-test 11:13:04 11:15:38 Run OK
p4bus-network-test 11:19:10 11:23:15 Run OK
p4bus-nonblock-vmchar-test 18:29:40 18:31:04 Run OK
p4bus-severalMem-test 11:26:04 11:27:55 Run OK
p4bus-sigkill-vmchar-test 11:28:57 11:34:54 Run OK
p4bus-test 11:34:55 11:37:47 Run OK
p4bus-vmapi-sysfs-test 11:37:47 11:38:55 Run OK
p4bus-vmapi-test 11:38:56 11:40:05 Run OK
p4bus-vmblock-test 11:41:18 11:44:56 Run OK
p4bus-vmchar-fp-test 11:44:56 11:46:15 Run OK
p4guest-console-test 11:47:01 11:47:58 Run OK
p4guest-multiApp-test 11:19:06 11:19:57 Run OK
p4guest-vmfp-test 11:18:18 11:19:05 Run OK
preempt-test 11:48:46 11:52:47 Run OK
stress-test 11:53:33 11:54:46 Run OK
stress-test-smp 11:54:47 11:56:21 Run OK
trace-perfomance-test 11:56:22 12:03:42 Run OK
virtio-test 11:52:47 11:53:32 Run OK

Table 3.1: Benchmarks

3.1.4 Conclusion

Within the SAFURE project SYSGO has provided full support for a new ARMv8 64bit architecture in
PikeOS hypervisor. The Juno board which is the official ARM reference platform for ARMv8 architec-
ture is now officially supported by SYSGO’s PikeOS hypervisor. By providing support for state-of-the-
art technologies, SYSGO supports innovations and improves its stability on the European market.

3.2 Fixed-priority priority and EDF for mixed mixed-critical critical VM/-
task scheduler

3.2.1 PikeOS Scheduling

PikeOS is a virtualising embedded real-time operating system. Its basic mechanism for ensuring iso-
lation of different applications is partitioning, which enforces isolation both spatially and temporally.
This way, mixed-criticality systems can be constructed based on the guarantees the PikeOS parti-
tioning provides.
Partitioning in PikeOS is two-fold: to partition CPU time, an ARINC653-based time partitioning is
available, while other resources like memory, I/O access, and communication rights management
are handled by resource partitioning. Here, we will concentrate on the scheduling functionality pro-
vided by PikeOS. The top-level system scheduling in PikeOS is time-partitioning, which uses a static
round-robin fixed sequence schedule to determine which partitions are scheduled at which point in
time. For some kind of dynamics to react to different system states or situations, PikeOS supports
different time partition schedules that can be switched by a system partition, but there is no way to
construct new time partition schemata at run-time. This static configuration is done intentionally to
ease argumentation about guarantees needed for certification of the temporal isolation and timing
properties of the system.

The time partition scheduling in PikeOS has an extension over the ARINC653 partitioning: a time
partition that is always active, which is called tp0. At any time, threads from the current time partition
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Figure 3.2: PikeOS time partitioning

plus those from TP0 (shown as tp0 in Figure 3.3) are eligible to thread scheduling. Figure 3.2 shows
how PikeOS time partitioning works: the time partition scheduler selects, based on the static round
robin schedule, one of the time partitions, and additional to that, TP0 is also active. From the set of
threads selected this way, the second level scheduler, which is priority based, selects the thread with
the highest priority.

TP0 is an important concept in PikeOS, because it can be used for two major tasks:

• To run background tasks at low priority, i.e., a Linux partition that should be active only when-
ever the system has nothing else to do. This way, free CPU resources can be utilised without
allocating explicit CPU time. This possibility is best-suited for non-time-critical tasks. Figure 3.3
shows this possibility.

• To run high-priority error handlers that are mostly inactive except in critical situations. E.g., a
power failure handler could be allocated to tp0 with high priority, so that it can react quickly if
necessary. Again, no CPU time would have to be pre-allocated to such tasks, because in the
normal case, the error handler is expected not to run, and in the exceptional case, it can still
react with minimal delay. Because such error handlers have highest priority, they are automat-
ically in the highest criticality class of the system, because of TP0, they are always active and
could disrupt the whole system in case they went out of control. Figure 3.4 shows this use case
of TP0 in PikeOS.

3.2.2 Event Handling in PikeOS

Earliest deadline first (EDF) as described in Section 3.2.3 is most attractive for sporadic, event-driven
tasks, and for background activity that is not particularly time-critical, but for which starvation must
be ruled out. It makes less sense for purely periodic activities, as such activities can be budgeted for
in the time partition table. Therefore, EDF is most attractive for latency-sensitive threads in TP0 that
should be able to preempt threads in other time partitions.

Application threads are routinely assigned to TP0 to serve as low-latency event handlers (e.g., in-
terrupt threads). Such threads are typically lightweight, but there is no enforcement mechanism. In
the case of an interrupt storm, high-priority event handlers assigned to TP0 could starve other time
partitions (in the current system).

By coupling EDF with mandatory budget enforcement, it is possible to assign threads to TP0 that
previously would have been too dangerous to allow the ability to run at any time: starvation of threads
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Figure 3.3: Background task in tp0, as an extension to traditional ARINC653 time partitioning.

Figure 3.4: Fault handler in tp0, another extension to ARINC653 time partitioning.

in other time partitions can be prevented. In particular, this makes sense if the replenishment period
of an event-driven thread in TP0 is shorter than the partition cycle. If the budget of an event-driven
thread is larger than a time partitions slice, starvation is still possible. By making the replenishment
period (substantially) shorter than the length of a time partition, it is ensured that no partition is
starved in its entirety.

3.2.3 Earliest Deadline First (EDF)

Earliest deadline first (EDF) is a dynamic scheduling algorithm used in real-time operating systems
to place processes in a priority queue. Whenever a scheduling event occurs (task finishes, new task
released, etc.) the queue will be searched for the process closest to its deadline. This process is the
next to be scheduled for execution [35].
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3.2.4 EDF Reservations

Our overall solution involves introducing EDF-scheduled reservations, analytically sound containers
for threads, at specific priority levels, called EDF bands, within TP0. The advantage of this approach
is that from the perspective of the fixed-priority scheduler, we are simply deferring the queuing logic
for certain priority levels to a secondary EDF scheduler, instead of following the default FIFO scheme.

Thus customers can simply choose to not designate any priority levels as EDF bands, or choose
not to assign tasks to an EDF priority level. Also, EDF bands and all reservations can be configured
statically what is important in certified safety-critical systems. Since reservation-based scheduling is
a well-studied problem, it opens the possibility to analytically determine the temporal correctness of
the system. Moreover, it has a low barrier to entry since the placement of certain threads in reser-
vations is transparent to application developers (i.e., no special support needs to be implemented by
the tasks themselves), and system integrators can rely on automatic analysis support in the integra-
tion toolchain courtesy to the large body [26, 34, 33, 2] of supporting theory for reservation-based
scheduling. The integration of EDF bands within the existing fixed-priority scheduler ensures that zero
low-latency low-criticality tasks interference can be trivially guaranteed to tasks that run at priorities
higher than any EDF band.

3.2.5 Implementation

In PikeOS 4.0, SYSGO introduced pluggable kernel drivers. The design is such that at configuration
time, the final PikeOS kernel binary is linked together from the core kernel binary, plus the platform
support package (PSP), containing lowest level timer and boot support, plus user-defined kernel
driver modules. This mechanism is available to customers, so no special support needs to be given
when developing a kernel driver.

In the following paragraphs, we provide a brief overview of the implementation.

Plugin Framework

A scheduler plugin framework allows to easily implement extensions to the core scheduler. There
are two key advantages to this approach. First, by providing such a framework with a fixed interface,
once it has been certified, the only certification that needs to be performed is that of the plugins using
that interface, and not the entire scheduler itself. Second, it allows for an efficient implementation;
callbacks are bound only once (during initialization), and following this, the only added overhead is
that of few additional conditionals.

The scheduler plugin framework was implemented via the poke interface in PikeOS, a mechanism
to allow regular kernel drivers to provide, apart from the regular I/O functionality, any additional spe-
cial functionality to the whole kernel binary (e.g., trace points, monitoring, and security loggers). This
mechanism was used to implement a series of scheduler callbacks in a specially prepared PikeOS
hypervisor kernel, allowing a scheduler plugin to insert its own logic into the control path of the main
fixed-priority scheduler. The advantage of using the poke mechanism to implement this is that if no
scheduler plugin is linked into the kernel, the PikeOS scheduler works with its default implementation
with negligible overhead (as the poke mechanism has been optimized to be extremely lightweight
when disabled). To support future extensions to the scheduler, the scheduler plugin framework ex-
ports generic a callback interface.

We now describe the callback API in detail. Table 3.2 summarizes the callback interface exported
by the scheduler plugin framework built upon PikeOSs poke interface. These can be broadly classified
into four categories: per-thread callbacks, timer-related callbacks, thread-admission and auxiliary
callbacks, and finally, scheduling-related callbacks.

Scheduling-Related Callbacks
requeue()
get next()
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Timer-Related Callbacks
next update()
timer check()

timeout expire()
Per-Thread Callbacks

wakeup()
wait()
stop()

Thread Admission & Auxiliary Callbacks
admit()

resolve()
is owner()
prio cmp()

Table 3.2: Scheduler plugin callback functions.

Scheduling-Related Callbacks: These callback functions pertain to core scheduling events, which
need to be handled by a scheduler plugin.

Timer-Related Callbacks: These callbacks are used by the kernel to (i) determine the next timer
expiration it should program in hardware, and (ii) to inform the plugin when a timer has expired.

Per-Thread Callbacks: These callbacks are used by the kernel to interact with a scheduler plugin to
inform and be informed of thread state changes. Thus, each of the corresponding functions in the
plugin framework invokes corresponding callbacks within the scheduler plugin that must return state
changes (described below), which are used to correctly update the fixed-priority schedulers bitmap
pertaining to EDF priority levels.

Thread Admission and Auxiliary Callbacks: These various callbacks are used to admit tasks into the
plugin and acquire auxiliary information from the scheduling plugin. Specifically (i) determining EDF
priority levels and (ii) comparing priorities managed by the PikeOS FP scheduler and the EDF priority
levels managed by the scheduling plugin.

Reservation-Based EDF Plugin with Modular Reservation Policies

A reservation-based EDF plugin is implemented in PikeOS by hooking into the scheduler plugin
framework described earlier. The scheduler itself was implemented using standard techniques, with
the one key difference that, instead of scheduling threads, it schedules reservations.

The plugin maintains a global data structure that comprises the state of all reservations pertaining
to it. The structure of this global data structure is shown below:

s t r u c t sched p lug in {
unsigned i n t p r i o r i t y ;
s t r u c t l i s t h e a d l a c t i v e ; /∗ Ordered by p r i o r i t y ∗ /
s t r u c t l i s t h e a d l d e p l e t e d ; /∗ Ordered by next rep len ishment ∗ /
s t r u c t l i s t h e a d l i n a c t i v e ; /∗ No s p e c i f i c order ∗ /
P4 t ime t nex t update t ime ;
P4 t ime t l as t u p d a t e t i m e ;
P4 t ime t sched begin t ime ;

} ;

The EDF plugin keeps track of all reservations at a particular priority level in one of three internal
queues: (i) the queue Qactive keeps track of all reservations containing one or more ready threads
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(i.e., thread that are not blocked and currently runnable), (ii) the queue Qinactive holds all reservations
that currently have no runnable threads within them, and finally (iii) Qdepleted stores all reservations
that have one or more ready threads but have depleted their budget and are awaiting replenishment.
At runtime, as events occur for threads associated with reservations managed by the plugin (e.g.,
a thread inside a reservation waking up or blocking), the state of reservation is changed, and the
reservation is moved to the appropriate queue (e.g., if the sole thread within an active reservation
blocks, the reservation is moved to the inactive queue). The EDF scheduler schedules reservations
within Qactive based on their absolute deadline, which is updated by the reservation policy.

The plugin maintains three queues internally: l active is a list of active reservations ordered by
priority (this means ordering reservations by earliest-deadline-first). l depleted is a list of reserva-
tions that have eligible threads within them but have currently depleted their budget and are awaiting
replenishment (ordered by increasing replenishment time). Finally, l inactive is a list of all inactive
reservations in the system, that is, reservations that do not currently have any eligible threads (i.e.,
because all assigned threads are currently blocked or none have been assigned to these reserva-
tions). Currently, we assume only one such structure is present and the global priority field is initialized
to SCHED PLUGIN PRIO.

Reservation logic is abstracted as a set of reservation-specific callbacks that define the semantics
when certain events in the system occur.

s t r u c t rese rva t i on ops {
a dm i t t admit ;
thread wakeup t wakeup ;
t h r e a d w a i t t wa i t ;
p i c k t p ick ;
t i m e o u t t t imeout ;
requeue t requeue ;
bu rn t burn ;

} ;

A detailed description of each callback is provided in the inlined comments below:

pick t : This callback selects a thread to be scheduled from an internally maintained ready-queue. For
most reservation schemes that we consider, this is simply a round-robin scheme. (An exploration of
different queueing schemes within reservations is left to future work.) The time slice variable in the
sched info structure is used by the callback to return how long the thread should be run for. This is
useful for setting up one-shot timers for budget enforcement. Note that returning a zero time slice
means the thread should be scheduled indefinitely.

thread wakeup t : This callback is invoked when a new thread is (i) added to a reservation or (ii) an
existing thread is woken up.

wait t : This callback is invoked when a thread belonging to a reservation is (i) suspended due to
I/O or (ii) terminated. Note that this callback is invoked when a new thread is stopped, as PikeOS
behaves similarly in both cases.

requeue t : This callback is invoked in order to requeue a runnable thread back into the queue of the
reservation that it belongs to. (It is not invoked if the thread blocked and is no longer runnable.)

burn t : This callback is invoked in order to update the reservations budget to reflect any execution or
idling time.

admit t : This callback is invoked in order to admit a thread into a reservation. This is only performed
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once during system initialization for statically configured systems.

Based on the callback function pointers just described, an individual reservation is defined as shown
below.

s t r u c t r ese rva t i on {
/∗ Po in te r to reserva t ion−s p e c i f i c ops s t r u c t u r e ∗ /
s t r u c t rese rva t i on ops ∗ops ;
unsigned long i d ;
r e s s t a t e t s t a t e ;
P4 t ime t budget ; /∗ The conf igured ( s t a t i c ) budget ∗ /
P4 t ime t per iod ; /∗ The conf igured ( s t a t i c ) ” per iod ” ∗ /
P4 t ime t deadl ine ; /∗ The r e l a t i v e deadl ine ∗ /
P4 t ime t cur budget ; /∗ The cu r ren t budget ( a t runt ime ) ∗ /
P4 t ime t cu r dead l ine ; /∗ The cu r ren t deadl ine ∗ /
P4 t ime t nex t rep len ishment ; /∗ Next replenishment t ime ∗ /
/∗ Po in te r to g loba l p lug in data ∗ /
s t r u c t sched p lug in ∗ p lug in ;
vo id ∗ p lug in da ta ;
/∗
∗ This s t r u c t u r e may be pa r t o f two l i s t s : ( i ) the l i s t o f
∗ threads assigned to the rese rva t i on o f t h i s thread and ( i i )
∗ one of the th ree queues i n the g loba l scheduler p lug in data .
∗ /
a d t l i s t t threads ; /∗ The l i s t o f threads i n t h i s rese rva t i on ∗ /
ad t node t l i s t ;
/∗ For queueing i n scheduler p lug in ∗ /

} ;

Each reservation is specified by a structure containing, among other things, an ID, its static config-
uration parameters (budget, period, and (relative) deadline), as well as its runtime state (its current
budget, current deadline and next replenishment time in the fields cur budget, cur deadline, and
next replenishment, respectively).

Reservation Policy: Deferrable Servers

A deferrable servers policy was implemented upon the reservation-based EDF scheduler.
Deferrable servers [26, 34] are a real-time server algorithm that provides an analytically sound

encapsulating container around aperiodic tasks. Deferrable servers are periodically provided a spec-
ified budget. That budget is consumed whenever a task within the reservation executes, and no more
execution can occur once the budget has been depleted. Replenishment of the budget occurs peri-
odically based on a configured period. Under deferrable servers, the budget is replenished to the full
configured amount, regardless of whether the budget was depleted before the end of a given period
or not. Multiple tasks may be assigned to a deferrable server, and these are served via a round-robin
policy. Figure 3.5 shows how EDF reservations can be sporadically executed within a budget.

The advantage of deferrable servers is that it is relatively simple to implement: it requires less
runtime overhead compared to other types of servers (e.g., sporadic servers [33] incur memory
overhead to keep track of task suspensions), and provides flexibility compared to the simpler polling
server algorithm. In particular, polling servers deplete reservation budget regardless of whether a
task is executing or not, while under deferrable servers, tasks may arrive at any time during the
period, and as long as sufficient budget is available, may execute. On the other hand, if a task arrives
during the period of a polling server after its budget has been depleted, it must wait until the next
period to execute.
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Figure 3.5: Reservation-Based EDF Plugin in PikeOS

Deferrable Servers: Implementation Under PikeOS

As can be seen below, we first define a set of reservation operations via a reservation ops struc-
ture described above. We now detail the implementation of each of these functions for realizing a
deferrable server policy under the reservation-based EDF scheduler.

s t r u c t rese rva t i on ops ds ops = {
. admit = ds admit ,
. wakeup = ds thread wakeup ,
. wa i t = ds th read wa i t ,
. p i ck = ds pick ,
. t imeout = ds t imeout ,
. requeue = ds requeue ,
. burn = ds burn budget ,

} ;

ds admit(): this callback is invoked by the reservation-based EDF scheduler whenever a new task
is assigned to a deferrable-server-based reservation. In the deferrable servers implementation, no
action is performed upong thread admission.

ds thread wakeup() and ds thread wait(): these callbacks are invoked by the EDF plugin whenever
a threads state changes. ds thread wakeup() is invoked when a thread is woken up while blocking
results in the ds thread wait() callback being invoked.

ds burn budget(): this callback is invoked whenever a thread has executed for a certain amount of
time, and the budget of the reservation needs to be subtracted.

ds requeue(): this callback is invoked whenever a runnable thread needs to be requeued before a
scheduling phase begins.

ds timeout(): Under deferrable servers, the only timers that are needed is a single replenishment
timers for each reservation. ds timeout() callback is invoked whenever a timer fires.

ds pick (): Recall that when multiple threads are present within a deferrable server, they are serviced
in a round-robin manner. ds pick () gets the next thread to be executed and returns it to the EDF
plugin.
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Chapter 4 Security for Mixed-Criticality

4.1 CycurLIB on PikeOS

In order to meet the security requirements defined in the D1.2 (i.e., system integrity that both the oper-
ating system and the run-time environment are not manipulated), standard cryptographic algorithms
(like AES, SHA-2, RSA, and ECC) are required. These cryptographic algorithms provide application
programmers an easy and standard way to add security to applications, and SAFURE will integrate
the most relevant algorithms into the run-time environment of PikeOS.

4.1.1 Cryptographic Algorithms

Security-critical applications typically need to protect the confidentiality (i.e., an attacker cannot read
messages) and/or the integrity and authenticity (i.e., an attacker cannot modify messages) of data.
To protect the confidentiality of messages, block ciphers are the most common choice. To protect the
integrity and authenticity of data, either Message Authentication Codes (MACs) or digital signatures
can be used.

4.1.1.1 Block Ciphers

Block ciphers like the Advanced Encryption Standard (AES) ensure the confidentiality of messages.
If additionally also the integrity and authenticity need to be protected, an authenticated mode of
operation like Galois/Counter Mode (GCM) can be deployed.

4.1.1.2 MACs

There are different ways to implement MACs, notably based on block ciphers (CMACs) and on hash
functions (HMACs). Typically, HMACs offer a better performance (i.e., a higher data throughput) than
block ciphers and are therefore often preferred. For older hash functions like SHA-1 and SHA-2,
the HMAC construction, which requires two calls of the hash function, with an inner and an outer
padding, has to be used. Alternatively, the KMAC algorithm, which is based on SHA-3 and requires
no additional padding and just one loop, can be used.

4.1.1.3 Digital Signatures

Digital signatures are asymmetric algorithms based on hard mathematical problems like the integer
factorization problem (RSA) or the discrete logarithm problem (DSA, ECDSA, EdDSA). While the
keys for ”traditional” algorithms like RSA and DSA need to be quite large in order to be secure (at
least 2048 bits), signature schemes based on Elliptic Curve Cryptography offer a similar security with
much smaller keys (i.e., between 160 and 256 bits).

For instance, attacking 256-bit ECC with the currently best known methods requires about 2128

operations, which is infeasible even for large organisations with huge financial resources. Traditional
asymmetric algorithms like RSA and DSA require about 3072-bit keys to offer the same level of
security, because other attacks are possible.
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4.1.1.4 CycurLIB

All above mentioned cryptographic algorithms are included in ESCRYPT’s modular CycurLIB library,
which is optimized for high performance for resource-constrained embedded devices. It can be op-
timized either for minimum code size (at the expense or slower execution speed) or for maximal
execution speed (at the expense of a larger code size). Furthermore, the RAM usage is kept as
small as possible. Also, due to its modular design, it can be configured to only contain the required
algorithms, yielding an executable without any overhead.

4.1.2 Integration of Cryptographic Algorithms into the PikeOS Run-Time Environ-
ment

A Cryptographic File Provider for PikeOS has been created that includes the above mentioned cryp-
tographic algorithms. This can be seen as a wrapper for the CycurLIB. From a developer’s point of
view, the cryptographic algorithms can be accessed with normal file operations.

PikeOS supports partitions with strong isolation. This means that security-critical applications can
be separated from non-critical software. A traditional operating system (e.g. Linux) can run in a
non-critical partition as a (para-)virtualized guest operating system. If an attacker manages to gain
root access in the Linux system (e.g. through a vulnerability that enables privilege escalition), he still
cannot get access to data in other security-critical partitions.

Thus, a secure system can be designed that includes the cryptographic algorithms (as a PikeOS
File Provider) in one security-critical partition, a secure application in a second security-critical par-
tition, and a non-critical partition for the virtualized guest operating system. The secure application
contains all secret keys and uses the Cryptographic File Provider for all cryptographic operations like
encryption, decryption, signature/MAC generation, and signature/MAC verification. This is similar to
systems with hardware protection (e.g. Hardware Security Modules, HSMs), where all security-critical
operations are carried out in a (hardware) module that is separated from the main processor. Hence,
if this design pattern is followed, a protection similar to hardware security can be achieved against
online attacks (i.e., assuming that the attacker has no physical access to the platform). However,
HSMs offer additional protection against physical access attacks (e.g., temper-evidence or temper-
resistance) that cannot be realized by a software-only solution.

Figure 4.1 shows the architecture of such a secure system. PikeOS provides the basic operating
system functions (scheduling, resource management) and strong isolation of partitions. The cryp-
tographic file provider based on CycurLIB could also be seen as part of the run-time environment.
However, it is shown as a separate partition here to stress the strong isolation from the other parti-
tions. Security-critical applications can be run in a separate partition. The idea is that all sensitive
material (i.e., secret keys) is stored here and that this partition serves as an interface to the virtualized
Linux system on one hand and the cryptographic file provider on the other hand. It is important to note
that all operations on keys have to be run this partition. In addition to security-critical applications,
safety-critical applications can also run in parallel, benefiting from strong isolation.

4.2 Secure Boot

A Secure Boot system is usually implemented using Message Authentication Codes (MACs): When
flashing the firmware, the MAC authentication tag of the firmware is stored in a special hardware
register or a dedicated memory region. The key used for MAC calculation also needs to be stored
in a dedicated, secure memory region. Thus, the MAC key and the MAC authentication tag need to
be stored in hardware-depend memory regions. Furthermore, the MAC verification routine has to be
stored in a memory region that is protected against manipulation (otherwise, an attacker could simply
modify the verification to always return ”passed”).

As it has been already mentioned in 2, it is hard to get access to all hardware components as well
as to hypervisor mode on DragonBoard 810 platform due to closed documentation and poor commu-
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Figure 4.1: PikeOS Run-Time Environment with Cryptographic File Provider

nication from Qualcomm side. Considering this, we decided to focus on Secure Update technology
which requires only a cryptographic module or even a software library available on the target platform
and no hardware-dependencies.

4.3 Secure Update

4.3.1 Architecture Overview

Currently, software updates for automotive ECUs are predominantly performed during service inter-
vals within a service station. However, in order to react timely against emerging vulnerabilities and
new threats, it is desirable to perform updates more frequently, ideally using a wireless connection to
a remote server. To prevent attackers from modifying the firmware, security becomes a crucial part
of the firmware update process.

The firmware update system consists of a Backend Server (operated by the OEM or a service
provider) and the firmware update components within the embedded system. First, the firmware has
to be transferred from the Backend Server to the embedded ECU. This can be done using a regular
Internet connection (e.g., via GSM) to the Backend Server. In order to preserve the integrity and
authenticity of the firmware, digital signatures or MACs can be used. Optionally, the firmware can
also be encrypted in order to preserve the confidentiality and thus prevent the reverse-engineering
of the software functions. Hence, the transferred data include the firmware itself (possibly encrypted)
and a digital signature or MAC value which is attached to the end of the firmware.

Second, the firmware update is forwarded to a Secure Update application that (optionally) decrypts
the firmware update. Then, the verification of the digital signature or the MAC authentication tag takes
place. To accomplish this, the transferred digital signature is verified using standard cryptographic
algorithms (like RSA, ECDSA, EdDSA) or in the case of MACs the MAC value of the message is
calculated and checked against the transferred value. If both values are identical, the firmware update
is considered authentic and the flashing of the firmware can be performed.

The architecture allows both asymmetric and symmetric algorithms. Depending on the platform
(RAM size, ROM size, CPU speed), either the first or the latter is better suited. In the case of
asymmetric cryptography, only the public key has to be stored in the embedded system. It is no
problem if a potential attacker can read this public key. However, it has to be ensured that this key
cannot be modified, because otherwise an attacker could replace it with his own public key. Similarly,
the key used to generate the MAC value has to be securely stored and even protected from read-out
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by an unauthorized party. The rationale here is that an attacker could use the key to calculate a
legitimate MAC value for a manipulated firmware update.

4.3.2 Implementation

The implementation of secure update described in the section above consists of remote server and
a target platform. The server communicates with the target over Ethernet channel. The detailed
architecture is depicted at Figure: 4.2.

Figure 4.2: Secure Update Setup

An update package is stored on a server. The packet contains a binary application to be updated ap-
pended with its cryptographic signature. A signing process is shown at the picture 4.3. The signature
is generated with a pair of public and private key using elliptic curve cryptography (ECC). The public
key from the key pair then is stored on the target platform and used for a signature validation. The
server communicates with a target and provides information about available updates.

Figure 4.3: Generating an update packet

The target consists of three partitions:

• P1: Application Manager
The Application Manager is responsible for requesting, receiving, validation and applying up-
dates from the server. In turn it consists of three blocks:

– Update daemon
It receives an update request from the update server and downloads an update package.

– Validation routines
This block performs the validation of the received package. It loads the public key stored
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in the file system. It sets up the CycurLIB file provider with the application, signature and
the public key. After the preparation is finished, it requests the file provider to validate the
signature.

– Application Loader
This block is responsible for the start and the update of the user application in P3. It has
the ability to manipulate the execution state of P3 and also has writable access to the user
application memory.

• P2: User application to be updated
This partition is configured to run an application stored in RAM. This RAM is accessible by the
Application Manager where Application loader.

• P3: CycurLIB file provider
Please refer to section 4.1 for a detailed description.

The update workflow consists of the following steps:

• Initialization

• Getting an update package

• Validation

• Applying the update

At the Initialization step the P3 stays in idle mode. The Application Loader puts the initial user appli-
cation stored in the ROM file system to the RAM and starts the partition.

After the initialization step is complete, the Application Loader starts the Update daemon to get avail-
able updates. It waits for an update request from the update server. When the new packed is available
on the server the server notifies the Update Daemon with the request for update. The Update Dae-
mon downloads the update package.

The Validation step is performed by the Validation block which receives the downloaded Update
Package. The Validation block retrieves the pointer to the signature from the package and also loads
the public key storing on the file system. It sets up the CycurLIB file provider with the application,
signature and the public key. After the preparation is finished, it requests the file provider to validate
the signature.

After the successful validation of a received update the Application Loader performs an update pro-
cedure. It stops P3 and replaces its RAM with the new application. Then it restarts P3. The new
application starts its execution. In case of a failed validation result the update will not be applied and
the Application Partition (P2) will not be affected.

4.3.3 The Secure Update Demonstrator

At the HiPEAC workshop in Manchester the Secure Update has been demonstrated. Figure 4.4
shows the demo resulting screen. There are three terminal there:

• The left one is a is the server output.

• The middle one is a Application Manager output.

• The right one is a User Application output.
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The server requests an update process twice. The first Update package is correct and the second
one is intendedly corrupted.

Green lines highlight result of the correct update packet update. The Application manager re-
ports successful validation of the package and the printed version of the User Application partition is
changed to 1.2.

Red lines highlight result of update with a corrupted package. The Application manager reports
an validation error and returns this error to the server. The User Application partition continues its
execution without a stopping or update.

Figure 4.4: Secure Update Result
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Chapter 5 Mixed-Critical Run Time Engine

In this chapter we will present the Budget-Based RunTime Engine (BB-RTE), a mixed-critical runtime
engine aiming at ensuring safe time-critical behavior of high-critical applications running concurrently
with low-critical applications.

For the sake of completeness, Section 5.1 will recall the safety-critical and time-critical context and
requirements already presented in Deliverables D1.2 and D3.2. The principles of the runtime engine
are presented again in Section 5.2, while the associated process is now further detailed in Section
5.3. The experimental setup is described in Section 5.4 and relies on the WP4 prototype presented
in Chapter 6. Finally, evaluation results can be found in Section 5.5.

Also in this chapter we introduce the thermal protection extension for the BB-RTE (Section 5.6),
as well as the assessment of time-protection capabilities of the AURIX TC275 automotive platform
(Section 5.7).

5.1 Context

In previous deliverables, we already pointed out that safety-critical and time-critical applications are
characterized by stringent real-time constraints, making time predictability a major concern with
regards to the regulation standards [20, 21, 30].

The recent shift of these industries toward multi-core COTS (component off-the-shelf) processors
for size, weight and power (SWaP) [9] as well as efficiency reasons, introduced new sources of time
variations, and the solution providers can no longer rely on resource over-provisioning to enforce
time predictability. As a consequence, the industry is facing a trade-off between performance and
predictability [23, 27].

As depicted in Figure 5.1, multi-core processors are characterized by shared hardware resources
such as some levels of caches, the interconnect, the main memory or I/O controllers.
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Figure 5.1: Timing Interference in multi-core architectures

At hardware level, concurrent accesses on these resources are arbitrated, introducing jitter at appli-
cation level defined as timing interference [14]. Such interference, caused by electronic competition
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on shared hardware resources, are breaking the timing isolation principles required by the industry
standards [20, 21, 30] of time-critical software.

Several papers [10, 28] have studied the impact of timing interference on the Worst-Case Execution
Time (WCET). Their authors have shown that not trying to tackle the interference problem leads to
a performance loss for worst-case that can go far beyond the expected performance gain of using a
multi-core processor.

In a survey on Deterministic Platform Solutions [13] we presented various solutions allowing
some level of time-deterministic usage of non-deterministic hardware platforms. Two families of solu-
tions are presented: control solutions that aim at eliminating all interference by restricting the usage
of the hardware platform, and regulation solutions that are focusing on keeping the impact of timing
interference below a harmful level.

By introducing over-provisioning or complex runtimes, control solutions such as Marthy [22] or
deterministic adaptive scheduling [12] fail to efficiently exploit the multi-core performance. Other
solutions relying on execution models restrict too much the usage domain. For instance, The AER
model [14] is easily applicable to distributed memory systems but lacks strong guarantees with regular
shared memory systems.

Regulation solutions, on one hand, offer a better performance efficiency but lack the strong guar-
antees required by domains such as avionics. On the other hand, they are perfectly adapted to less
critical environments such as mixed-critical systems where high-critical tasks are running conjointly
with low-critical tasks. In such systems, regulation solutions offer the possibility to degrade low-critical
tasks to guarantee the timing behavior of high-critical tasks. To provide time guarantees, regulation
solutions usually rely on budgeting the time with early deadlines or shifting time windows [25].

Within the SAFURE project, we developed the Budget-Based RunTime Engine: a regulation
solution relying on budgeting the number of shared hardware accesses to guarantee time properties.
To be able to do so, first we perform at design time an automatic standalone characterization of the
critical applications to figure out the available budgets; and second we rely on this budget to take
scheduling decision about non-critical applications at runtime.

5.2 Principles of the Budget-Based RunTime Engine

The principles of the approach, already presented in Deliverable D3.2, consist in determining, per
timeslot, a maximum budget to allocate to low-critical applications in terms of resource accesses.
When this budget is spent, low-critical applications are suspended until the next timeslot, as depicted
in first timeslot of Figure 5.2.
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Figure 5.2: BB-RTE Principles
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The budget is computed per timeslot and per hardware resource to ensure that the critical applica-
tions will be matching their deadline in each particular timeslot.

During the second timeslot of Figure 5.2, the low-critical applications manage to terminate without
spending the whole allocated budget, again guaranteeing that the critical applications will match their
deadlines during this timeslot.

With such a process based on budgeting, the major challenge consists in determining the bud-
gets that guarantee the time behavior of high-critical applications.

5.3 Characterization & Regulation Process

The process to determine resource budgeting, depicted in Figure 5.3, is performed with two major
steps: First, both the architecture and the high-critical applications are characterized in an offline
characterization step with regards to every hardware resource 1) to determine the total available
resource budget; 2) to quantify the resource requirements of the high-critical task; and 3) to figure out
the maximum level of extra accesses to the resource before hampering the high-critical task.
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Figure 5.3: Timing integrity process for mixed time-critical systems

Second, in a runtime regulation step, from the characterization information is inferred the maxi-
mum number of resource accesses allowed for non critical tasks, these tasks being suspended by a
Budget-Based RunTime Engine (BB-RTE) once they reach this maximum number of total access
during a given time slot.

5.3.1 Hardware characterization & budgeting

As introduced in Figure 5.3, in the first sub-step of the offline characterization phase, we perform a
characterization of the target hardware platform. This hardware characterization consists in defining
a set of low-level (assembly code) Stressing Benchmarks. Each of these stressing benchmarks is re-
sponsible for stressing a particular hardware resource of the selected multi-core target, by multiplying
the number of accesses to this particular resource.

By progressively stressing each resource while monitoring both the execution time and the effective
number of access to this resource thanks to Performance Monitor Counters (PMC) [32], we are
able to determine the maximum available bandwidth in terms of accesses to this resource, and that
corresponds to the total available budget for the resource.

By iterating over all the potentially shared hardware resources, we obtain a vector of such total
budgets that fully characterize the hardware limitations of the selected platform.
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5.3.2 Critical application characterization & budgeting

During the second characterization sub-step of Figure 5.3, we characterize the usage made by high-
critical applications of the shared hardware resources. To do so, we run the high-critical applications
concurrently with the stressing benchmarks described above, progressively increasing the stressing
level, and only monitoring the effect in terms of runtime of the high-critical applications.

It allows us to extract two different kinds of information: First the required per-resource budget
needed by our high-critical applications; and second, the level of extra resource access supported by
our high-critical applications before being significantly slowed down. This supported extra accesses
is the access budget that can be safely used by the low-critical applications.

The process to determine the acceptable level of slowdown and the associated extra access budget
is depicted in Figure 5.4. The y-axis represents, during the current timeslot, the maximum observed
runtime of the monitored application. The x-axis represents the extra access load performed on the
associated hardware resource by the stressing benchmarks.
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Figure 5.4: Determining an acceptable level of slowdown and the associated extra access budget

The leftmost point in the chart corresponds to the application running alone in isolation (with a
null stressing benchmark activity). It therefore corresponds to the classical WCET of the application
running in isolation. The rightmost point in the chart corresponds to a permanent maximum load
from the stressing benchmark actually preventing the monitored application to access the required
resource.

Selecting an acceptable level of slowdown and the associated extra access budget is performed
by selecting a point on the chart. The projection of this point on the y-axis then corresponds to
the acceptable level of slowdown and the projection on the x-axis directly provides the extra access
budget available for non-critical applications with an acceptable impact on critical applications.

We used two different techniques to select this point: First by directly selecting a maximum accept-
able slowdown, but doing so for every hardware resource led us to too much over-provisioning, failing
to fully exploit the multi-core efficiency. Second, we defined a maximum slope for the curve. This
second solution allowed us to vary the level of slowdown relatively to the shape of the curve, focusing
on the hardware resources the high-critical application was the most sensitive to.

By repeating this procedure for each shared hardware resource, we obtain again a budget in the
form of a vector of both the required amount of access by the critical application (the leftmost point of
the curve) and the number of supported extra access (the selected point of the curve).

Characterization steps involve large-scale experimentation due to the limited monitoring resources
of multi-core processors. These architectures usually provide from tens to hundreds of hardware
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events that can be monitored, but only allow to monitor a few PMC at a given time (6 for ARM-v8
architectures for instance). As a consequence, testing all the countable PMC events involves many
days of experimentation, and this characterization phases have to be performed off-line. Anyhow,
this characterization only needs to be performed once per critical application for a particular hard-
ware target, and such a characterization could also provide useful information for the qualification or
certification documents.

5.3.3 Budget-Based RunTime Engine (BB-RTE)

Once the characterization phases are over and all budgets have been gathered, both high-critical and
low-critical applications can be deployed on the hardware target together with the runtime engine. As
shown in Figure 5.3, the online regulation phase happens during the execution and consists in two
sub-steps.

First, using the same process as the characterization phases, the low-critical applications are mon-
itored with PMC counters, this time not to compute a budget, but to monitor the load in terms of
hardware resource accesses.

Second, the BB-RTE runtime engine compares this load with the maximum extra budgets to de-
cide if, during the current timeslot, non-critical tasks may continue executing or if they need to be
suspended until the next timeslot. Doing so makes sure the slowdown of critical tasks does not
hamper their ability to match their deadlines.

One of the specific challenges of the BB-RTE runtime engine for time-critical systems is that time
intrusiveness of the associated monitoring features has to be kept minimal, not to bias the time
characterization results. Also, the BB-RTE itself should make a minimal usage of shared hardware
resources to not impact the resource access budgets. The final intrusiveness footprint of both the
monitoring features and the BB-RTE engine will be presented in the results section.

5.4 Experimental Setup

The BB-RTE engine has been developed on top of PikeOS [4], which is both a hypervisor and a
real-time operating system relying on partitioning. We relied on the METrICS toolsuite [15], described
in Deliverable D4.2, to perform the characterization steps and implemented the runtime engine as a
native PikeOS partition, altering the scheduling in real-time as the monitoring information is gathered.

5.4.1 Target Architecture

The results presented in the Section 5.5 were evaluated on an ARM Juno board [8] embedding a
big.LITTLE architecture composed of a cluster of 2 high-performance Cortex A72 cores and a cluster
of 4 more predictable Cortex A53 cores. The block diagram of the architecture is presented in Figure
5.5.

The highlighted parts in the figure correspond to the shared memory path from the cores towards
the main memory that are prone to timing interference. Other initiators like the MALI GPU, the PCI
express links and the DMA controllers can also create contention on these shared resource, but for
this work we will only focus on memory contention from the cores.

Alongside this memory path, the shared hardware resources are: The shared L2 cache that is
shared by all the cores of each cluster. The CCI-400 cache-coherent interconnect (a high-bandwidth
crossbar interconnect combining routing and coherency functions), and two DDR3 controllers served
through the AMBA-compliant DMC-400 memory controller.

The sizes of the memory structures alongside this path are presented in Table 5.1. This informa-
tion will be useful when trying to design stressing benchmarks dedicated at stressing a particular
hardware resource.
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Figure 5.5: Simplified block diagram of the ARM Juno Board

A72 cluster A53 cluster
Number of cores 2 4
IL1 cache size 48KB 32KB
IL1 cache line size 64B 64B
IL1 associativity 3 2
DL1 cache size 32KB 32KB
DL1 cache line size 32B 64B
DL1 associativity 2 4
L2 cache size 2MB 1MB
L2 cache line size 64 64
L2 associativity 16 16

Table 5.1: JUNO Board memory structure sizes

5.4.2 Monitoring facilities

In Section 5.3, we stated that the budget characterization is performed by using Performance Monitor
Counters (PMC).

The ARM-v8 architecture includes a Performance Monitors Unit (PMU), a non-invasive resource
primarily used for debugging that provides information about the internal operations in the core. It
includes a 64-bit cycle counter and 6 performance monitor counters able to count the occurrence of
around 60 different events.

Among these events we selected a subset of 13 events that correspond to either private or shared
hardware resources composing the memory path, listed in Table 5.2. The description appearing in
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the table is the level of details provided by the documentation on each countable event.

Performance counter Counting
inst retired Instruction architecturally executed
cpu cycles Cycles
L1I cache Level 1 instruction cache access
L1I cache refill Level 1 instruction cache refill
L1D cache Level 1 data cache access
L1D cache refill Level 1 data cache refill
L1D cache wb Level 1 data cache write-backs
L2D cache Level 2 cache access for data
L2D cache refill Level 2 cache refill for data
L2D cache wb Level 2 cache write-backs for data
bus access Bus access
mem request Memory access
prefetch Linefill because of prefetch

Table 5.2: Hardware events measured with Performance Monitor Counters

A trial and error experimental process was therefore necessary to understand the exact meaning of
each of these counters. inst_retired corresponds to the number of executed instructions whereas
cpu_cycles corresponds to the number of CPU cycles measured so far. Therefore the ratio of the
two correspond to the regular instruction per cycle (IPC) measurement commonly used to determine
an application performance.

The events L1D_cache, L1I_cache and L2_cache indicate the number of accesses to the L1 data
cache, L1 instruction cache and L2 cache by load/store requests respectively. The refill counter-
parts indicate how many times a cache line was obtained from a higher memory structure (e.g. the
number of times a cache line was provided to the L1 cache by the L2 cache) so it is a good measure
of the cache misses that indicates that a higher memory level in the datapath is accessed.

The write-back counterparts indicate how many times a modified cache line was written back to
higher level memory so that the local cache line could be freed to fit a new data. This write back
traffic, not appearing directly in the source code could be a significant part of the memory traffic.

The events bus_request and mem_request are respectively counting the requests on the local bus
connecting core and caches, and the number of requests leaving the core to be sent to the CCI-400
interconnect. This local bus traffic does not only correspond to memory accesses in the code, but
also to instruction fetches and to the coherency traffic.

Finally, prefetch indicates the number of times a cache line of the L2 cache is filled due to an
automatic hardware prefetch of the cache line. This feature has proven to be very problematic for our
stressing benchmarks later presented in this section as the prefetching was limiting the stress level,
as shown in the evaluation section of the chapter.

Some of the other hardware resources appearing in Figure 5.5 also provide some debugging sup-
port, but the documentation is often lacking or only available under NDA, and restricted to third-party
providers of debugging probes such as Lauterbach. We definitely want to monitor these SoC-level
events in the future, but we considered them out-of-scope for this work.

5.4.3 Target Environment

In order to measure precise execution times and to sample hardware performance counters, we used
our METrICS toolsuite. Its main concept is to sample performance counters (including the cycle-count
register) with a very short timing overhead, before and after the code sequences to monitor.

The METrICS toolsuite is composed of several elements: a kernel driver used to configure the
hardware performance counters (as this requires privileged instructions), a library providing mea-
surement probes to the application, and a Collector performing various initialization and transmission
of measurement results. We heavily modified this latter component to include the part correspond-
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ing to the Run Time Engine. In addition, the METrICS suite includes host-side scripts and tools for
measurement campaign automation, post-processing of raw data, and visualization.

The latency of a METrICS probe has been evaluated to be less than 392ns at worst. This whole
probe thus has a comparable latency to a system call, and is precise enough considering the mil-
lisecond deadlines we have in the mixed-critical prototype presented in Section 6.

The initial behavior of the collector component was to run out of the monitored application oper-
ational cycles, to minimize the impact it had on the application timings. More precisely, it was 1)
performing initialization and performance counter selection prior to running the monitored applica-
tions, 2) being completely suspended during the application operational cycles, 3) being activated
again at the end of the application to dump the collected data to the host.

As appearing on Figure 5.6, we transformed in the BB-RTE context the collector component into
the runtime engine. It is now also running during the application operational cycle to monitor re-
source usage, and to suspend low-critical tasks when they have consumed all their budgets. In the
experimental context, we kept the third dumping phase to also collect the applications runtime and
performance counter data including the number of deadline misses observed during the applicative
phase.

Realtime
application

Realtime
application

Realtime
application

Realtime
application

...
RunTime
Engine
(RTE)

PikeOS scheduler
Hardware
Monitor
Driver

ARM64 v8 PSP

ARM Juno board

Figure 5.6: METrICS infrastructure in the context of BB-RTE

The application deployment also appears in Figure 5.6. We dedicated the two A72 cores to running
both the operating system and the runtime engine. Several tests have shown that it was more efficient
to run the RTE on the same core as the operating system due to the large number of system calls
required to alter the scheduling. We therefore reserved the more deterministic A53 cores to the
applications. Further deployment details for this cores will be provided in the evaluation section.

5.4.4 Stressing benchmarks

The mixed-critical applications we will use for the evaluation are described in Section 6, but the
characterization steps described in Figure 5.3 also involve stressing benchmarks.

These benchmarks are simple applications performing repeated accesses to a shared resource.
This involves executing a number of load or store instructions with regards to a memory region or a
memory-mapped peripheral. In order to focus the stress applied by these benchmarks on a particular
resource, we developed them in assembly language, thus allowing the greater control on the low-level
behavior of the stressing benchmark.

The accesses are parametrized in four ways: the direction of the transfer, the amount of data trans-
ferred, the address offset between consecutive accesses, and the repetition rate. The first parameter
is either read or write. The second parameter, representing the buffer size, spans from 1KB to 2MB
in power of 2 increments. This allows us to experiment the behavior of data fitting or not in L1 and
L2 caches. The address offset, called stride, is either 4 bytes for continuous accesses, 32 bytes to
stress A72 L1 cache lines, or 64 bytes to stress A53 L1 and L2 cache lines. To vary the amount of
accesses performed in a given time, we add a configurable number of NOP instructions (modeling
calculations performed in isolation) per load or store instruction. This parameter spans from 0 (full
stress) to 100 NOPs per access.
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5.5 BB-RTE Evaluation

This section first reports the budget characterization results obtained following the process described
in Section 5.3 and summarized by Figure 5.3. Then, it presents an evaluation of the runtime engine,
by comparing the results in terms of deadline misses compared to an unregulated run of the same
set of applications.

5.5.1 Platform characterization and total available budget

Performing the hardware platform characterization of Figure 5.3 involves concurrently running stress-
ing benchmarks until some saturation phenomena are observed.

On the first A53 core, we run a monitored stressing benchmark with a fixed number of iterations
and a full stressing profile (zero NOPs). On the other 3 A53 cores, we run the stressing benchmark
as an infinite loop, starting it before the monitored one to be sure that the monitored benchmark is
run under stress. For these stressing cores, we are varying the buffer size and the stride concurrently
with the monitored core. We are also varying independently the number of NOPs (and therefore the
amount of concurrent accesses to the resources).

By varying the stride, we impact which memory structure and therefore which part of the architec-
ture will be exercised: With a 4-byte stride, we will exercise the L1 cache maximizing the number of
L1 hits, while strides larger than the L2 cache line size will mostly produce L1 and L2 cache misses,
actually exercising the DDR controller and the memory.

Table 5.3 shows the runtime results of such a characterization, varying the buffer size (how well
the data will fit in the different cache structures), as the stressing level varying to maximum stress (no
NOP instruction) to no stress (no load instructions).

runtime (cycles)
Buffer size stress min 25% median 75% max
16384 none 12338 12352 12360 12369 13101
16384 max 12338 12352 12360 12369 13175
32768 none 24680 24786 24839 24959 26129
32768 max 24679 24785 24838 24960 26272
65536 none 49340 49951 50300 50338 52499
65536 max 49339 49531 49752 50759 52795
524288 none 393962 394096 394219 394633 417123
524288 max 393978 394535 394785 395224 421488
1048576 none 789994 791536 792055 792817 827872
1048576 max 787995 791789 793538 795033 823978
2097152 none 1599528 1601997 1603697 1606266 1751393
2097152 max 1577078 1603203 1605720 1607560 1732193

Table 5.3: Run-time variation observed on the monitored core with a 4-byte stride

Selecting a 4-byte stride puts the L1 data cache under pressure, but this cache structure is private
to each core. As a consequence, results presented in Table 5.3 show very small variations while
increasing the number of NOPs, the runtime only varying as the buffer size grows. Due to the high
L1 hit ratio, having large buffer size not fitting in the L1 does not impact the performance either.

Selecting larger stride values allows us to characterize further hardware components shared by all
the A53 cores starting with the L2 cache and even with the A72 cores beyond the CCI 400.

As we were limited to count core-related events with the Performance Monitor Counters, we mainly
focused on the level 2 cache, that is also the first hardware memory resource shared by all the cores
of the A53 cluster.

Table 5.4 presents the running time distribution on the monitored core while varying again the
buffer size and the number of NOP instructions, to compare standalone versus maximum stress
deployments.
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runtime (cycles)
Buffer size stress min 25% median 75% max
16384 none 818 826 832 839 2883
16384 max 818 824 831 839 4975
32768 none 1728 1866 1902 1955 9739
32768 max 1734 1883 1929 2006 7382
65536 none 6772 8237 8885 10131 19378
65536 max 6720 9080 9771 10777 20170
524288 none 79625 107638 108660 111344 179419
524288 max 97018 109665 110268 110897 177007
1048576 none 169753 210845 214317 229595 366017
1048576 max 207393 227506 237746 242661 353066
2097152 none 478261 522073 526574 529720 725379
2097152 max 500723 547663 551346 553397 705256

Table 5.4: Run-time variation observed on the monitored core while performing L2 cache misses

Whereas the results should allow us to observe timing interference with an expected runtime vari-
ability of fully-stressed versus standalone larger than x4, we still observe very little difference between
the two standalone and stressed versions.

Further tests, including unrolling the stressing benchmark loop to further increase the load or store
ratio did not significantly change the above results. We therefore focused on the results corresponding
to the maximum stress condition (2MB buffer size, with 0 NOP per iteration on the unrolled version)
and studied the associated hardware counters presented in Table 5.5.

counter min median max
l2d cache 33645 34654 35129
mem request 32473 32636 32863
prefetch 30304 31716 32001

Table 5.5: Performance Monitor Counters related to the L2 cache under stressing condition

In the worst case, out of the 35K data accesses to the L2 cache, 32K accesses are going to the
external memory interface, meaning that our configuration successfully maximizes the number of L2
cache misses in order to maximize the interference on the interconnect. However, we can also ob-
serve 32K occurrences of prefetch, meaning that the hardware prefetcher successfully manages to
capture the access pattern of our stressing benchmark and was able to anticipate nearly all of the
external memory accesses. As a consequence, our stressing benchmark fails to effectively continu-
ously stress the hardware resource.

In such a configuration the hardware prefetcher, instead of worsening runtime variability, smooths
the contention on memory accesses. This seems to be a case of unexpected positive contribution to
determinism from a dynamic, non-deterministic mechanism.

Also, the behavior of the prefetcher for requests coming from a particular core seems to depend
on the memory access activity from the other cores, leading to further thickening the runtime dis-
persion. We particularly observed that by running the benchmark concurrently with nothing, versus
concurently with a benchmark only issuinf NOPs. Up to a 13% speedup was observed with the
nop-only corunner.

We tried to disable the hardware prefetcher, unfortunately we observed that it is periodically turned
back on. We suspect the System Control Processor to be responsible for that. However, from our
real time system, we have no control nor access on this particular core.

An alternative approach would be to develop another stressing benchmark, performing accesses
that are more difficult for the prefetcher to predict. This would for example involve pseudo-random
address increments.
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5.5.2 Critical application characterization and extra supported budget

The characterization of the critical application was performed by running the FMS application on the
first A53 core. Again, thanks to METrICS, we instrumented the FMS application by inserting probes
around each task composing the application, and at the level of a full operational cycle from the
sensor task to the trajectory computation.

We first ran the the FMS application standalone, with the other cores being idle, to collect the
budget in terms of L2 accesses required by each timeslot of the application. Contrary to the stressing
benchmarks, that are regular in their behavior and throughput requirements, the observed runtimes
and resource requirements vary a lot with the FMS application, as all the tasks are not triggered in
every 200ms timeslots due to heterogeneous periods.

The LOCC4 task for instance is only executed in 1 out of 5 periods, whereas the LOCC1 task is
executed every period. As expected the timeslots corresponding to the least common multiple of all
the periods, during which all the tasks must execute, is the one with the larger observed runtime and
L2 access count, as pointed out by Figure 5.7.

Figure 5.7: Variation of the runtime (in blue x) and L2 accesses (in red +) while running the FMS
application standalone

The next step, as defined in Figure 5.3, would have been to run the FMS application on the first
A53 core, while running stressing benchmarks on the other A53 cores to build a figure looking like
Figure 5.4. Such experiments led to the same issue as presented in the previous section, with the
benchmarks failing to successively stress the architecture.

As a consequence, we failed to build such a figure with well identified asymtotes, and had to rely
on an alternative technique:

Let R = [R0, R1, . . . , RN ] be the set of all the required access budgets per timeslot for the critical
FMS application running standalone without any activation of the asynchronous tasks. We set E =
[E0, E1, . . . , EN ] the set of per-timeslot extra supported budget such as Ei = (max(R)−Ri)× 20%.

Doing so is not representative of the total budget available on the target platform, but this way
the supported extra budget is inversely proportional to the resource usage performed by the critical
application, as it should really be.

5.5.3 Evaluation of the RunTime Engine

As a baseline for the evaluation of the runtime engine we started to deploy the FMS application on
the first A53 core, and the BiQuad applications on the remaining A53 cores. Doing so, we observed

SAFURE D4.3 Page 33 of 89



D4.3 - Final OS & RTE prototypes

a deadline miss ratio (number of timeslot with a deadline miss compared to total number of timeslots)
of 24.7%.

We then run the same application deployment, this time supervised by the Budget Based Runtime
Engine. As a budget, we used the previously computed budget E. And again we ran the FMS applica-
tion without any asynchronous tasks. The deadline miss ratio decreased to 2.6% while the number of
slots with suspended non-critical tasks increased to 30.9%, proving the ability of the Runtime Engine
to suspend low-critical tasks when they are endangering the high-critical ones.

The high-critical application normally also encompasses some asynchronous tasks that we ignored
so far. However, some of these sporadic tasks have a huge memory footprint, especially the tasks
from the Trajectory task group that are performing random accesses to the 100MB large navigation
database.

It would make no sense to have a preset static scenario, forcing in which timeslot each asyn-
chronous task would be triggered. It would be similar to considering these tasks as periodic with a
very large period. On the other hand, a random scenario will raise a reproducibility issue as we are
gathering the timeslot statistics.

As a consequence, we created randomly two static scenarios for asynchronous task triggering, one
was used during the characterization phases to compute an R′ extra supported budget set, and the
second one was used while running under the supervision of the runtime engine. In such a scenario
we observed a final miss ratio of 13.0% and a suspend ratio of 52.7%.

On one hand, the increase in suspend ratio is due to the over-provisioning of the timeslots with
some asynchronous tasks in E′, leading to unnecessary suspends at runtime. One the other hand,
the increased deadline miss ratio could be explained by the lack of such provisioning in the timeslots
were the asynchronous tasks finally occur.

5.5.4 Limitation of the approach

Beyond the issues related to the prefetcher preventing us to sufficently stress the hardware resources,
we identified a set of issues and limitations while evaluating the runtime engine.

First, relying on Performance Monitor Counters restricts us to the hardware resources within the
cores. As a consequence, we were not able to evaluate shared hardware resources such as the
DDR controller. With the prefetchers disabled, furthermore increasing the stride of the stressing
benchmarks would have caused memory page reloads at the level of the memory controller, causing
extra delays. These sources of interference have not yet been evaluated.

A more fundamental limitation is the issue caused by the aperiodic tasks. When pre-computing
budgets with characterization phases, we face the same issue as with machine learning with both
over-learning, and outlier issues, and as a result we are facing either deadline misses or unnecessary
suspends.

Also having per-timeslot budget is not practical for real applications running for hours. During our
evaluation, the FMS ran for up to 5 minutes. With 200ms timeslots, which involves 1500 different
budgets for this critical application. Also, because of unpredictable aperiodic tasks, it is not really
possible to identify shorter repeating patterns.

We performed tests with an unified average timeslot budget, but doing so only reduces the number
of deadline misses by 2.04%. Using a maximum timeslot budget on the other hand eliminates all the
deadline misses but the low-critical tasks are systematically suspended.

5.6 BB-RTE Thermal Protection

This section provides an overview on how thermal protection can be added to BB-RTE. The scheme
is based on the Thermal Isolation Servers scheme detailed in D3.2. Additional details and results will
be provided in D6.3. Our strategy has the following components.

1. Using thermal callibration tests, determine the thermal model of the ARM Juno Board.
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2. Using additional thermal callibration tests, determine the maximum system-wide temperature
caused by the execution of the HI-Critical Application. We call this temperature ΘHi

3. Compute the thermal budget for Lo-Critical Applications. This budget equates to ΛLo = Θ∆ −
ΘHi. ΛLo characterizes the maximum allowed temperature increase caused by the execution
of Lo-Criticality applications.

4. Using the thermal model computed in step1, ensure during run-time that ΛLo is not exceeded.

5.6.1 Application and platform specifics

As stated in section 5.5, BB-RTE has the high critical FMS application running in the core 0 of the
A53 cluster. The less-critical BiQuad application is executed on cores {1, 2, 3} of the A53 cluster.
Thermal protection needs to be provided to the FMS application.

Juno board does not have a per-core temperature sensor and reports a single temperature value
for the A53 cluster. Due to this limitation, the thermal callibration tests need to be more extensive
and the thermal model will be more conservative, compared to the scenario where per-core thermal
sensors were available. This is because, under the current setup, the thermal impact of an application
(on its own core and neighbouring cores) will need to be inferred from this single temperature reading
of the A53 cluster. The details of the thermal callibration tests and the corresponding thermal model
results will be reported in D6.3.

5.7 Hardware Support for Mixed-Criticality Multicore Systems

In deliverable D4.1 we reported our hardware support for the SnapDragon 810 processor. Due to
the known failure to integrate all technologies on that board, this technology was also integrated on
a Juno Development Board, which implements a similar architecture, so the low-level software could
be reused with minor modifications. However, for the sake of exploiting this technology in one of the
use cases, we further integrated it in the Infineon AURIX TC27x processor family. We report next our
experience in understanding the Performance Monitoring Counter (PMC) support in such state-of-
the-art automotive processor (using only the available documentation as reference), with the goal of
building a multicore-contention model as that presented in [11] to support the RTE. In particular, for
this work we focus on the Infineon AURIX TC-275 board [18].

5.7.1 Platform

The TC-275 is a TriCore platform comprising an energy-efficient TC1.6E core (Core 0) and two in-
stances of a performance-efficient TC1.6P core (Core 1 and Core 2), see Figure 5.8, with Cores 0
and 1 executing in parallel with two lockstep checker cores (not shown in the figure). The two core
models slightly differ in terms of memory interface and PMC support but in this work we focus ex-
clusively on the high-performance core as the candidate core to execute time-critical applications.
The TC1.6P is a super-scalar core featuring 3 pipelines (Integer, Load-Store and Loop) that may en-
able multiple instructions to be issued in each cycle, in the best case. The TC1.6P core is equipped
with local 32KB program and 120KB data scratchpads, complemented with relatively smaller 16KB
instruction and 8KB data set-associative caches. The cores are connected to the shared memory
interface through the Shared Resource Interconnect (SRI) crossbar, which potentially reduces the
contention in accessing shared hardware resources as accesses to different peripherals can happen
in parallel. The memory interface comprises a Local Memory Unit (LMU), providing 32KB of shared
SRAM, a FLASH device (PMU0 - Program Memory Unit) with separate SRI slave interfaces, which
can be accessed both in cacheable or non-cacheable mode. Each slave interface in the SRI crossbar
comes with its own arbiter and, beside a common SRI arbitration cost, each peripheral guarantees
different access latencies.
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Figure 5.8: Module view of the AURIX TC27x.

The TC-27x processor supports the debug and testing process through several features, including
an Emulation memory (EMEM), support to Overlay data accesses and a set of Debug registers and
PMCs per core. However, in this work we only focus on PMC support. PMC support includes a local
cycle counter (which can be used as a reference in addition to the global timer) and an instruction
counter. In addition, each core has 3 general-purpose performance counters that can be configured
to record up to 3 types of events simultaneously. Each counter can log only a fixed and disjoint subset
of the available events to record, so that multiple runs may be required to collect comprehensive PMC
information. Note that the TC1.6E core naturally features slightly different PMCs as it includes a data
buffer instead of a data cache. The TC-27x manual provides a very concise description of each PMC
mode [18], often limited to a single sentence.

5.7.2 Methodology

In order to better understand how to exploit the available PMCs fitness to build our contention-analysis
model, we first examined the publicly available documentation, and the manuals coming with the
board, to derive their semantics. Then we proceeded by designing a set of minimal experiments to
trigger those events that, to the best of our understanding, each PMC was expected to count. This
methodology allowed us to confirm our understanding of the relevant events for the PMCs and to
assess whether they are effective indicators for a resource usage analysis.

Once we selected the events of interest, we enabled and configured properly PMCs by writing into
the Counter Control Register (CCR). However, the processor manual is clear in stating that there is
no assurance on the exact stage in the pipeline when counters will actually start counting. In fact, the
TC1.6 processor manual recommends that each mtcr instruction – needed to configure the CCR –
should be followed by an isync instruction, to flush the pipelines and ensure all instructions fetched
after the mtcr see the effects of the CCR update [19]. We defined all experiments using assembly
code and preventing any side-effects from the compilation process. We used a custom linker script
to fetch code and data from different locations (PMU, LMU, Scratchpad RAM). In order to reduce the
noise in our observations, we: (i) set and enable the counter; (ii) execute a small code snippet to
trigger the target event; and (iii) disable the counters before reading the respective PMC values (see
Listing 5.1). We conveniently added additional padding (nops) to enforce a proper alignment when
addressing counters related to memory accesses.

Listing 5.1: Code pattern used in experiments

mtcr 0xFC00 , %[ config] // enable counter

// with specific PMCs

isync // flush pipeline

... // code snippet

mtcr 0xFC00 , %[zero] // disable counter

isync // flush pipeline
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5.7.3 Difficulties in PMC assessment

By only relying on the information at our reach, the assessment of the PMC support in the TC-27x
required us to undergo a disproportionate reverse-engineering effort to try to fill the gap between
the overly-concise specification of events and their observed behavior. In fact, despite our relatively
good understanding of the platform, we were not able to assess the events with the desired degree
of confidence. In the following we report the main difficulties we encountered in our evaluation. We
observe that most of the impediments are straightforwardly curable with a more detailed description
of the PMCs’ mode of operation.

Shaving off measurement noise. A first problem we had was related to the precision of our
observations, which is the main reason why we coded our experiments at the assembler level. The
adoption of the CCR handling protocol (i.e. with pipeline flush) ensures that PMCs are enabled;
however, it also introduces some undesired noise. We decided to execute an “empty” experiment (i.e.
a sequence mtcr− isync− mtcr− isync) in view to consider the noise it produces as a constant
to be subtracted to any other measurement. However, we found out that the results obtained on
this small example do incur a (bounded) noise of ±1 for PMCs read that is dependent on instruction
alignment and selected CCR configuration. Some configurations seem to suffer less fluctuation than
others. We observed that this phenomenon is not triggered with larger sequences of instructions. It
is worth noting this effect is caused by the need of reverse-engineering itself and could be easily fixed
with proper documentation.

Events or cycles? When reading the technical specification of traceable events, a critical aspect
to understand is whether events are tacked down in terms of number of occurrence or cycles, as it
makes a huge difference when building a resource usage model for timing analysis. Unfortunately,
one-liner descriptions turned out to be too ambiguous for us to discern on this matter. Resource
usage and contention analysis models usually rely on events (accesses or stalls) rather than cycles
and this point should be clarified.

In our case, for example, we tried to understand whether the PMEM STALL and DMEM STALL
counters were counting either single stall events or the number of cycles incurred because of memory
stall events. This point was not clearly stated in the manual and both interpretations were possible.
In fact, the reader is led to interpret PMEM STALL and DMEM STALL as the number of stall events
incurred when fetching code and data, as other counters like LS DISPATCH STALL are explicitly
described as counting cycles instead. We designed a simple experiment, triggering a load from
external memory to unequivocally determine the semantics of the PMC. We empirically determined
that, in contrast to our original expectations, PMEM STALL and DMEM STALL actually read cycles. In
fact, we repeated the same experiments fetching data from different locations (LMU, PFlash, DFlash)
and observed a variation in the PMCs that would not have appeared if they were counting occurrences
of events. Again, we believe that this ambiguity could be avoided with proper documentation.

Granularity of observed events. Our assessment of PMC support also included the granularity of
counted events, which consisted in comparing the PMC collected values against the expected ones
(based on the specification). When focusing on the program cache performance, we had hard times
in interpreting the PCACHE HIT counter (while no problem was encountered in the complementary
PCACHE MISS). Our difficulties were only in part caused by the interaction of the different pipelines.
In fact, we experienced some inconsistency in our experiments between cache statistics when dealing
with different instruction sizes (16/32 bits or a mixture thereof). Reduced-size instructions have been
introduced in some RISC ISAs as a means to reduce the program memory footprint [3, 24, 19]. Most
instructions in the TC1.6 ISA are 16-bit instructions. The cache behavior with different instruction
sizes depends on the dimension of the fetch interface and is complicated by the necessary alignment
of the fetched instructions. In our platform we observed that the cache behavior (in terms of number
of hits/misses) was as expected only when 32 bit instructions were exclusively used. The number of
cache hits was instead particularly counter-intuitive when mixing different instruction sizes.

As an example, we considered a chunk of 256 bytes, worth of 128 sequential 2 bytes instructions
and 512 bytes, worth of 128 sequential 4 bytes instructions. For the former our platform reports
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17 hits and 9 misses, for the latter our platform reports 25 hits and 9 misses. While the number of
misses always stays the same (stemming from fetching 256 bytes in eight 32 bytes lines, plus one
additional miss for a cache line holding the counter disabling instruction) the number of hits reported
differ depending on the instruction size, which further complicates analysis.

Using PMCs to break down maximum latencies. Analytical models also make use of maxi-
mum latencies to conservatively overapproximate the interference when accessing shared resources.
Breaking down the observed latencies of different slave interfaces on the TC-27x SRI is fundamental
for any contention model to avoid unnecessary sources of pessimism stemming from always assum-
ing the absolute worst case.

To assess the cost of data fetches, we exploited the DMEM STALL and LS DISPATCH STALL
counter to measure the latencies incurred by diverse external memory. The latencies observed for
LMU, DFLASH and other cores’ Data Scratchpad-DSPR (local DSPR accesses incurs no latency)
were in line with the specification. We empirically observed, however, how the first data transfer
from any destination was incurring one DMEM STALL and LS DISPATCH STALL less than the other
accesses in a sequence: we were not able to track it back to its source (e.g., effects in the crossbar
interconnect or prefetching mechanism) with reasonable confidence. Therefore we cannot exclude it
is an (bounded) accuracy problem.

Understanding the latencies incurred by code fetches from the PFlash is complicated by the prefetch-
ing and buffering mechanism in place. We empirically observed both the full benefits of the prefetch-
ing mechanisms (cache line and PFlash interface), by fetching sequential code, and the worst-case
latency, which we triggered by trashing the effect of line prefetching, with jumps from critical word to
critical word in the Program Line Buffer. We observed that the prefetching mechanism in the PFlash is
highly effective but we were not able to derive general conclusions on its performance. Without more
detailed information on how prefetching is implemented and how it interacts with the PMU, breaking
down the observed latencies was beyond our reach.

5.7.4 Summary

Overall, despite the difficulties, we managed to develop a suitable multicore contention model com-
patible with AURIX TC27x automotive platforms, as presented in D4.2. The timing characterization
of the platform based on its PMCs has revealed to enable tight contention estimates, as indicated by
the preliminary results of its integration in the automotive multicore use case. Those results will be
conveniently detailed in Deliverable D6.6. However, we have already reached a number of valuable
conclusions:

• Contention bounds are tight (within 10% of the maximum execution time observed). Thus,
regardless of whether those bounds can be partially attributed to pessimistic choices, they are
tight enough for an efficient use of the hardware platform.

• The ability to obtain those bounds based on an industrially-friendly approach justifies the feasi-
bility of the adoption of multicores for safety-critical real-time systems.

• Proving that software can be run simultaneously in different cores improving single-core through-
put, justifies the appropriateness of the adoption of multicores for safety-critical real-time sys-
tems.

In summary, the assessment of the hardware support for multicore contention modelling on the
AURIX TC27x platform has been very successful despite all difficulties encountered. Hence, the
corresponding RTE can reliably build on this PMC analysis to manage and schedule tasks accounting
for tight bounds for contention in shared resources.
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5.8 Conclusion

In this chapter, we presented a regulation solution based on budgeting that aims at guaranteeing the
temporal behavior of high-critical tasks in a mixed critical system, while degrading the behavior of non
critical tasks.

The budgeting approach is performed offline and per timeslot. While the approach worked well with
purely periodic tasks, high-overhead aperiodic or sporadic tasks caused some major problems: either
over-provisioning if considered during the offline characterization phase, causing very low budget for
high-critical tasks and, as a consequence, a high rate of low-critical suspend rate; or causing high-
critical deadline misses if occurring at runtime during an unprepared timeslot.

In single-core systems, it is common practice to have a dedicated periodic slot to deal with sporadic
asynchronous tasks. The applicability of such a practice for multi-core architectures depends on the
way the applications are deployed in the system to benefit from parallelism: an option is to parallelize
inside applications / partitions, granting all the cores to a single application during each time slot.
Such a deployment is compatible with the usual way of dealing with aperiodic tasks. But it also forces
to re-write the applications, whose performance will then be constrained by the Amdahl’s law [5].

Another option is to run different independent applications, running partitions in parallel. Such a
scheme is good for software development that could carry on producing single-threaded applications,
which could bring better performance, exploiting the Gustafson’s law [17], and not being hampered
by data dependency. However, it does not allow anymore to have dedicated timeslots for a particular
kind of traffic or tasks, unless costly synchronization is introduced.

As a consequence, before selecting the most adequate control or regulation solution to deal with
timing interference on multi-core, a first step should be to consider the possible deployment of the
applications, figuring out which kind of parallelism will be exploited. This choice has consequences
on the timing interference level, and on the visibility of interference (from white-box in case of intra-
partition parallelism as they are coming from well known other tasks of the application, to black-box
when coming from a potentially unknown independent application in case of inter-partition paral-
lelism).

In this chapter we have also studied how to extend the RTE to account for thermal issues. While
limitations of the hardware platform considered lead to some significant characterization cost, the
approach has been proven doable and applicable to industrial use cases.

Analogously, specific automotive multicore architectures (AURIX TC275 processor) have also been
considered for the control of contention in mixed critical systems. Our analysis reveals that, despite
the intrinsic difficulties posed by this platform, multicore contention can be properly modelled and
accounted for, so this solution is also integrated in the industrial use cases of the project.
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Chapter 6 WP4 Time-Critical Prototype

As presented in Deliverable D4.1, the time-critical avionic prototype used in the context of WP4
encompasses high-critical and low-critical applications as well as the Budget-Based RunTime Engine
(BB-RTE). Figure 6.1 details the updated target environment for this WP4 prototype using the ARM
Juno board target.

Mixed-critical tasks as well as the RTE will run as single or multiple partitions applications or threads
on top of the PikeOS operating system. We developed a specific driver for PikeOS to provide priv-
ileged access to the PMC hardware counters, and the whole collection infrastructure is based on
METrICS, that is described in Deliverable D4.2.
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Figure 6.1: Target environment for the Time-Critical prototype

The tested time-critical applications are further presented in the next subsections, and are run
on the more time-predictive A53 cores. Both PikeOS and the RTE are running on the first high-
performance A72 core. We also tested running the SAFURE RTE a dedicated core (core 1), but it
has proven to produce more interferences due to the high number of system calls performed by the
runtime engine.

6.1 Hard Real Time High-critical Application: Flight Management Sys-
tem

The selected hard real-time high-critical application for the WP4 time-critical prototype is a mark-
up FMS application from the avionics domain. The purpose of the FMS in modern avionics is to
provide the crew with centralized control for the aircraft navigation sensors, computer based flight
planning, fuel management, radio navigation management,and geographical situation information.
Taking charge of a wide variety of in-flight tasks, the FMS allows us to reduce the workload of the
flight crew allowing us to reduce crew size.

The FMS is especially responsible for services that allow in-flight guidance of the plane. From
pre-set flightplans (take-off airport to landing airport), the FMS is responsible for plane localization,
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trajectory computation allowing the plane to follow the flightplan, and reaction to pilot directives.

6.1.1 Software Architecture

The FMS application is constituted by 25 time-critical tasks that are regrouped into different task
groups as presented in Figure 6.2.
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Figure 6.2: Software architecture of the Flight Management System (FMS)

The Sensors task group is in charge of generating all the localization data from various sensors
(Anemo-barometric sensors, IRS (Pure Inertia Reference System), GPS (Global Positioning System),
HYB (Hybrid Inertia Reference System), Doppler sensor).

The Localization task group is in charge of analysing outputs of sensors to generate the most
probable position of the aircraft (BCP). This localization data is composed of: Position (latitude, longi-
tude, and altitude), Attitude (Pitch, Roll and Yaw angular rates), Velocity (Ground speed and Vertical
Speed), Acceleration (lateral and longitudinal), and Wind related data (speed and angle).

Note that a single sensor may not provide the full Localization information. The Doppler sensor for
instance does not provide any position related information such as longitude and latitude. It however
provides very accurate velocity (speed related) information. The role of the Localization task group is
therefore to merge information from the sensors with different trustworthiness levels.

The purpose of the Nearest Airports task group is to continually build a list of the nearest airports,
during the flight. This information is useful in case the pilot decides to have an impromptu landing for
some reason. The tasks from this task group do not participate directly in flight management, and the
computed output only has to be sent to the display.

The Flightplan task group is in charge of managing and processing modification requests on
the flightplans that are pre-set routes used to guide the airplane. Three different flightplans coexist
concurrently on the system:

• The active flightplan is the flightplan currently used to guide the aircraft.
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• The secondary flightplan is an alternative route toward the destination. It could consider for
instance an alternative-landing runway on the destination airport, which has a significant impact
on the target airport approach procedure.

• The temporary flightplan is an intermediate flightplan allowing the crew to enter a new flight-
plan and check for the modification before applying.

The flightplan task group is only composed of aperiodic tasks that correspond to the pilots modifica-
tions to the pre-set flightplans.

The Trajectory task group aims at computing both lateral and vertical profiles for the three flight-
plans set by the flightplan task. The lateral profile is composed of waypoints as well as leg informa-
tion (path before, after and between the waypoints). The vertical profile provides altitude information
(cruise altitude interceptions, crossing altitudes and slope angles) as well as performance information
(estimated time of arrival, estimated fuel on board).

Trajectory computation is performed for each of the three above defined flightplans. The inputs of
trajectory computation are both the flightplan and the best computed position (BCP) of the plane that
comes from the localization task group. The computed trajectory tries to tangent the pre-set flightplan
while respecting passenger wellness (limiting roll and pitch) as well as physical limitation of the plane
actuators such as flaps. The trajectory information is later used by the plane autopilot to actually
interact with these actuators.

The FMS application also embeds a large Navigation Database that does not fit in any cache
structure. It is both linearly and regularly accessed by task from the Nearest airport task group, as
well as randomly and sporadically accessed by tasks of the Flightplan task group. Accesses to this
database in the main memory is very interference prone.

6.1.2 Safety and Timing Requirements

All the tasks composing the FMS have stringent real-time requirements: Table 6.1 and Table 6.2
respectively show the time requirements of periodic and aperiodic tasks composing the application.

Periodic Task Period / Deadline
SENSC1 200ms
LOCC1 200ms
LOCC2 1.6s
LOCC3 5s
LOCC4 1s
TRAJR1 200ms
TRAJR2 300ms
TRAJR3 300ms
NEARP1 1s

Table 6.1: FMS: Time requirements of periodic tasks

In the FMS, periodic tasks are characterized by an activation period as well as a deadline that
always corresponds to the next activation period.

All aperiodic tasks are sporadic, and are characterized by a maximum number of activation per
period of time. This period of time is usually defined by the period of the periodic task consuming
the data produced by the aperiodic task. Aperiodic tasks also have to respect a deadline provided by
Table 6.2.
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Aperiodic Task Maximum activations Deadline
SENSA1 2 per 200ms 50ms
SENSA2 2 per 200ms 50ms
SENSA3 2 per 200ms 50ms
SENSA4 2 per 200ms 50ms
LOCA1 2 per 200ms 100ms
LOCA2 5 per 5s 50ms
LOCA3 5 per 1s 50ms
FPLNA1 once at initialization 1s
FPLNA2 1 per 1s 1s
FPLNA3 once at initialization 1s
FPLNA4 1 per 1s 1s
FPLNA5 1 per 1s 1s
FPLNA6 1 per 1s 50ms
FPLNA7 1 per 1s 50ms
FPLNA8 1 per 1s 50ms
TRAJA1 once at initialization 50ms

Table 6.2: FMS: Time requirements of aperiodic tasks

6.2 Soft Real Time Low-critical Application: Bi-Quadratic Distributed
Control System

The selected soft low-critical real-time application for the WP4 time-critical prototype is a control-
command application implementing a BiQuad.

6.2.1 Software Architecture

The tasks composing this applications, appearing in Figure 6.3, are:

Generator Splitter

Low Pass
Filter

High Pass
Filter

Low Pass
Filter

High Pass
Filter

Aggregator Actuator

Figure 6.3: Partitioned BiQuad application implemented in PikeOS

• The Generator process is generating the input data. It either self-generates the data on the first
pass, or iterates on the received data on the next passes.

• The Splitter process splits the data received from a FIFO to make it globally available to all the
filtering tasks.

• The LoPass and the HiPass processes are applying some bi quadratic filtering to the data.
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• The Aggregator process fuses the previously computed filtered data and sends it back as feed-
back to the generator task.

• The Display process finally displays the fused data.

Figure 6.3 illustrates the multi-partition PikeOS version of this application. It is composed of 3 different
partitions and 6 PikeOS threads implementing the different tasks. This example exhibits the use of
the possible communication mediums available in PikeOS, both for intra/inter-partition communication
and for performing heavy load floating-point computation.

6.2.2 Safety and Timing Requirements

The tasks composing the BiQuad application have the real-time requirements presented in Table 6.3.
All these requirements are soft real-time requirements dure to the required data throughput.

Periodic Task Partition Period Deadline
Generator 1 100ms 100ms
Splitter 2 100ms 10ms
Lo-Pass Filter 2 100ms 20ms
hi-Pass Filter 2 100ms 20ms
Notch Filter 2 100ms 20ms
Band-Pass Filter 2 100ms 20ms
Aggregator 2 100ms 10ms
Display 3 100ms 100ms

Table 6.3: FMS: Time requirements of BiQuad tasks

The SAFURE runtime engine is expected to degrade the timing behaviour of the BiQuad application
to ensure correct execution of the critical application, implying some of these deadlines will not be
respected.

6.3 Multi-Core Low-critical Application: Drone Fleet Guidance

The third application composing the WP4 prototype is embedded Directed Rotodrone Operated Net-
work (eDRON), an application dedicated at guiding a fleet composed of four quadricopter drones
along a preset flight route. The purpose of this application is to mimic a representative behaviour of
an avionic application, while exercising classical ARINC-653 communication services and proposing
several multi-core deployment options.

6.3.1 Software Architecture

The software architecture of eDRON is presented in Figure 6.4. This application is composed of
six ARINC-653 partitions. The first one sets up the preset flight route for all the drones, the last
one displays all the drone positions, and each of the four remaining partitions is dedicated to pilot a
particular drone. These later partitions are composed of 7 tasks, with most of the computation being
performed in the four engine control tasks, each being dedicated to control the velocity for one of the
four engine of a drone, so that it follows the preset route.

6.3.2 Safety and Timing Requirements

The tasks composing the eDRON application have the real-time requirements presented in Table 6.4.
As per the BiQuad application, we consider these requirements to be soft real-time ones, even though
deadline misses have an impact on the trajectory of each drone, with regards to the preset flightplan.
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Figure 6.4: Software architecture of the eDRON application

Periodic Task Period Deadline
Route Generator 200ms 20ms
Heading Controller 200ms 15ms
Engine Splitter 200ms 10ms
Engine 25ms 25ms
State Computer 200ms 25ms
Display 200ms 30ms

Table 6.4: eDRON time requirements

6.3.3 Mapping and Timing Interference

When mapping such an application on a multi-core processor, we first need to decide what will run in
parallel. The application offers two obvious parallelization schemes: inter-partition parallelism where
each core will deal with a single drone, running the velocity control tasks sequentially for each drone;
and the intra-partition parallelism where each core will focus on one particular engine, dealing with
each drone sequentially and running all sequential tasks on core 0.

Some other parallelization options are available: for example parallelizing along the pipeline, or
performing loop-level parallelization of the tasks, but those are beyond the scope of this project as
they require deeper modifications of the application.

These two deployments have advantages and drawbacks: The Amdahl’s law [5] may limit the per-
formance of the intra-partition version, while the inter-partition version will benefit from the Gustafson’s
law [17], running independent applications in parallel. However, with regards to timing interference,
the intra-partition version offers a white-box context where the partition scheduling can limit the level
of interference between known tasks. The inter-partition parallelism on the other hand corresponds
to a black-box context where no easy control is possible to limit the interference level of another
independent application.
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Chapter 7 Freedom from Interferences for mixed-critical sys-
tems

Freedom from Interferences OS-extension, implementation details
For SAFURE, the Automotive Multicore Use Case prototype guarantees at firmware level the freedom
from interferences compliant with ISO 26262[21]. According to the SAFURE deliverable D4.1 (chapter
6.2), MAG has developed two firmware drivers (AUTOSAR like) to implement timing protection and
memory protection to guarantee freedom from interferences between two applications that run on two
different cores. This is an optimized alternative to RealTime OS support.

7.1 Memory Protection OS-extension

MAG has developed a firmware (FW) driver to support memory protection at Task level, to guarantee
that data structures inside the protected Task (or part of it) cannot be accessed by untrusted opera-
tions. This implementation makes use of microcontroller MPU (Memory Protection Unit) device. This
mechanism is ISO 26262 compliant and AUTOSAR-like (see D4.1 chapter - 6.3.2).

Here is the Memory Protection concept described in AUTOSAR figure 7.1:

Figure 7.1: Memory protection applied at OS Application level
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7.1.1 Implementation and test details

7.1.1.1 APIs description

The APIs implemented are the following:

• void MPU_Init (<Pwd>)

• t_MPU_Partition <Pid> MPU_GetCurrentPID (<Pwd>)

• void MPU_SetCurrentPID (t_MPU_Partition <Pid>, <Pwd>)

• void MPU_RegCheck (void)

• void MPU_EX_ProtectionError (<ErrorAddress>, <Pid>)

Where the parameters:

• Pwd: represents the password to avoid uncontrolled calls to this function

• t MPU Partition Pid (out parameter): is the partition ID.

• ErrorAddress: represents the address of instruction that has generated the Protection Error.

• Pid: is the partition where the error has been generated.

More in details, these routines are implemented to cover and achieve the following purposes:

• MPU Init: It is important to initialize the driver to a default state at system startup and on the
occurrence of an adverse event on the system. For this reason, an initialization routine must be
provided. Initialization must be used to configure the common registers.

• MPU GetCurrentPID: This purpose is achieved by MPU driver allowing the definition of Soft-
ware Partitions. Software partitioning allows the co-existence of software partitions that use the
same resources. It allows software components to be free from interference from other software
components. Moreover, it allows changes to be made to one software partition without the need
to re-verify the unmodified software partitions.

• MPU SetCurrentPID: same description of MPU GetCurrentPID.

• MPU RegCheck: This function checks the flow control of execution. Check data protection of
all the registers used during the initialization using CRC check and comparison of stored values
with current values of registers.

• MPU EX ProtectionError: This exception must be called when a Protection Error has been
raised.

7.1.1.2 Tests

For each API, respectively, the following specifications of tests have been carried out:

• MPU Init: It is verified that in the initialization of the MPU driver, the partitions defined in static
configuration are configured correctly and the MPU driver is enabled with access right of the
partitions set to R/W/X for both SV and User Defined mode. The current Partition ID of the
microcontroller is set to MPU DEFAULT PID.

• MPU GetCurrentPID: It is verified that the driver is able to return the current active Partition
ID and there is a password protection mechanism to avoid uncontrolled call to get the active
Partition ID.
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• MPU SetCurrentPID: It is verified that the new software partition can be set to become the
current active partition and there is a password protection mechanism to avoid uncontrolled call
to switching of software partition.

• MPU RegCheck: It is verified the capability to report error in case of data corruption in registers
used in the initialization procedure.

• MPU EX ProtectionError: It is verified that the exception is called when a Protection Error has
been raised by the MPU driver as a consequence of an unauthorized access.

From these specifications, the test implementation procedures have been derived and the results
have been successfully achieved and checked.

7.2 Timing Isolation OS-extension

TPROT module must be a generic driver to realize Timing protection without any support from the
Real Time OS.
TPROT enables us to monitor:

• the execution time of Task and ISR routines;

• the time spent by a higher priority task waiting for the resource occupied by a lower priority task;

• the periodicity of task.

The temporal protection system is used to guard against run-time over run. It covers three func-
tionalities:

1. TASK/ISR Execution Time Monitoring.

2. TASK/ISR Lock time Monitoring.

3. TASK/ISR Time period Monitoring.

TPROT introduces the concept of TimerSet, which is a logical id bound to one or more microcon-
troller timing resources. The number of microcontroller resources needed may vary depending on
the specific microcontroller model. TimerSet will also encapsulate all the timing protection budgets
and measures. One task should always use the same TimerSet. Different tasks should always use
different TimerSet.
Each TimerSet object must have three methods to configure, start and reset the measure.
Each functionality can be implemented by changing the use case, using the generic function of the
TPROT driver.

Figure 7.2: Execution Budget Monitoring use case
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Figure 7.3: Time Period Monitoring use case

Figure 7.4: Lock Time Monitoring

7.2.1 Implementation and tests details

This driver is composed of three different layers:

• INTERFACE: Its composed by types and methods exported to upper layers. The signature and
the functional description of ALL the methods described in this specification refer to interface
layer. Furthermore, at implementation level, the functional part of each method is coded in the
kernel part.

• KERNEL: Its composed by internal types and methods, not visible to upper layers.

• STATIC CONFIGURATION: Its composed by channel database definition for the driver and other
parameterizations.

In order to have a list of symbolic identifiers used by device driver for referring a physical signal and
used by BIOS driver for understanding which channel must be addressed, scm tprot drv.h file must
define the type t IDN tprot.
This type collects in an enumerative type all the signals present in the system and that can be ad-
dressed using a generic driver.
IDN channels of the same driver must be contiguous. At the end must be defined a tag (with the
syntax

〈
driver name

〉
MAX) to be used to calculate the number of IDNs related to a specific driver.

Bear in mind, the order in which IDN TPROT driver channel must be exactly the same in which they
are declared into scm tprot drv.h file where IDN identifiers are associated to the internal hardware
channels.
The enum is defined in the following way:

typedef enum {
<IDN TimerSet 0>,
<IDN TimerSet 1>,
<IDN TimerSet 2>,
. . . ,
<IDN TimerSet n>,
TPROT MAX

} t I D N t p r o t ;
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Figure 7.5: Layer structure

In order to define generically all the possible TPROT physical channels that could be associated to
the external output frequential signals, the upper level module must foresee all the possible TPROT
identifiers.
Only the identifier used must be really defined, but all the possible identifiers must be foreseen.
Unused identifiers must be commented, as described below:

TPROT0 IDN
TPROT1 IDN
TPROT2 IDN
. . .
TPROTn IDN

7.2.1.1 Driver enabling

The information of the presence of the TPROT drive into the BIOS is declared into the file scm en drv.h.
If the TPROT driver is present, following define is enable, otherwise TPROT driver isn’t present:

# de f ine TPROT IS PRESENT
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7.2.1.2 APIs description

The APIs implemented are the following:

• t_MStatus TPROT_Config (<DynCfg>)

• t_MStatus TPROT_StartMeasure (<Idn>, <Timeout>)

• t_MStatus TPROT_StopMeasure (<Idn>, <Measure>)

Where the parameters:

• t MStatus can assume the value of:

– MS OK is returned if the method has been executed successfully.

– MS PAR NOT OK is returned if the input parameters are wrong.

– MS NOT OK is returned if the method has been called before the TPROT Config method.

• DynCfg is the pointer to the structure used to dynamically configure the Timer and event re-
source of the microcontroller. It could have the following fields:

– idn: is the TPROT channel identifier defined in the static configuration in the type definition
t IDN tprot;

– excPtr : is the callback to be call in case of Timing protection Error. This function must be
defined in the upper layer (type is: void *);

– excObj : is the object pointer to be passed as a parameter of the callback Timing protection
error (tipe is: void *).

• Idn: represents the TPROT channel identifier defined in the static configuration in the type
definition t IDN tprot.

• Timeout: is the timeout to be measured before calling the timing protection error.

• Measure (out parameter): is the time measured from the last called TPROT StartMeasure and
the current TPROT StopMeasure.

More in details, these routines are implemented to cover and achieve the following purposes:

• TPROT Config:

1. initializes all the global variables and registers used for the timing protection functionality
for the channel identified by idn field of pointer DynCfg;

2. configures the HW mapped on the timing protection functionality of the channel idn to be
ready to start the measure;

3. configures the exception handler with the passed exception pointer and object pointer to
be called in case of Timing protection error, this event must generate a no-maskable trap
or maskable interrupt if HW support is not available;

4. stops every ongoing activity on the channel idn and re-configure it to be ready to start
again the functionality.

If the field excPtr contains a null address, the method must link an internal function and only
the measuring functionality must be implemented.
Measures and event detection must be activated only after called the TPROT StartMeasure.
No pending activity must be tolerated after the config method has been called.

• TPROT StartMeasure:
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1. starts the measure of the time related to the timeSet Idn;

2. programs the callback event in case the Timeout elapses.

Timeout event and time measure must be restarted if the method is called before stopping the
previous measure. This sequence is useful in the use case described in the Figure 7.4.

• TPROT StopMeasure:

1. stops the measure of the time related to the timeSet Idn;

2. clears the pending status of the timeout to avoid protection error event;

3. return the measure of the time elapsed from the last TPROT StartMeasure and the current
TPROT StopMeasure.

All the activities related to the TimeSet Idn must be cleared, after to call the stop measure
method.

7.2.1.3 Test

The firmware driver TPROT is still in development phase and also the test specifications are under
construction.
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Chapter 8 AUTOSAR OS

8.1 RTE Generator

In the AUTOSAR workflow, the scheduling and communication implementation is generated automat-
ically based on the specifications provided in the model for the application components.

When these specifications include the indication of a criticality level, as indicated by the modeling
extensions presented in the Deliverable D2.2 of WP2, the generation of the RTE task implementa-
tion and scheduling instructions should include also the calls to the OS functions and configuration
features that can be used to enforce timing isolation and protection.

In AUTOSAR, these OS API functions and OS configuration features allow to protect application
tasks against excessive execution of higher priority tasks or when accessing resources (to protect
against excessive blocking time) and to protect against an excessive use of time by ISR handlers.

8.1.1 Mechanisms for timing protection

The main AUTOSAR mechanisms to prevent timing interference in AUTOSAR are:

• AUTOSAR OS guarantees a statically configured upper bound, called the Execution Budget, on
the execution time of tasks and category 2 ISRs

• AUTOSAR OS prevents guarantees a statically configured upper bound, called the Lock Bud-
get, on the time that resources are held by tasks or Category 2 ISRs

• AUTOSAR OS enforces an inter-arrival time protection to guarantee a statically configured lower
bound, called the Time Frame, on the time between a task being permitted to transition into the
READY state due to to activation or release

Of those, the Execution budget and Lock budget protections are of interest for our work.

8.1.2 Overview of the RTE generator

This work adopted a generator for the AUTOSAR Run-Time Environment (RTE) developed by Evi-
dence SRL in the context of the EU Hercules project, which is conceived to work for the open source
ERIKA Enterprise real-time operating system. ERIKA is OSEK-compliant and de-facto representative
of the typical behavior of an AUTOSAR operating system.

The RTE generator has been realized by extending the AUTOSAR Tool Platform (Artop), which
is a free-of-charge implementation of common base functionality for AUTOSAR development tools.
Artop is based on the Eclipse development environment. The RTE generator consists of Eclipse
Java packages loaded in Artop that make use of a set of queries developed in the Acceleo template
language and transforming the AUTOSAR models into code. The generator inputs an AUTOSAR
arxml model and generates:

• the code of the tasks that calls the corresponding runnables;

• a set of functions to work with sender-receiver AUTOSAR ports between software components
and the corresponding data structures;
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• the configuration of the operating system(OIL file); and

• other accessory code and C headers.

8.1.3 Objectives

The main objective of this work is to extend the RTE generator described in the previous section to:

• handle the AUTOSAR modeling extensions related to mixed-criticality systems proposed in the
SAFURE project; and

• support the timing protection mechanisms available in AUTOSAR-compliant real-time operating
systems, which are configured as a function of the model information.

To prevent timing errors, AUTOSAR OSes employ execution time protection to guarantee a statically-
configured upper bound, called Execution Budget, on the execution time of tasks. To preserve the
different criticality levels of tasks, high-criticality tasks must not be affected by overruns (i.e., timing
faults) experienced by high-priority tasks. To this end, for each task τi, the RTE has to verify whether
there exists at least one high criticality task with a lower (or equal1) priority with respect to τi: if this
task does exist, the timing protection mechanism is configured for τi.

Formally, let lep(τi) be set of tasks with lower or equal priority with respect to task τi, and let
ci ∈ {0, 1} be the criticality level of task τi, where ci = 1 means high criticality. Task τi must be subject
to timing protection if

∃τj ∈ lep(τi) | cj > 0.

The timing protection is configured by setting the Execution Budget of τi equal to the sum of all the
execution time bounds provided in the AUTOSAR model for the runnables that compose τi. According
to the AUTOSAR OS specification, it is possible to setup a callback that is invoked whenever a task
exceeds its Execution Budget. The RTE generator is also in charge of automatically generating a
skeleton code for this callback as part of the RTE code. Finally, the RTE generator logs eventual errors
in generating the configuration of the timing protection mechanism. These aspects are discussed in
Sections 8.1.5, 8.1.6, and 8.1.7, after discussing in the next section the queries to the AUTOSAR
model that are necessary to extract the required information.

8.1.4 Queries to the AUTOSAR model

Two main Acceleo queries have been developed to configure timing protection:

• isSubjectToBudgeting: returns TRUE if a task must be subject to timing protection, FALSE
otherwise;

• getWCET: returns the sum of all the execution time bounds provided in the AUTOSAR model for
the runnables that compose a task.

The queries are respectively discussed in the next two subsections.

8.1.4.1 The isSubjectToBudgeting query

For a given task τi, the isSubjectToBudgeting query has been implemented by exploring all tasks
in the system and collecting only those in the set lep(τi) with a positive criticality level. In AU-
TOSAR models, the tasks are available in the EcuConfiguration AUTOSAR package within the
OS child (that is an entity of type EcuModuleConfigurationValues). Task priorities and criticality
levels are modeled as childs of type EcucNumericalParamValue for each task entity, which must

1Note that tasks with the same priority handled in first-in-first-out order can always interfere each other.
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include a NumericalValueVariationPoint entity with the corresponding numerical value. Each
EcucNumericalParamValue entity has a specific AUTOSAR definition string:

/AUTOSAR/EcucDefs/Os/OsTask/OsTaskPriority,

for task priorities, and

/AUTOSAR/EcucDefs/Os/OsTask/OsTaskCriticality,

for task criticalities.
The code snippet of the isSubjectToBudgeting query is reported in Figure 8.1. As it can be

observed from the figure, the query uses a select statement to collect in prunedTasks the set of
tasks τj ∈ lep(τi) | cj > 0. Then, if prunedTasks is not empty, TRUE is returned.

Figure 8.1: Code snippet for the isSubjectToBudgeting query.

8.1.4.2 The getWCET query

The getWCET query has to identify all the runnables associated to a task. Typically, the connection
between tasks and runnables is defined in AUTOSAR models by mapping the RTEevent associated
with the activation of each runnable to the task. As a result, several modeling entities must be
traversed to list the runnables associated to a task.

TimingEvent

RunnableEntity

Task
EventMappingEventMappingEventMapping

Start on event

swc_root EcuConfiguration

OS RTE

Figure 8.2: Path to identify the runnables associated to a task in AUTOSAR.

As it is illustrated in Figure 8.2, runnables are associated to timing events (e.g., a periodic stimuli),
where the latter are assigned to tasks via event mappings. Each event mapping maps one task to a
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single timing event. A task can be referenced in multiple event mappings, hence it can manage more
than one timing event.

Consequently, the following steps are required to identify all the runnables associated to a task τi:

1. Collect the set EM(τi) of event mappings related to τi;

2. Identify the set TE(τi) of timing events related to any event mapping in EM(τi);

3. Construct the set R(τi) of runnables associated to the timing events TE(τi).

Event mappings can be identified with the AUTOSAR definition string

/AUTOSAR/EcucDefs/Rte/RteSwComponentInstance/RteEventToTaskMapping.

Within each event mapping, the related task is identified by the RteMappedToTaskRef child in the
model tree, while the corresponding timing event is identified by the RteEventRef child. Finally, for
each timing event, the corresponding runnable is indicated in the startOnEvent field.

Once these steps are performed, the getWCET query can simply return the sum of the execu-
tion time bounds of each runnable in R(τi). These bounds are not directly available as fields or
children of each runnable entity. Rather, they are available in an SwcImplementation child of the
swc root AUTOSAR package. Specifically, an SwcImplementation entity must include a child of type
ResourceConsumption, which in turn must include another child of type AnalyzedExecutionTime,
which – again – must include another child of type MultidimensionalTime. The field Cse Code of
the latter contains the execution time bound. The corresponding runnable is provided in the field
Executable Entity of the AnalyzedExecutionTime child. This tree of entities is illustrated in Fig-
ure 8.3.

Figure 8.3: Tree of entities to model execution time bounds of runnables.

All the above steps have been implemented by decomposing the problem into multiple sub-queries.
As an example, Figure 8.4 reports an example of one of such sub-queries, specifically the one that
identifies all the timing events related to a task. Note that this query builds upon another sub-query
named isRelatedTo that verifies whether an event mapping is related to a task.

8.1.5 Timing protection in the OS configuration

The two queries isSubjectToBudgeting and getWCET are used to configure the timing protection
mechanism of the operating system. At the stage of the generation of the OSEK Implementation
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Figure 8.4: Code snippet of a sub-query needed to implement the getWCET query.

Language (OIL) file, which defines the configuration of the operating system, a specific statement is
generated whenever a task must be subject to timing protection. In the ERIKA operating system, the
corresponding OIL statement is the following:

TIMING PROTECTION = TRUE {
EXECUTIONBUDGET = <Execut ion Budget>;

} ;

For each task in the system for which the isSubjectToBudgeting query returns TRUE, the above
OIL statement is generated with Execution Budget equal to the result of the getWCET query.

8.1.6 Handling budget overruns

The AUTOSAR OS specfification provides the following requirement:
[SWS Os 00064] If a task’s OsTaskExecutionBudget is reached then the Operating System mod-

ule shall call the ProtectionHook() with E OS PROTECTION TIME.
The ERIKA operating system matches this requirement. Accordingly, the RTE generator automat-

ically generates a skeleton for the ProtectionHook() function. The skeleton provides the code to
handle the E OS PROTECTION TIME exception and retrieves the identifier of the task that generated the
exception. The skeleton is reported in Listing 8.1.

Listing 8.1: Code skeleton to handle timing faults.
ProtectionReturnType ProtectionHook (StatusType FatalError)

{

ProtectionReturnType policy;

TaskType task_id;

ISRType const isr_id = GetISRID ();

if (isr_id == INVALID_ISR)

{

(void)GetTaskID (& task_id );

} else

{

task_id = INVALID_TASK;

}

switch (FatalError)

{

/* Execution Budget expiration */

case E_OS_PROTECTION_TIME:
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/* This part of the code is reached when task ’task_id ’ exceeds its budget */

/* (----- FILL HERE -----) */

/* Possible policies to handle the exception:

policy = PRO_TERMINATETASKISR;

policy = PRO_TERMINATEAPPL;

policy = PRO_SHUTDOWN;

*/

/* Any other value of policy will be translated in PRO_SHUTDOWN */

break;

/* Handled only Timing Protection Error. Other errors:

MP, stack overflow are Shutdown. */

default:

policy = PRO_SHUTDOWN;

}

return policy;

}

8.1.7 Handling errors during the RTE generation

During the generation process, it may happen that a task that must be subject to timing protection
is composed of runnables whose sum of execution time bounds is not positive. In this case, the
generator logs this error in a dedicated file named timing protection errors.txt.

8.1.8 Example

This section illustrates an example on which the extended RTE generator has been executed. As it
is illustrated in Figure 8.5, the example consists of two software components that comprise a total of
five runnables mapped to three tasks. The parameters of the tasks are reported in Table 8.1, and the
execution time bounds of the runnables are reported in Table 8.2.

Figure 8.5: Illustration of the example task set.

Note from Table 8.1 that both Task 1 and Task 3 must be subejct to timing protection, as they both
have a higher priority with respect to Task 3 that has a positive criticality level. The Execution Budget
of Task 1 must be set to 55, which is the sum of the execution times provided for runnables run11 and
run12 (when the execution time is not provided in the model, as in this example is the case for run12,
zero is assumed). Similarly, the Execution Budget of Task 3 must be set to 150 + 250 = 400.
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Table 8.1: Example task set.
Task Priority Criticality Runnables

Task 1 2 0 run11, run 12
Task 2 1 1 run 22
Task 3 3 0 run21, run23

Table 8.2: Execution times for the runnables of the example task set in Table 8.1.
Runnable Execution time

run11 55
run12 -
run21 150
run22 -
run23 250

Listing 8.2 reports an excerpt of the OIL file (operating system configuration) generated by the RTE
generator. Note that a TIMING PROTECTION entry is generated for both Task 1 and Task 3 with the
correct Execution Budget.

Listing 8.2: OIL snippet generated for the example task set.
TASK Task_1 {

ACTIVATION = 1;

PRIORITY = 2;

SCHEDULE = FULL;

TIMING_PROTECTION = TRUE {

EXECUTIONBUDGET = 55;

};

RESOURCE RTE_Resource_swc1_pport1_intVal1;

RESOURCE RTE_Resource_swc1_pport1_intVal2;

};

TASK Task_2 {

ACTIVATION = 1;

PRIORITY = 1;

SCHEDULE = FULL;

};

TASK Task_3 {

ACTIVATION = 1;

PRIORITY = 3;

SCHEDULE = FULL;

TIMING_PROTECTION = TRUE {

EXECUTIONBUDGET = 400;

};

};

8.2 Spatial and Temporal Isolation on shared caches and DRAM mem-
ories for automotive platforms.

8.2.1 Introduction

In the analysis of most hypervisors, including those for mixed-critical automotive and communications
systems, spatial and temporal concerns are handled in software at the level of the task partitions and
at the level of the scheduling. However, in modern multicore architectures, interference can happen
at low level, that is, at the level of the HW features shared between the tasks in the cores. The focus
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of the work reported in this section is to provide an analysis of possible actions to mitigate or remove
the problem of:

• Spatial isolation on shared cache levels;

• Temporal isolation on DRAM memory accesses.

8.2.1.1 Contention due to shared cache levels

All multicore CPUs include a cache memory hierarchy to improve performance. Typically, the first
level of the hierarchy consists of small and fast cache memories reserved for each single core, while
the second level is commonly composed of a large cache memory shared between all the cores.
Some designs even include hierarchies with more than two levels. In embedded real-time systems,
the CPU cache memory hierarchy is one of the significant sources of unpredictability. In fact, the
cores run simultaneously and one of them can replace the data placed in the LLC by another core,
so generating a mutual interference that can be highly unpredictable (as well as strongly dependent
on the application behavior). For instance, this is a problem when porting applications from single-
to multi-core platforms. As long as caches are concerned, the execution time of a real-time task in a
multicore CPU can be affected by different types of interferences:

• Intra-task: interference occurs when two memory entries in the working set are mapped into the
same cache set;

• Intra-core: interference happens locally in a core. Specifically, when a preempting task evicts
the preempted tasks cached data;

• Inter-core: interference is present when tasks running on different cores access a shared level
of cache concurrently. When this happens, if two lines in the two addressing spaces of the
running tasks map to the same cache line, said tasks could repeatedly evict each other in the
cache, leading to complex timing interactions and thus unpredictability;

In the case of an hypervisor which assigns a core to each partition, it is possible to assign fractions of
the shared cache to each partition to realize the second level of private cache, thus providing spatial
isolation and reducing the problem of inter-core interference.

8.2.1.2 Memory bandwidth contention

Another primary shared resource for a multicore embedded system is the main memory (RAM). In this
case, at the level of the hypervisor, we have two main problems that are spatial isolation and temporal
isolation. As for spatial isolation, the hypervisor will have to ensure that the partitions have a separate
memory space between them. To ensure the separation of memory space the proposed solution
leverages the two stages translation capabilities of the MMU provided by the reference architecture
(i.e., ARM-VE). The isolation problem is still present when access to uncached memory generates
a cache miss and is needed access to DRAM memory through the DRAM memory controller which
is unique, and hence the overall bandwidth is shared between the cores contending it. The problem
occurs if one of the partitions, even non real-time, begins to have an abnormal behavior by starting
a series of accesses to the main memory, even if not accessing the space of the other partitions. A
possible way to limit this type of problem is to use a bandwidth reservation mechanism so that each
partition has a maximum number of RAM access guaranteed within a given time window.

8.2.1.3 Integration with hardware-based security

The robustness of a system to face external software attacks is becoming a significant requirement
for those systems that provide secure services and/or store confidential data such as cryptographic
keys. The ARM TrustZone Technology is a hardware-based security built into SoCs by semiconductor
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chip designers who want to provide secure endpoints and a device root of trust. At the heart of the
TrustZone approach is the concept of hardware separation between secure and non-secure worlds,
with the non-secure one blocked from directly accessing secure resources, with the switch between
these two worlds accomplished via a software referred to as the secure monitor. This concept of
secure (trusted) and non-secure (non-trusted) worlds extends beyond the processor to encompass
memory, software, bus transactions, interrupts and peripherals within a SoC. Virtualizing the two
worlds allows stand-alone programs, with mixed-criticality and security levels, to coexist in the same
Hardware platform. When merging this kind of systems, the biggest requirement is the strict isolation
between them, that needs to be achieved not only in the Non-Secure World but also in the Secure
World, even if the secure part of the software is certified or trusted. Figure 8.6 shows a possible
application scenario.

Figure 8.6: Merging Systems with mixed criticality and security levels.

8.2.2 Hypervisor setup

Xvisor [29], shown in Figure 8.7, is an embedded open-source monolithic Type-1 hypervisor that
supports both full virtualization and para-virtualization. It aims at providing a lightweight hypervisor
that can be used within embedded systems with small overhead and memory footprint. Xvisor pro-
vides fully virtualized guest, Hardware-assisted full-virtualization when possible (ARM Virtualization
Extensions) and provides para-virtualization also in the form of optional VirtIO devices [31].

The Xvisor source code is light-weight and highly flexible and can be easily ported to most general-
purpose 32-bit or 64-bit architectures as long as they have a paged memory management unit
(PMMU) and a port of the GNU C compiler (GCC). It provides a high performance and low mem-
ory foot print virtualization solution for ARMv5, ARMv6, ARMv7a, ARMv7a-ve, ARMv8a, x86 64, and
other CPU architectures.

The most important advantage of Xvisor is its single software layer running with the highest privi-
lege, in which all virtualization related services are provided. Xvisors context switches are lightweight
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Figure 8.7: Xvisor System Architecture (picture from [29])

resulting in the fast handling of nested page faults, special instruction traps, host interrupts, and guest
IO events. Furthermore, all device drivers run directly as part of Xvisor with full privilege and with-
out nested page table ensuring no degradation in device driver performance. Also, the Xvisor vCPU
scheduler is per-CPU and does not do load balancing for multiprocessor systems. The multiproces-
sor load balancer is a separate entity in Xvisor, independent of the vCPU scheduler. Both, vCPU
scheduler and load balancer are extensible in Xvisor.

Xvisor provides Hardware-Assisted and Para-Virtualization (in case of no Virtualization Extension).
Figure 8.8 shows how Xvisor in ARM with Virtualization Extensions implements the Guest IO Em-

ulation. The scenario starts at (1) when a guest IO event is trapped by Xvisor ARM and (2) handles
it in a non-sleepable normal (or emulation) context. The non-sleepable normal context ensures fixed
and predictable overhead.

Figure 8.8: Emulated Guest IO event (picture from [29]).

Xvisors host device drivers commonly run as part of Xvisor with the highest privilege. Figure 8.9
shows how Xvisor in ARM with Virtualization Extensions handles the Host Interrupts while a Guest
OS is running. A scheduling overhead only incurs if the host interrupt is routed to a guest which is
not running.

8.2.3 Memory Management, Virtual CPUs

The ARM architecture with Virtualization Extension provides two-staged translation tables (or nested
page tables) for memory virtualization. The guest OS is responsible for programming stage1 transla-
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Figure 8.9: Host interrupts handling (picture from [29]).

tion table which carries out guest virtual address (GVA) to intermediate physical address (IPA) trans-
lation. The ARM hypervisors are responsible for programming stage2 translation table to achieve
intermediate physical address (IPA) to actual physical address (PA) translation. Translation table
walks are required upon TLB misses. The number of stage2 translation table accesses affects the
memory bandwidth and the overall performance. To reduce TLB-miss penalty in two-staged MMU,
ARM hypervisors create bigger pages in stage2 translation table.

Virtual machines are separated into two major categories (based on their use):

• System Virtual Machine: A system virtual machine provides a complete system platform which
supports the execution of a complete operating system (OS).

• Process Virtual Machine: A process virtual machine is designed to run a single program, which
means that it supports a single process.

Xvisor refers system virtual machine instances as ”Guest” instances and virtual CPUs of system vir-
tual machines as ”VCPU”.

8.2.3.1 Guest Management

Each Guest Region has a unique Guest Physical Address (i.e. Physical address at which region is
accessible to Guest VCPUs) and Physical Size (i.e. Size of Guest Region). Further a Guest Region
can be one of the three forms:

• Real Guest Region: A Real Guest Region gives direct access to a Host Machine Device/Mem-
ory (e.g., RAM, UART).

• Virtual Guest Region: A Virtual Guest Region gives access to an emulated device (e.g., emu-
lated PIC, emulated Timer, etc.).

• Aliased Guest Region: An Aliased Guest Region gives access to another Guest Region.

8.2.3.2 Hypervisor Scheduler

The Xvisor scheduler is generic and pluggable concerning the scheduling strategy (or scheduling
algorithm). It updates per-CPU ready queues whenever it gets notifications from hypervisor manager
about VCPU state change. The hypervisor scheduler uses per-CPU hypervisor timer event to allocate
a time slice for a VCPU. When a scheduler timer event expires for a CPU, the scheduler will find next
VCPU using some scheduling strategy (or algorithm) and configure the scheduler timer event for next
VCPU. For Xvisor a Normal VCPU is a black box (i.e. anything could be running on the VCPU) and
exception or interrupt is the only way to get back control. Whenever Xvisor is running, it could be in
any one of following contexts:
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• IRQ Context, when serving an interrupt generated from some external device of the host ma-
chine.

• Normal Context, when emulating some functionality or instruction or emulating IO on behalf of
Normal VCPU in Xvisor.

• Orphan Context, when running some part of Xvisor as Orphan VCPU or Thread (Note: Hyper-
visor threads are described later.)

Xvisor has a special context called Normal context. The hypervisor is in Normal context only when it
is doing something on behalf of a Normal VCPU such as handling exceptions, emulating IO, etc. The
Normal context is non-sleepable which means a Normal VCPU cannot be scheduled-out while it is in
Normal context. In fact, a Normal VCPU is only scheduled-out when Xvisor is exiting IRQ Context or
Normal Context. This helps Xvisor ensure predictable delay in handling exceptions or emulating IO.

The expected high-level steps involved in architecture specific VCPU context switching are as fol-
lows:

• Save arch registers (or arch regs t) from the stack (saved by architecture-specific exception or
interrupt handler) to current VCPU arch registers (or arch regs t).

• Restore arch register (or arch regs t) of next VCPU on the stack (will be restored when returning
from an exception or interrupt handler C code).

• Switch context of architecture specific CPU resources such as MMU, Floating point subsystem,
etc.

The possible scenarios in which a VCPU context switch is invoked by scheduler are as follows:

• When time slice allotted to current VCPU expires we invoke VCPU context switch. We call this
situation as VCPU preemption.

• If a Normal VCPU misbehaves (i.e. does invalid register/memory access) then architecture
specific code can detect such situation and halt/pause the responsible Normal VCPU using
APIs from hypervisor manager.

• An Orphan VCPU (or Thread) chooses to voluntarily pause (i.e. sleep).

• An Orphan VCPU (or Thread) chooses to voluntarily yield its time slice.

• The VCPU state can also be changed from some other VCPU using hypervisor manager APIs.

8.2.3.2.1 Scheduling algorithm

Currently, Xvisor supports two classic scheduling algorithm:

• Fixed Priority Round-Robin (PRR) (default)

• Rate Monothonic (RM)

8.2.3.3 ARM platform description

The ARM architecture used as a reference platform for the implementation of the proposed solution
is a 32-bit ARMv7-A Cortex-A15 with the Virtualization Extension and the Security Extension.
In this section further details are provided for the ARM platform for two main reasons:

• The extensions described in the following sections have been implemented by modifying the
ARM implementation of Xvisor. In addition, the specific features of the ARM platform are lever-
aged to obtain the implementation of some techniques (cache coloring) described in the follow-
ing.
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• The ARM platform is among the most popular choices for automotive applications.

Of course, the problem of avoiding interference at the memory level is highly specific to the features
of the memory hierarchy and the control of the acess to the memory. In our prototype implementations
we used the ARM platform.

Processor modes As shown in Table 8.3, an ARMv7 processor has up to 9 different modes de-
pending on if optional extensions have been implemented. The usr mode that has a privilege level 0
is where userspace programs run. The svc mode that has a privilege level 1 is where most parts of
kernel execute. However, some kernel modules run at special modes instead of svc. For example,
when a data abort exception happens, a processor switches to the abt mode automatically. Proces-
sor mode change can be triggered by exceptions, such as the aforementioned data abort exception.
Or, privileged program can directly write CPSR by calling a MSR CPSR c, #imm instruction, where c
stands for the control field that includes processor mode bits and interrupt mask bits.

Mode Abbr. Privilege level Security state
User usr PL0 both
Supervisor svc PL1 both
System sys PL1 both
Abort abt PL1 both
IRQ irq PL1 both
FIQ fiq PL1 both
Undefined und PL1 both
Monitor* mon PL1 Secure only
Hyp** hyp PL2 Non-secure only
* only implemented with Security Extension
** only implemented with Virtualization Extension

Table 8.3: Processor modes.

Processor states With the security extensions, a processor has two security states, namely the
secure state (s) and the non-secure state (ns). The distinction between the two states is orthogonal
to the mode protection based on privilege levels, except that the mon mode is only available in the
secure state and the hyp mode that is implemented with virtualization extensions only exists for the
non-secure state. The current processor state is determined by the least significant bit of the secure
configuration register (SCR) in the CP15 coprocessor.

Core registers Figure 8.10 compares the ARMv7 architecture core registers between the applica-
tion level view and system level view. From the application-level perspective, an ARMv7 processor
has 14 general-purpose 32-bit registers (R0 to R14), a 32-bit program counter R15 also known as
PC, and a 32-bit application program state register (APSR). Two of the 14 general-purpose registers
can be used for special purposes: R13 also known as SP is usually used as the stack pointer; R14
also known as LR is usually used to store return address. APSR is an application level alias for
CPSR, and it must be only used to access condition flags.

From the system level view, these registers are arranged into several banks, which means a register
name is mapped to a collection of different physical registers, governed by the current processor
mode. As shown in Figure 8.10, each mode except the system mode of the processor has:

• its banked copy of stack pointer SP;

• a register that holds a preferred return address for the exception (a banked copy, such as
LR mon, for LP1 modes or a special register ELR hyp for the hyp mode);

• a copy of saved program status register SPSR to save the copy of CPSR made on exception
entry (except the usr and system).
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Figure 8.10: ARMv7-A Core Register (from [6]).

Saving the value of CPSR in banked SPSR registers means the exception handler can immediately
restore the CPSR on exception return and examine the value of CPSR when the exception was taken,
for example, to determine the previous process mode when the exception took place. Also, the fiq
mode has banked copies of R8 to R12. For example, when a processor is executing in the fiq mode,
R0 refers to R0 usr, but R12 refers to R12 fiq instead of R12 usr.
Note that processor core registers and program status registers are not banked between the secure
state and non-secure state. Therefore, a program can use registers to pass parameters between
states. Also, during a processor state switch, a privileged program mostly running in Monitor mode
will save the old state’s register values and restores the new states register values.

Coprocessors and System Registers The ARM architecture supports sixteen coprocessors,
namely CP0 - CP15, in which CP15 (System Control coprocessor) is reserved in the architecture
for the control and configuration of the processor system. Hardware manufacturer can define other
coprocessors for their purposes.
The system registers in CP15 are categorized in many groups that include

• virtual memory control registers function group (SCTLR, DACR, TTBR0, TTBR1, PRRR)

• PL1 Fault handling registers

• cache maintenance operations

• address translation operations

• security Extensions registers.

Given the special purpose of CP15 system registers, many of them are banked between secure and
non-secure states. However, the registers that configure the global system status, such as SCR, are
not banked. Table 8.4 lists some CP15 system registers that are used in this work.

8.2.3.3.1 ARM Virtualization Extension

The ARM Architecture virtualization extension and Large Physical Address Extension (LPAE) enable
the efficient implementation of virtual machine hypervisors for ARM architecture compliant proces-
sors. To handle complex software with potentially large amounts of data, connected consumer de-
vices and cloud computing demand energy efficient, high-performance systems. The virtualization
extensions provide the basis for ARM architecture compliant processors to address the needs of both
client and server devices for the partitioning and management of complex software environments into
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Register Name Security state
VBAR Vector Base Address Register Banked in both states
MVBAR Monitor Vector Base Address Register Secure state, monitor mode
ISR Interrupt Status Register
SCR* Secure Configuration Register Secure state
TTBRx Translation Table Base Register (0), (1) Banked in both states
TTBCR Translation Table Base Control Register Banked in both states
DACR Domain Access Control Register
SCTLR System Control Register Banked in both states
NSACR* Non-Secure Access Control Register Secure state
SDER Secure Debug Enable Register
* only implemented with Security Extension

Table 8.4: Some CP15 Registers on ARMv7-A

virtual machines. The Large Physical Address extension provides the means for each of the soft-
ware environments to utilize the available physical memory efficiently when handling large amounts
of data. The basic idea of this architecture is based on the presence of an additional higher privileged
mode: HYP Mode.

Figure 8.11: ARM Virtualization Extensions Modes.

The basic model of a virtualized system involves:

• a hypervisor, running in Hyp mode, that is responsible for switching Guest operating systems;

• a number of Guest operating systems, each of which runs in the PL1 and PL0 modes (respec-
tively Supervisor and User);

• for each Guest operating system, applications that usually run in User mode.

A Guest operating system, including all applications and tasks running under that operating system,
runs on a virtual machine and the hypervisor switches between virtual machines. However, the Guest
OS’s view is that it is running on an ARM processor. Normally, a Guest OS is completely unaware
that it is running on a virtual machine.
Each virtual machine is identified by a virtual machine identifier (VMID), assigned by the hypervisor.
The key features of this extension are:

• Hyp mode is implemented to support Guest OS management. Hyp mode operates in its virtual
address space, that is different from the virtual address space accessed from PL0 and PL1
modes.

• The Virtualization Extensions provide controls to:

– Define virtual values for a small number of identification registers. A read of the identifica-
tion register by a Guest OS or its applications returns the virtual value.
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– Trap various other operations, including accesses to many other registers, and memory
management operations. A trapped operation generates an exception that is taken to Hyp
mode.

These controls are configured by software executing in Hyp mode.

• With the Security Extensions (TrustZone), the Virtualization Extensions control the routing of
interrupts, and asynchronous Data Abort exceptions to the appropriate one of:

– the current Guest OS;

– a Guest OS that is not currently running;

– the hypervisor;

– the Secure monitor (better detailed in the next section).

• When an implementation includes the Virtualization Extensions, it provides independent trans-
lation regimes for memory accesses from:

– Hyp mode, the PL2 translation regime;

– Supervisor and User modes, the PL1&0 translation regime.

• In the PL1&0 translation regime, address translation occurs in two stages:

– Stage 1 maps the Virtual Address (VA) to an Intermediate Physical Address (IPA). Typically,
the Guest OS configures and controls this stage, and believes that the IPA is the Physical
Address (PA);

– Stage 2 maps the IPA to the PA. Typically, the hypervisor controls this stage, and a Guest
OS is completely unaware of this translation.

8.2.3.3.2 Trustzone

The ARM TrustZone is a hardware security extension technology, which aims to provide secure exe-
cution environment by splitting computer resources between two the normal and the secure execution
contexts. As ARM is widely deployed on the majority of mobile and micro-controller devices, Trust-
Zones goal is to provide security for those platforms.
A system is usually only secured at the software level. However, a greater level of security can be
achieved by building security checks into the hardware of the system. This idea is implemented by
the concept of Trusted Execution Environments (TEE).
The Trusted Execution Environment (TEE) is a secure area of the main processor. It guarantees
code and data loaded inside to be protected concerning confidentiality and integrity. The TEE as
an isolated execution environment provides security features such as the isolated execution and the
integrity of Trusted Applications along with confidentiality of their assets. In general terms, the TEE
offers an execution space that provides a higher level of security than a Rich OS.

Trustzone provides support for an hardware-based TEE. Formal definition and specification of a
TEE has been defined by GlobalPlatform [16]. The security of TrustZone is based on the idea of
partitioning all of the System on Chip (SoC)s hardware and software into two worlds: Secure World
and Normal World. Hardware barriers are established to prevent normal world components from
accessing secure world resources; the secure world is not restricted since it has full control of the
entire system (the non-secure world as well). Specifically, the memory system prevents the normal
world from accessing:

• regions of the physical memory designated as secure;

• system controls that apply to the secure world;

• state switching outside of a small number of approved mechanisms.
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ARM introduced two versions of TrustZone: one for ARM-A and one for ARM-M. The one used in this
work, and so described in this document, is the ARM-A version.

Modes view and System IPs
The trustzone idea is based on having a sort of additional bit checked in every instruction and

transaction: the NS Bit which identifies which world is currently running. We can erroneously say that
a 32-bit processor, with the Security Extensions, is going to be a 33-bit processor where the 33rd is
the NS bit. However, this is a wrong definition, but it gives a good overview of the mechanism. In fact,
the NS bit is in a unique register (Secure Configuration Register - SCR) in the CP15 only accessible
by the Secure World.

Figure 8.12: Modes overview in a TrustZone-enabled Processor.

As shown in the Figure 8.12, the traditional User and Privileged Modes are orthogonally split into
the two different worlds. A new entity is introduced which has the highest privileges and is mainly
responsible for the context switching between the two worlds: the Monitor.

ARM has implemented this split-environment processor with various system IP additions. These
unique components are used to enforce security restrictions while preserving the low power consump-
tion and other advantages of ARMs designs. Some of the features are described in the specification
for ARMs Advanced Microcontroller Bus Architecture version 3 (AMBA3). The main additional system
IPs of the Security Extensions are a APB Bridge (AXI-to-APB Bridge), a modified Cache Controller, a
modified DMA Controler, a TrustZone Address Space Controller (TZASC), a modified Generic Inter-
rupt Controller (GIC), and a TrustZone Protection Controller (TZPC). The AMBA3 AXI to APB Bridge
allows for secure communication between a CPU and peripherals. The Advanced eXtensble Interface
(AXI) bus, which is the main system bus, contains an active-high non-secure (NS) bit that indicates
whether a read/write operation is directed to secure or non-secure memory. The Advanced Peripheral
Bus (APB), whose low bandwidth reduces power consumption, connects to the AXI bus via a bridge.
As the APB does not check for security due to backward-compatibility concerns, the bridge checks
for appropriate permissions and blocks unauthorized requests.
Like the AXI to APB bridge, the Cache Controller also looks for an NS bit. This bit is treated like a
33rd address bit: the first 32 bits provide the location, and the NS bit indicates which world is re-
ferring. Since both worlds share the same physical cache, the same location may have two distinct
addresses, requiring a controller to look up the correct location. This also includes L2 cache and
other smaller locations.

SAFURE D4.3 Page 69 of 89



D4.3 - Final OS & RTE prototypes

The Direct Memory Access (DMA) Controller is used to transfer data to physical memory locations
instead of devoting processor cycles to this task. This controller, which uses AXI, can handle Secure
and Non-secure events simultaneously, with full support for interrupts and peripherals. It prevents
non-secure access of secure memory.

The TrustZone Address Space Controller (TZASC) allows dynamic classification of AXI slave memory-
mapped devices as secure or non-secure. Controlled by the secure world, the TZASC allows par-
titioning of a single memory unit rather than requiring separate secure and non-secure units. The
TZASC allows an arbitrary number of partitions to be created.

The Generic Interrupt Controller (GIC) is a single hardware device that supports both Secure and
Non-secure prioritized interrupt sources. Attempts by Normal world software to modify the config-
uration of an interrupt line configured as a Secure source will be prevented by the GIC hardware.
Additionally, Non-secure software can only configure interrupts in the lower half of the priority range,
preventing denial-of-service attacks.

Finally, the TrustZone Protection Controller (TZPC) is a signal-control unit. It has three 2-bit regis-
ters to control up to 8 signals.
The TrustZone Hardware, where hardware extensions enforce a separation of secure and non-secure
software, is more resource-efficient than the use of two separate processors.

Figure 8.13 shows the block diagram of AXI Bus TZ-Enabled.

Figure 8.13: AXI Bus TZ-Enabled [6].

8.2.3.3.3 World Switching Mechanism

To switch synchronously between worlds, TrustZone for ARM-A introduced a special form of Software
Generated Interrupt which is called Secure Monitor Call (SMC) (see Figure 8.12). When the proces-
sor executes the Secure Monitor Call (SMC) the core enters Secure Monitor mode to execute the
Secure Monitor code. This instruction can only be executed in privileged modes, so when a User pro-
cess wants to request a change from one world to the other, it must first execute an SVC instruction.
This changes the processor to a privileged mode where the Supervisor call handler processes the
SVC and executes a SMC. The Secure Monitor mode is typically responsible for switching between
worlds. The recommended way to return from an SMC call is to:
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1. Toggle the NS bit in the SCR (so setting it if we are going to the Non Secure world or clearing it
if we are going to the Secure world).

2. Execute a MOVS, SUBS or RFE.

All ARM implementations ensure that the processor can not execute the prefetched instructions that
follow MOVS, SUBS, or equivalents, with Secure access permissions.

However the world’s switching mechanism is also supported asynchronously by the Hardware, for
instance when an Interrupt for the Secure World is raised while the Non-Secure World is running,
and/or vice-versa.

8.2.4 Cache partitioning

The inter-core interference problem can be solved by partitioning the shared cache in smaller subsets
assigned to individual cores or partitions. There are two types of cache partitioning: index-based or
way-based partitioning. In the index-based partitioning (also called horizontal slicing), the partitions
are formed by aggregation of the caches sets. In the way-based partitioning (also named vertical slic-
ing), the partitions are constructed by aggregating one or more cache ways. We selected index-based
partitioning that requires the modification of the virtual memory management within the hypervisor.

8.2.4.1 ARM Cache Architecture

This subsection describes the shared cache architecture used in ARM processors, recalling the gen-
eral concepts and the terminology. In particular:

• A line is the smallest loadable unit of a cache, a block of contiguous words from main memory;

• An index is the part of a memory address that determines in which line(s) of the cache the
address can be found;

• A way is a subdivision of a cache, each way being of equal size and indexed in the same fashion.
The lines associated with a given index value from each way are grouped to form a set;

• The tag is the part of a memory address stored in the cache that identifies the main memory
address associated with a line of data.

The main caches of ARM cores are always implemented as set associative. The cache is divided
into equally-sized ways. A memory location is mapped to a line. The index field of the address is
used to select a particular line and points to an individual line in each way. In our work, we used a
quad-core ARM Cortex-A7 processor, with two cache levels. Each core has a 32 KB L1 2-way set-
associative instruction cache, with 32-bytes line length, and a 32 KB L1 4-way set-associative data
cache, with 64-bytes line length. All the cores share a second level of cache. The L2 shared cache
has the following feature:

• 512 KB cache size;

• fixed line length of 64 bytes;

• physically indexed and tagged cache;

• 8-way set-associative cache structure;

• pseudo-random cache replacement policy.
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8.2.4.2 Cache Coloring

To achieve index-base partitioning we implemented page coloring: a software technique to control
the mapping by which index links the physical memory addresses to a cache set; this is done in
hardware so that each address is mapped to one set of the cache. The definition of color indexes
makes use of the bits that overlap between the physical page number and the index of the set. In this
way, the hypervisor can assign different colors to different guests. The number and the size of colors
are hardware-dependent because they are linked to the cache address format.

Figure 8.14: Cortex A7 with 512 KB of L2 shared cache, address bits.

Figure 8.14 shows the structure of the addresses for the cache hierarchy of the Cortex A7 with
512KB of L2 cache. The physical page number overlapped with the L1 index set for one bit, which
means that it can be divided into two colors at most. For the L2 cache, the overlapping bits are
four, so it is possible to have up to 16 colors. However, this would require partitioning the cache
L1, which is not interesting because it is already private to each core. Hence, the useful bits for
partitioning the L2 cache are only three and allow to obtain up to 8 colors each with a size of 8KB,
as can be easily derived from the position of the bits within the address. To assign a shared cache
partition to different guests using colors the hypervisor must be modified to allocate memory space
using addresses that belong to the colors chosen for the specific guest. Each guest is given access
to a virtual space of contiguous memory that is allocated in physical memory in a discontinuous
manner, according to the above rules. To implement this mechanism, the double level of addresses
translation is required, especially by changing the translation tables of the stage 2. Figure 8.15 shows
a high-level architecture of the system just described.

Each guest OS will have a virtual address space and will have the task of managing and set
page tables for the stage 1 translation. The guest OS will use the generated addresses as physical
addresses because it is unaware of running in a VM, but the generated addresses are IPA and will not
be used to address the host memory. Due to this solution, everything that happens in guest memory,
including the first level of translation, is unknown to the hypervisor that does not need to know specific
details, but only to which guest each IPA belongs. Using this information and the guest colors the
hypervisor can set the stage 2 translation tables in such a way the coloring rules are respected.

8.2.5 Implementing coloring on ARM with Xvisor

In Xvisor, the devices visible to each guest are specified through a DTS file. Inside the tree, there
must be an aspace node that represents the sub-tree where all the devices with their characteristics
are listed. Each node within the space node is mapped to the system as a region. The regions that
are mapped into memory must have the following parameters:

• manyfest type = ”real”, mean that the region is real;
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Figure 8.15: Hypervisors cache coloring architecture.

• address type = ”memory”, mean that the region will be mapped in DRAM memory;

• device type = ”alloced ram” or ”alloced rom”, mean that the region represents a memory RAM
or ROM for the guest.

The regions also have two parameters indicating the physical address that the guest will use to
address that particular region and the corresponding size. When a guest is created, Xvisor generates
a data structure for each region found in the DTS file in which are saved all the information about the
region, this structure will then be stored in memory as a node in a red-black tree so that it can be
efficiently searched. When it comes to a region that must be allocated in memory, Xvisor searches
a continuous piece of DRAM memory of the same size as those specified in the DTS file that is not
yet assigned to any guest. Once the piece of memory is found, it is marked as allocated and will no
longer be available to other guests and the initial data address of the allocated memory area (host
physical address) is saved in the data structure.

In the data structure, Xvisor will have a guest physical address (GPA), a host physical address
(HPA) and a size. When the guest attempts to access the GPA for which the Stage 2 page table is
not yet present an abort (instruction or data) is generated, and Xvisor searches for the region data
structure, extract the host physical address, and fill in the page table of Stage 2 appropriately. This
approach allows the guest to resume and use the DRAM region that was assigned to him.

The problem with this approach is that each guest is assigned a portion of contiguous physical
memory, which means that each guest uses memory parts that will be mapped across the entire
shared cache. The consequence is that two hosts running simultaneously on two different CPUs are
generating inter-core interference with each other due to the continuous replacement of data at the
shared cache level.

8.2.5.1 Changes to Xvisor

The first thing to be changed is the structure of the regions due to the need to allocate more pieces
of host memory to the same region; hence a single HPA will not be enough. The new regions require
additional fields to support coloring:

Each region is divided into several pieces that are called region maps. Each of these maps ad-
dresses a portion of host memory. Using the map order parameter is possible to change the size of
the maps, that is necessary because to each guest it is possible to assign more contiguous colors to
use a larger map and also because the size of the color is architecture dependent. The map count
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variable is needed to save the number of maps composing the region, and it is calculated using the
size of the region and the size of the map. The maps pointer variable points to a vector, of size
map count, in which are saved all the maps that compose the host memory region. The colors vari-
able allows saving which colors have the memory pieces of the region. It is a mask where each bit
represents if the corresponding color belongs to a guest (value 1) or not (value 0). In the reference
architecture, it uses the first eight bit.

The initialization flow of the guest address space partially changed: instead of searching a single
block of host memory for each memory region, Xvisor searches for each map a block of host memory
having the map size and compatible with the colors saved in the region colors variable.

All the parameters needed to the guest coloring can be passed to Xvisor through the DTS file. Thus
the parser has been extended with the new parameters colors and map order. In this way, no code
modification is needed to change the colors assignation to the Guests.

The colors parameter must be a mask of eight bits in which are set the bits of the colors that are
assigned to the guest region. The lower bit means the first color; the higher bit means the eighth
color. If the colors parameter is set to zero or isnt present the guest region will not be colored.

The map order parameter is needed to indicate the order of the maps; it is used to calculate the
size of the maps with the following formula:

map size = 2map order (8.1)

If the map order is not specified, it is calculated taking into account the size of a color and the
colors assigned. In the case of a not colored region the following relation is guarantee:

VMM PAGE SIZE ≤ map order ≤ align order. (8.2)

8.2.5.2 Experimental Results on Cache Coloring

A set of tests has been conducted to validate the usefulness of the implemented spatial isolation
technique. The tests were carried out using a Raspberry Pi 2 platform equipped with an ARM Cortex-
A7 processor with a 512KB shared cache. All tests are designed to compare the predictability and
amount of interference by running two guests managed by Xvisor with and without isolation.

Several tests have been conducted to test the benefits of using cache coloring. System configura-
tion and experiments have the following features:

• Two core dedicated to Xvisor;

• One core and half of shared cache (4 contiguous colors 256KB) dedicated to Guest0;

• One core and half of shared cache (4 contiguous colors 256KB) dedicated to Guest1;

• Guest1 is used as interfering guest constantly accessing a large part of memory (10240 KB),
producing cache eviction in the shared cache;

• Guest0 performs the time measurements to understand the amount of the interference gener-
ated by Guest1 in the case of no-coloring Xvisor and the case of coloring Xvisor;

The test executed by Guest0 accesses for M iterations a portion of the memory of size N KB while
measuring the access time. Also, to observe the execution time trend as a function of the amount
of memory accessed, the test is repeated X times by varying the parameter N in a range between
8KB and 512KB. These results allow comparing the behavior of the two Xvisors when the memory is
partitioned (i.e., each guest has a limited portion) with the case where memory is fully shared among
guests. For each value of N is calculated the mean and the maximum execution time to access N
KB of memory. The tests are performed under the following conditions:

Figure 8.16 shows the comparison between the curves of AVG and MAX by varying the memory
size accessed in each of the four cases. The case of Xvisor without coloring and a single running
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Xvisor No Colored Xvisor Colored
Only Guest0 solo No Coloring solo Coloring

Guest0 and Guest1 corun No Coloring corun Coloring

Table 8.5: Test case conditions.

guest has the best AVG and MAX execution times for all memory sizes; obviously, in this case, the
unique guest has a 512KB L2 cache all by itself. Conversely, the case of Xvisor without coloring run-
ning two guests has the worst performance regarding AVG and MAX execution time for all memory
sizes; moreover, as the amount of memory used increases, the execution times increase consider-
ably. We can see, however, that the non-colored Xvisor case has excellent performance from 0 to
256KB (i.e., the partition size assigned to the single guest) and is always better in the case of two
guests. When using Xvisor with coloring, the difference between the performance running one guest
and quite similar those executing two guests, showing the improvements concerning predictability
even in the presence of multiple concurrent guests instances.

Figure 8.16: Overall comparing on AVG and MAX.

Figure 8.17 shows execution times accessing 120 KB memory area, so inside the partition assigned
to the guest. In this case, Xvisor without coloring suffers a high interference generated by another
guest (about 30 µs). Instead, both cases of Xvisor with coloring present comparable execution times
without any interference.

8.2.6 Memory throttling

The throttling term indicates techniques for managing and allocating shared resources of a host
to various guests. Throttling is needed to monitoring the workload and managing the requests of
the various guests so that they do not exceed an assigned threshold. When embedded multicore
platforms share the same hardware managed by a hypervisor throttling techniques cqn be applied to
manage an essential shared device: the DRAM memory.

Figure 8.18 shows an example where a four core platform is allocated by the hypervisor as follows:

• Core 0 and Core 1 execute the hypervisors background code;
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Figure 8.17: Execution times accessing 120 KB of memory.

• Core 2 is dedicated at the Guest 0;

• Core 3 is dedicated at the Guest 1;

• The DRAM is partitioned between the hypervisor and the guests.

In the scheduling example, Guest 1 (seen as a black box) starts a long phase of access to DRAM
memory, thus producing a considerable interference for Guest 0. From the point of view of real-time
systems, the biggest problem is the lack of information on the amount of interference that a guest can
potentially create. To handle this problem and get predictable guest behavior, a bandwidth reservation
technique can be implemented, assigning to each guest a maximum number of memory accesses
in every period. Such an approach allows giving guarantees concerning predictability even if the
behavior of the guests remains unknown.

Figure 8.18: Memory access interference example.

Before-mentioned techniques have been explored for real-time operating systems, but often require
more information on tasks. The first and perhaps the most important work on the memory bandwidth
reservation that has been considered is MemGuard[37].
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8.2.6.1 Memory Reservation Architecture Design

The bandwidth reservation system monitors all guests memory accesses and modifies their status.
By making a high-level analysis, the components required for memory reservation are:

• A period and a budget for each guest, these will determine the band allocated to the guest;

• A counter to keep the remaining budget for each guest;

• A new state ”recharge” where the guest can be in;

• Edit and add actions during state transitions;

• Add new status transactions.

A crucial step concerns modifying the state machine that describes all the possible states of the
guest Figure 8.19 shows a minimal state machine that takes into account all the actions needed to
manage the memory reservation system.

Figure 8.19: Guests State Machine for Memory Reservation

When a guest switches from idle state to ready state, it is necessary to initialize the current budget
counter with the assigned budget value. In the transition from ready to execution and vice versa,
the current budget counter is saved, its value is updated as the guest is in the execution state. The
update is done by counting the memory accesses (in the reference architecture is used the ARM
PMU feature). If the guest ends its current budget during the execution, it must be suspended until
the beginning of the new period; in this case the guest switches from the execution state to the new
recharge state. At the beginning of the new period, the guest current budget will be recharged to
the maximum, and it will pass to the ready state if currently in recharge state. Saving the current
value in the transition from execution to ready is very important because it is needed to supports
the preemption of the guests; more precisely, when a guest is preempted the value of its current
budget must be saved and then restored when it returns in the execution state. Figure 8.20 shows an
example of execution in which a guest is preempted, and subsequently rescheduled within the same
period, keeping the value of the budget always updated; in the last part of the scheduling, the guest
is stopped until next period because it ends his current budget.

8.2.6.2 Implementation on Xvisor

The scheduler within Xvisor is a module that has the responsibility of choosing which VCPUs must
run on the physical CPUs. The selection of VCPUs is done by extraction from ordered priority queues,
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Figure 8.20: Memory Reservation Scheduling Example.

which are sorted through scheduling policies managed independently of the scheduler module, thus
making the scheduler and the scheduling algorithms independent. One of the main tasks of the
scheduler module is to ensure that each VCPU evolves its state by respecting the state machine
shown in Figure 8.19. Notice that in Xvisor the entity that is scheduled and runs on a physical CPU
is the VCPU and not Guest. I Xvisor there are two types of VCPUs, and those related to the guests
are the Normal VCPUs. The status of each guest is then linked to the status of its VCPUs. A VCPU
also has an affinity parameter by which can be indicated in which physical CPUs it is allowed to run
regardless of the scheduling algorithm. In the proposed approach, to each guest is assigned only
one VCPU that can run only on a dedicated physical CPU; in this way, there is no need to consider
the scheduling algorithm because each guest has a dedicated physical CPU. However, the designed
memory reservation system is entirely independent of the scheduling algorithm.

VCPUs are represented through a struct that store the current state of the VCPU, a copy of the
physical CPU state, and more information about statistics and scheduling. The scheduler module has
two main components represented by the vmm scheduler state change and vmm scheduler switch

functions. The first function has the task of handling all VCPUs’ state transitions, except those be-
tween Idle and Running states. VCPU state changes are required by the manager module that is in
charge of managing the system. When a VCPU state change is required, this function must ensure
that the transaction is one of those mapped in the state machine and perform all necessary steps
during the state transition.

The second function is called periodically through a timer event and handles the state transition
from ready to running and vice versa. In this case, it will check which VCPU is first in the queue to be
scheduled and, if it is different from the current one, switches between the current and the first one
in the queue. During the state transition, the function will have to save the status and statistics of the
descheduled VCPU and reload all the data of the new VCPU running on the physical CPU.

8.2.6.2.1 ARM PMU Support

ARM Cortex-A processors include dedicated logic to count different operations executed by the pro-
cessor at runtime. This type of hardware allows us to perform accurate statistics and is often used
to perform debug checks or performance measures. This hardware is called Performance Monitoring
Unit (PMU). The Cortex A7 PMU provides four programmable counters for counting any of the events
enabled in that particular processor, and a counter dedicated to clock cycles.

In multicore architecture, each core has a dedicated PMU system. The procedure for programming
and starting PMU counters is shown on the right side of Figure 8.21, while the left side shows how to
read the counters.

The PMU can also be programmed to launch an interrupt when one of the counters overflows;
this feature is essential because it allows performing actions when the interrupt arrives and can be
exploited for the memory reservation system. Xvisor did not have support for PMUs, so anew sub-
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Figure 8.21: PMU setting/reading flow.

system to manage the PMU has been designed and implemented (counters configuration, counters
reading and interrupt handling). First of all, at the boot, Xvisor must execute the initialization that links
the provided handler to the interruptions generated by the PMU. This initialization must be done by
each core because the PMUs interrupts are private, for each core, and therefore need a dedicated
handler.

Once the handler for PMU interrupt has been initialized, a set of functions has been provided to
automate the steps for managing the PMU, in particular:

• u32 read cpu counter(int r) reads and returns the value of the counter identified by param-
eter r;

• void setup cpu counter(u32 r, u32 event, u32 cnt) allows to set the counter identified
by parameter r to count the events identified by the event code, the counter will be initialized
with the value of the cnt parameter and the count will start from this value;

• bool start pmu for vcpu(struct vmm vcpu *vcpu) allows to execute all steps to initialize the
PMU and start the count of memory access of the vcpu;

• bool stop pmu for vcpu(struct vmm vcpu *vcpu) stops the PMU by reading counter values
and updating the vcpu accordingly.

With the above functions is possible to count the memory accesses of each VCPU, saving the values
when needed and obtaining an interrupt when the VCPU exceeds a certain threshold.

8.2.6.2.2 Memory Reservation System implementation on Xvisor

To implement the memory reservation system within Xvisor, parameters have been added to the
VCPU structure. They are initialized using DTS within the manager module, and a set of scheduler
extensions have been done to obtain a new state machine that implements the behavior shown in
Figure 8.19. The new parameters in the VCPU structure are as follows:

• u32 mbudget This variable stores the budget assigned to the VCPU that is the number of al-
lowed memory accesses in a period;

• u32 mactual budget This variable holds the current value of memory accesses made by the
VCPU, and is necessary when a VCPU is preempted, and residual value extracted from the
PMU count has to be saved;
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• u64 mperiod This variable stores the period allocated to each VCPU;

• bool mrecharge This variable indicates when the VCPU is in the recharge state;

• struct vmm timer event mrecharge evt This timer is needed to start a recharging event each
period, and requires a dedicated handler.

The initialization code must take the mperiod and mbudget values from the DTS file and initialize the
relative parameter using those values. The actual budget parameter must be set to the mbudget
value (max level). The mrecharge parameter must be set to false because the VCPU is not in recharge
state. In this way, we can change the bandwidth assigned to each guest without having to make
changes to the Xvisor code. The initialization just described is performed for each normal VCPU in
the system.

Figure 8.22 shows the new Xvisors state machine with all the transition and the states needed to
support the memory bandwidth reservation system, the initialization described above is done in the
transaction highlighted with the number (1).

In the transition from the RESET state to the READY state (Figure 8.22(3)), the timer event pa-
rameter added to the VCPU is initialized. The timer is configured to raise an interrupt periodically,
and the value of the period is stored in the mperiod parameter. Moreover, the timer is linked to a
specific handler that will be called when the interrupt is raised. The initialization of the timer must
specify the core in which the handler will be executed, which is the physical core assigned to the
VCPU in the current implementation. The mactual budget parameter is recharged to the maximum
value, and the timer is started. Viceversa, the transaction from the READY state to the RESET state
(Figure 8.22(2)) is more simple and only stops the timer event of the VCPU.

Figure 8.22: New Xvisor State Machine.

The interrupt handler for the recharge event generated by the timer have to do several tasks to
recharge the VCPU budget and make a state change if necessary; the VCPU to be handled will be
passed to the handler via a timer structure parameter. Specifically, the operations performed by the
handler are the following:

• Extract the VCPU structure from the handler parameter;
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• Acquire the lock on VCPU memory reservation parameters;

• Reload the current budget value to the maximum value;

• Set to false the variable mrecharge, this is needed because the VCPU must be put in the READY
state if is currently in the RECHARGE state (see Figure 8.22(8)));

• Enable the flag that allows the VCPU to go in the WFI mode (Wait for Interrupt);

• Release the lock on VCPU memory reservation parameters;

• After finishing the operations on the parameters, restart the timer to count a new period, which
is the only way to have periodic events within Xvisor;

• At this point, a Resume operation is performed on the VCPU, so it would be put to the READY
state if it was suspended in the RECHARGE state awaiting a budget recharge (Figure 8.22(8)).
In both cases, this operation will restart the PMU count, so that the new budget value is taken
into account;

The RECHARGE state has been implemented as a sub-state of the PAUSE state and is mapped
via the mrecharge variable added to the VCPU structure, so when a VCPU is in the RECHARGE state
will also be in the PAUSE state. This design choice allowed to minimize the changes of the Xvisor
scheduling structure. As a drawback, a check must be performed each time a RESUME operation
is invoked for a VCPU that it is not in RECHARGE state (see Figure 8.22(4)); otherwise, the status
change will not be allowed. The only way to exit the RECHARGE state is when the recharge event
handler described above is executed. When a VCPU passes from the READY state to the RUNNING
state; the PMU is enabled to count the memory accesses made by the VCPU during its execution.
Also, the PMU needs to be configured to launch an interrupt to handle the suspension of the execution
when the current budget is consumed. As described in subsection 8.2.6.2.1, the PMU can only
interrupt when one of the counters goes into overflow; for this reason, the counter must be started
from a calculated value so that the counter goes into overflow when the current budget is finished. All
the startup and programming operations of the PMU are made by the start pmu for vcpu function,
that does:

• Writes all the PMU registers to clear and reset all the counters;

• Sets the first counter to count data memory accesses (code DMACC 0x13), and sets the counter
to a value computed whit this formula: MAX COUNTER VALUE - vcpu->mactual budget;

• Writes the PMU register to clear overflow;

• Writes the PMU register to enable overflow;

• Writes the PMU register to enable PMU and Counters;

Viceversa, in the transition from the RUNNING state to the READY state (see Figure 8.22(6)), the
PMU counter has to be stopped and the current budget must be updated with the value read from
the counter, that is the residual memory accesses. The stop pmu for vcpu function does all the
necessary operations that are:

• Writes the PMU registers to stop all counters;

• Reads the counter value from the register and updates the current budget with the following
formula: MAX PMU COUNTER VALUE - counters value;

• Writes the PMU registers to disable the entire PMU system.
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When the VCPU is in the RUNNING state the transaction on Figure 8.22(9) indicates that the PMU
is running and counting the memory accesses. The count does only in a hardware way, and all
the updates of the parameters are stored only at changing state. The last transaction that must be
described is the PMU interrupt overflow (Figure 8.22(7)), that means that the VCPU ended her budget
so must be put in RECHARGE state. All the operations needed to change the state from RUNNING
to RECHARGE are done in the handler linked to the PMU overflow interrupt. The handler must do
the following operations:

• Reads the PMU register that indicates which of the counters suffered an overflow;

• Checks that the overflow is from the counter that counts the memory accesses; otherwise,
the interrupt will not be handled. This check is necessary if the counters are used for other
purposes.

• Writes the PMU register to clear the overflow;

• Disables the VCPU to go to WFI;

• Sets the mrechage variable to TRUE to indicate that the VCPU will be in the RECHARGE state
up to the next period and will not be able to go in the RUNNING state;

• Sets to zero the current budget variable;

• Calls the pause operation for the VCPU that will be put in the PAUSE state with the mrecharge

flag set, in this way the VCPU will be in the RECHARGE sub-state.

Figure 8.23 shows the flow diagram of the PMU interrupt handler.

Figure 8.23: Flow diagram of the PMU interrupt handler.
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8.2.6.3 Experimental Results on Memory Bandwidth Reservation

To test the results obtained by using the memory reservation several experiments have been con-
ducted with the same conditions already listed in subsection 8.2.5.2. In this case, the test code
accesses (performing a write operation) a variable memory area in the range from 512 KB to 10240
KB, thus being sure to use DRAM memory. In Figure 8.24 and Figure 8.25 are shown the AVG and
MAX execution times to access a variable amount of memory.

Figure 8.24: AVG execution times comparison varying the bandwidth.

Figure 8.25: MAX execution times comparison varying the bandwidth.

The best case is where there is only one guest using Xvisor without coloring; this is quite obvious
because the guest has a larger amount of cache available and no interference. As in the experiments
on cache coloring, the worst case is still Xvisor without coloring running two guests due to the effects
of suffered interference (up to +48%).

Using Xvisor with coloring and memory reservation, and limiting the maximum bandwidth of the
interfering guest, the interference can be limited according to the assigned bandwidth. In this way, it
is possible to estimate how much the other guests could interfere and it will be possible to tune such
an interference according to the performance and temporal constraints of the real-time guest.

Finally, Figure 8.26 shows the execution times of various iterations accessing a 5120 KB memory
area. It presents how the bandwidth assigned to the interfering guest affects the suffered interference.
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The obtained results confirm that integrating memory reservation and cache coloring techniques into
a hypervisor allows providing time guarantees to the guests.

Figure 8.26: Comparison accessing 5 MB of memory varying the bandwidth.
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Chapter 9 Summary and Conclusion

This deliverable has presented the final implementation work in WP4. The work was not a straight
path and the project had to take detours and conduct additional research. In the end, the consortium
has been able to cover a very wide set of topics ranging from security, safety, spacial and temporal and
temperature/energy separation, to RTEs to configure and enforce mixed-critical policies. The result
has shown that achieving a fully integrated mixed-critical approach (from a CPU, to SoC, hypervisor,
OS/RTOS, extensions and RTEs, unto a user-land applications) is still a challenge. Despite that
experience the project has clearly pin-pointed obstacles and made a big step forward providing the
basic blocks and integration of those basic blocks into a functional mixed-critical system.

SAFURE D4.3 Page 85 of 89



D4.3 - Final OS & RTE prototypes

Glossary

BB-RTE Budget-Based RunTime Engine . . . . . . . . . . . . . . . . . . . III, IV, VI, 23–25, 27, 30, 31, 34, 35, 40

BiQuad bi-quadratic distributed control system application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VI, 43, 44

eDRON embedded Directed Rotodrone Operated Network . . . . . . . . . . . . . . . . . . . . . . . . . . VI, VIII, 44, 45

FMS Flight Management System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VI, VIII, 40–44

METrICS Measure Environment for TIme-Critical Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VI, 29, 30

PMC Performance Monitor Counters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25, 27, 28

SAFURE D4.3 Page 86 of 89



D4.3 - Final OS & RTE prototypes

Bibliography

[1] Open Virtualization’s SierraVisor and SierraTEE. www.openvirtualization.org/

open-source-arm-trustzone.htmltrustzone.html.

[2] Luca Abeni and Giorgio Buttazzo. Integrating multimedia applications in hard real-time sys-
tems. In Real-Time Systems Symposium, 1998. Proceedings. The 19th IEEE, pages 4–13.
IEEE, 1998.

[3] RISC Advance. Machines ltd. An introduction to Thumb, 1995.

[4] SYSGO AG. PikeOS 4.2: RTOS with hypervisor-functionality, March 2017.

[5] Gene M. Amdahl. Validity of the single processor approach to achieving large scale computing
capabilities. In Proceedings of the Spring Joint Computer Conference, pages 483–485, Atlantic
City, April 1967. ACM.

[6] ARM. Arm information center.

[7] ARM Limited. Fixed Virtual Platforms: FVP Reference Guide, Nov 2015.

[8] ARM Limited. Versatile Express: 64 Bit Juno r2 ARM Development Platform, Nov 2015.

[9] Thomas G. Baker. Lessons learned integrating COTS into systems. In Proceedings of the First
International Conference on COTS-Based Software Systems, ICCBSS ’02, pages 21–30, 2002.

[10] Jingyi Bin, Sylvain Girbal, Daniel Gracia Perez, Arnaud Grasset, and Alain Merigot. Studying
co-running avionic real-time applications on multi-core cots architectures. Embedded Real Time
Software and Systems conference, Feb 2014.

[11] Gabriel Fernandez, Javier Jalle, Jaume Abella, Eduardo Qui nones, Tullio Vardanega, and Fran-
cisco J. Cazorla. Resource usage templates and signatures for cots multicore processors. In
52nd Design Automation Conference, DAC, 2015.

[12] Stuart Fisher. Certifying Applications in a Multi-Core Environment: The World’s First Multi-Core
Certification to SIL 4, 2013.

[13] Sylvain Girbal, Xavier Jean, Jimmy Le Rhun, Daniel Gracia Pérez, and Marc Gatti. Deterministic
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