
This project has received funding from the European Unions Horizon 2020
research and innovation programme under grant agreement No 644039.

D6.7
Final Specifications of the SAFURE Framework

and Methodology

Project number: 644080

Project acronym: SAFURE

Project title: SAFety and secURity by dEsign for interconnected mixed-critical
cyber-physical systems

Project Start Date: 1st February, 2015

Duration: 36 months

Programme: H2020-ICT-2014-1

Deliverable Type: Report

Reference Number: ICT-644080-D6.7/ 1.00

Work Package: WP 6

Due Date: May 2018 - M40

Actual Submission Date: 7th June 2018

Responsible Organisation: SYM

Editor: Björn Gebhardt

Dissemination Level: PU

Revision: 1.00

Abstract:
This report describes the framework for development and designing
safe and secure embedded systems and discusses lessons learned
from application in demonstrators.

Keywords: Algorithms, Mixed-Criticality, Temperature, Data integrity, Timing in-
tegrity, Resource sharing integrity

This work is supported (also) by the Swiss State Secretariat for Education, Research and Innovation (SERI)
under contract number 15.0059. The opinions expressed and arguments employed herein do not necessarily
reflect the official views of the Swiss Government.

D6.7- SAFURE Framework

Editor

Björn Gebhardt (SYM)

Contributors

André Osterhues, Alexander Ptok (ESCR)
Björn Gebhardt (SYM)
Sylvain Girbal (TRT)
Robin Hofmann (TUBS)
Jaume Abella (BSC)
Marco Di Natale (SSSA)
Rehan Ahmed (ETHZ)
Stefania Botta (MAG)
Don Kuzhiyelil (SYSG)
Edin Arnautovic (TTT)

Disclaimer

The information in this document is provided ”as is”, and no guarantee or warranty is given that the
information is fit for any particular purpose. The users thereof use the information at their sole risk
and liability.

SAFURE D6.7 Page I

D6.7- SAFURE Framework

Executive Summary

Embedded systems are much more complex nowadays than they were a few years ago. As a result,
it is becoming increasingly necessary to develop appropriate strategies during the design phase that
make such systems uncritical with regard to data integrity, timing or temperature. Not only in the
design phase, but also in the verification phase, appropriate tools are necessary to measure and
check such aspects in order to optimize them afterwards.
In this document, the various SAFURE partners will present strategies, methodologies and tools for
each phase to make embedded systems safe in this respect. The methodologies and tools developed
were tested using so-called demonstrators, which have already been made available in Deliverables
D6.3 to D6.6. Adequate conclusions or, so to say, ”lessons learned” from the demonstrators should
be used as a guideline for later, similar projects from research and industry and provide a framework
for such developments.

SAFURE D6.7 Page II

D6.7SAFURE Framework

Contents

Chapter 1 Introduction 1
1.1 Development Process . 1

1.1.1 Process description . 2
1.1.2 Requirements Traceability . 5

1.2 Deliverable Outline . 6
Chapter 2 Design: Modeling 7

2.1 Modeling Extensions . 7
2.1.1 Modelling Extensions for the Specification and Analysis of Safety and Security

Properties . 8
2.1.2 Modelling Extensions for the Compositional Performance Analysis 8

2.2 Design Patterns . 9
2.2.1 Architecture Patterns for Safe and Secure Systems 10

2.3 Conclusion . 10
Chapter 3 Design: Application Development 11

3.1 Data Integrity Methodology . 11
3.1.1 Key Length Recommendations . 11
3.1.2 Choice of Data Integrity Algorithm . 12

3.2 Conclusion . 12
Chapter 4 Design: Deployment 13

4.1 Synthesis . 13
4.1.1 Automatic generation of encryption components and code 14
4.1.2 Automatic generation of OS calls for timing protection (isolation) in mixed-critical

applications . 15
4.2 Analysis . 16

4.2.1 Timing Analysis of Tasks in overload conditions 16
4.2.2 Timing Analysis of Ethernet Networks . 17

4.2.2.1 Analyzable Network Model . 17
4.2.2.2 Design Rules for Constraint Specification 17
4.2.2.3 Timing Analysis in Faultless Case . 19
4.2.2.4 Timing Analysis in Error Case of Babbling Idiots 19
4.2.2.5 Interactions of Different Design Phases 19

4.2.3 Thermal Security Analysis . 20
4.2.3.1 Covert Channel Evaluation . 20
4.2.3.2 Side Channel Data Leak . 20
4.2.3.3 Considerations for Thermal Security 20

4.2.4 Vulnerability Detection for Multi-Cores . 21
4.2.4.1 Integration on SAFURE hardware platforms 21
4.2.4.2 Integration on SAFURE use cases . 23
4.2.4.3 Beyond SAFURE platforms and use cases 23

4.2.5 Timing Interference Analysis . 23
4.2.5.1 Tools Developed as part of SAFURE 24

SAFURE D6.7 Page III

D6.7- SAFURE Framework

4.2.5.2 Measurement Environment for Multi-Core Time Critical Systems (MET-
rICS) . 24

4.2.5.3 expert Timing and Resource Access Counting Trace Visualizer (xTRACT) 25
4.2.5.4 Budget-Based RunTime Engine (BB-RTE) 25

4.3 System Configuration Tools for PikeOS . 26
4.3.1 Time Partition Configuration . 26

4.4 Conclusion . 28
Chapter 5 Execution: OS & Microarchitecture 29

5.1 Ensuring Data Integrity: Protection Mechanisms . 29
5.1.1 Memory Protection Unit . 29
5.1.2 Timing Protection driver . 30

5.2 Ensuring Shared Resource and Timing Integrity . 30
5.2.1 Run-Time Monitoring . 31
5.2.2 Real-Time Scheduling . 31
5.2.3 Run-Time Engine . 31

5.3 Ensuring Temperature Integrity . 32
5.3.1 Measuring Power & Temperature as part of the Run-Time Engine 33

5.3.1.1 Probing power and temperature on the Juno board 33
5.3.1.2 Motherboard IOFPGA Component . 34
5.3.1.3 SoC System Control Processor (SCP) 35
5.3.1.4 Conclusion . 36

5.3.2 Thermal Protection . 36
5.3.2.1 Thermal Isolation Servers Overview 36
5.3.2.2 Adaption for the Avionics Prototype 38
5.3.2.3 Initial Thermal Calibration Test Results 39

5.4 Conclusion . 40
Chapter 6 Execution: Network 41

6.1 Deterministic Networks . 41
6.2 Protocol Extensions . 41
6.3 Anti-Counterfeiting Measures . 42

6.3.1 Secure Updates . 42
6.3.2 Secure Communication . 42

6.4 Conclusion . 42
Chapter 7 Summary 43
Chapter 8 List of Abbreviations 44
Bibliography 45

SAFURE D6.7 Page IV

D6.7SAFURE Framework

List of Figures

1.1 Overview of the SAFURE Framework . 1
1.2 V-model applied at system, hardware, and software levels in product development (ac-

cording to ISO26262 [20]), including safety-related analyses 2
1.3 V-model according to Automotive SPICE R© [26] . 3
1.4 Tracing according to the V-Model . 5

2.1 Tool flow from modeling to analysis and synthesis . 8
2.2 Modeling extensions as an input to analysis and synthesis 9
2.3 Pattern for a protection kernel . 10

4.1 Specification of security requirements on communications 14
4.2 A security component performs the encryption automatically 15
4.3 Generated code for the RTE implementation and the security component 15
4.4 Flow for RTE generation for timing protection . 16
4.5 Overview of the SAFURE Framework . 17
4.6 Symtavision Tool Suite integrated in automotive developing workflow 18
4.7 Steps for the integration of the contention model on a hardware platform. 22
4.8 Timing Interference in multi-core architectures . 24
4.9 Architecture of the METrICS measurement tool . 25
4.10 Timing integrity process for mixed time-critical systems 26
4.11 Time Partition Scheduling Scheme . 27

5.1 Memory protection Unit . 29
5.2 OS-Independent Timing Protection Model . 30
5.3 BB-RTE: Monitored Information VS Expected Run-Time Engine behavior 31
5.4 METrICS infrastructure in the context of SAFURE BB-RTE 32
5.5 Versatile Express Juno Board . 33
5.6 Thermal throttling observed on the Dragonboard 810 which has big.LITTLE architec-

ture similar to the JUNO Board. Thermal throttling triggers when the maximum tem-
perature across all cores/sensors reaches 87◦ C. 37

5.7 Temperature of the A53 cluster in JUNO board for different execution configurations . 39

7.1 Overview of the SAFURE Framework and SAFURE Partners 43

SAFURE D6.7 Page V

D6.7SAFURE Framework

List of Tables

3.1 Data Integrity Methods . 11
3.2 Key Length Recommendations . 12

4.1 Resource Partition attributes . 28

SAFURE D6.7 Page VI

D6.7- Final Specifications of the SAFURE Framework and Methodology

Chapter 1 Introduction

The complexity of today’s embedded systems is growing rapidly. But just like their complexity, the
error proneness also increases, which requires an intuitive and agile framework for a stable design of
such systems. To increase the safety, frameworks have to cover questions regarding methodologies
for design regarding thermal influences, data integrity and timing.

To reach this goal, the SAFURE partners have proposed design guidelines for developing strategies
and introduce some tools to guide architects and developers of such systems. This document shows
what the individual partners in the SAFURE project have considered, developed and implemented
with regard to various development processes and methodologies for implementing such systems,
which tools can be used and what the partners have learned from the results of the demonstrators.

SAFURE uses the fundamental approaches already described in Deliverable D3.2 and the method-
ologies taken up in Deliverable D3.3. The knowledge gained will enable developers to design mixed-
critical systems for improved safety and security and serve as a helpful basis for leanings on the
project. Figure 1.1 shows the SAFURE framework developed to ensure that such an embedded
system can be developed in terms of safety and security.

In addition, the structure of the document is based entirely on the structure shown in the figure 1.1.
Each line of the illustration corresponds to a chapter and each box to a section or subsection. These
in turn represent the design and execution phases within a development process, which is explained
as an example in the next section.

Figure 1.1: Overview of the SAFURE Framework

1.1 Development Process

This document aims at software/systems developers who design and implement a mixed-critical prod-
uct. Therefore, a well-structured development process is mandatory. There are several different de-

SAFURE D6.7 Page 1 of 46

D6.7- Final Specifications of the SAFURE Framework and Methodology

velopment processes and we chose an example from the automotive domain in the following section.
However, this example can also be applied to other industry domains. The key idea is that all parts
of the SAFURE Framework, presented in Figure 1.1, are covered in the process and the mixed crit-
icalities are considered in the design phase. While some criticalities can be considered individually
and without much interference, other criticalities like safety and security have to be considered in a
holistic approach and throughout the whole development process.

1.1.1 Process description

Considering that there is a contribution of security to the (continued) safety of a system, it is apparent
that the domain of security needs to receive careful attention while developing applications and sys-
tems. A development process for software and hardware should reflect this in its tasks and outputs.
When conforming to ISO 26262 [20], a development process can be modelled as a ”V” (V-model)
depicted in Figure 1.2. Where the upper ends of the ”V” correspond to an abstract, all-encompassing
view, and the tip of the ”V” represents the more concrete and detailed perspective on singular units
of the system. In the automotive domain, this approach has been refined to better meet the require-
ments of automotive products.

Figure 1.2: V-model applied at system, hardware, and software levels in product development (ac-
cording to ISO26262 [20]), including safety-related analyses

Figure 1.3 depicts the process laid out by Automotive SPICE R© [26], a derivative of SPICE R© (su-
perseded by the ISO 33001 family of standards [21]). It also addresses requirements design, which
helps in establishing a level of confidence in the safety of the system. As a form of expectations
towards the behaviour or shape of the system, requirements serve as a common understanding and
communication between stakeholders in the process. They drive decisions during the development

SAFURE D6.7 Page 2 of 46

D6.7- Final Specifications of the SAFURE Framework and Methodology

process and serve as a set of criteria against which the system can be validated. Requirements
can stem from external sources, like customers and jurisdiction. Otherwise, they derive from the
use-cases for the product, business strategy, or other internal factors.

The following list of steps closely follow the V-model. The first three items are ordered in the
increasing degree of detail, whereas the last three steps are given in the order of increasing abstrac-
tion. The steps address security engineering methods to complement the safety efforts. Thus, the
requirements mentioned below are requirements pertaining to security as opposed to safety.

© VDA Quality Management Center 12

3.1. Process reference model

Processes are grouped by process category and at a second level into process groups according to
the type of activity they address.

There are 3 process categories: Primary Life Cycle Processes, Organizational Life Cycle Processes
and Supporting Life Cycle Processes.

Each process is described in terms of a purpose statement. The purpose statement contains the
unique functional objectives of the process when performed in a particular environment. For each
purpose statement a list of specific outcomes is associated, as a list of expected positive results of
the process performance.

For the process dimension, the Automotive SPICE process reference model provides the set of
processes shown in Figure 2.

Management Process
Group (MAN)

Supporting Process Group (SUP)

Acquisition Process
Group (ACQ)

Supply Process Group
(SPL)

ACQ.4
Supplier Monitoring

ACQ.11
Technical Requirements

ACQ.12
Legal and Administrative

Requirements

ACQ.13
Project Requirements

ACQ.14
Request for Proposals

ACQ.15
Supplier Qualification

SPL.1
Supplier Tendering

SPL.2
Product Release

SUP.1
Quality Assurance

SUP.2
 Verification

SUP.4
Joint Review

SUP.7
Documentation

SUP.8
Configuration
Management

SUP.9
Problem Resolution

Management

SUP.10
Change Request

Management

MAN.3
Project Management

MAN.5
Risk Management

MAN.6
Measurement

ACQ.3
Contract Agreement

Process Improvement
Process Group (PIM)

PIM.3
Process Improvement

Reuse Process Group
(REU)

REU.2
Reuse Program
Management

System Engineering Process Group (SYS)

SYS.1
Requirements Elicitation

SYS.2
System Requirements

Analysis

SYS.3
System Architectural

Design

SYS.4
System Integration and

Integration Test

SYS.5
System Qualification Test

Software Engineering Process Group (SWE)

SWE.1
Software Requirements

Analysis

SWE.2
Software Architectural

Design

SWE.3
Software Detailed Design

and Unit Construction

SWE.4
Software Unit Verification

SWE.5
Software Integration and

Integration Test

SWE.6
Software Qualification Test

Primary Life Cycle Processes Supporting Life Cycle ProcessesOrganizational Life Cycle Processes

Figure 2 — Automotive SPICE process reference model - Overview

1

Figure 1.3: V-model according to Automotive SPICE R© [26]

• STEP 1: ASSESSMENT In order to determine data that need to be protected for integrity,
the communication flows of the target need to be scrutinised and, based on their potential or
expected effects, their need for protection identified. It is important to make the distinction of
whether the data are transmitted over a network (e.g., sensor data, commands to actuators, or
update packages) or are stored on a device (e.g., cryptographic material, firmware, its config-
uration, or data gathered for analysis and logging). Regarding the assessment of the impact
of a potential manipulation of said data, the well-established methodology of a security threat
and risk analysis offers itself. It establishes a link from security goals (which designate security
objectives, such as confidentiality, integrity, and availability, to assets of the system) to the risks
attributed to consequences stemming from those security goals being violated. The result of
such an analysis thereby demonstrates the need for measures to protect assets. For instance,
in case of the asset being data, the integrity often is of great relevance and formulated into a
security need of specific data needing integrity protection. Based on the risk assessment and
security goals, one can derive security requirements for the system. These are an important
stepping stone for further conceptualisation and mix with functional, safety, and external re-
quirements (s.a., legal or customer requirements). They also serve as a basis for establishing
traceability, as discussed in Section 1.1.2. An exemplary threat and risk analysis has been
given in Deliverable D5.3.

• STEP 2: CONCEPT PHASE The needs of relevant data artefacts for integrity as determined
in step one are addressed by iteratively identifying adequate measures. The iterative approach

SAFURE D6.7 Page 3 of 46

D6.7- Final Specifications of the SAFURE Framework and Methodology

is motivated by the impact that those measures have on performance, data throughput, and
timing behaviour of components of the system. Since being interleaved with the design of those
other components, their requirements are influenced by the security measures added and might
result in another iteration of the design step. A security concept documents the measures which
need to be applied to the system. It is beneficial to have reviewers for the concept that give their
input on the effectiveness and viability of the security measures being added. Measures often
include cryptographic means to protect the confidentiality and integrity of data as well as the
availability of functions and services. The principle of minimality, together with security testing,
encapsulates an additional approach to minimise the attack surface.

• STEP 3: IMPLEMENTATION After the design phase of the system, the implementation of the
concrete measures is to happen. Some principles apply for this phase to assure the high qual-
ity of components delivering protection to the system. As a principle, well-known cryptographic
libraries or hardware providing cryptographic algorithms should be preferred over home-made
cryptography. A relevant standard for the evaluation of cryptographic modules is FIPS publica-
tion 140-2 [23].

For the software part of the system, the development should incorporate standards and guide-
lines pertaining to secure coding for the programming language of choice. Chief among them
is the validation of input (from the user or via interfaces). Assurance methodologies include the
review and testing of code. While testing is addressed in the next step, code review can help
finding and addressing exploitable weaknesses in the code, that might lead to compromise or
disclosure of data. Besides independent reviewers, automated frameworks for detecting flaws
in the source code exist (e.g. static code analyzers like QA-C 1).

• STEP 4: UNIT TESTING Defining a unit in a system enables the testing of a specific software
or hardware component disregarding the complexity of the entire system. A test at the unit level
should cover all of the intended functionality of the unit. This includes interfaces, both for hard-
ware and software. All functions that can be called should be exposed to positive and negative
tests. Positive tests are those that confirm that the functionality requested is delivered with-
out fault when all necessary preconditions are met. Negative tests are those that confirm that
missing preconditions are detected reliably. Functions that take parameters should be covered
by tests that address these parameters. For cryptographic algorithms, there exist test vectors
which can be used to evaluate implementations. They are often included in the algorithm’s
specification or come as a stand-alone publication.

• STEP 5: INTEGRATION On a larger scale, units come together to form more complex parts, or
components, of the system. The integration phase establishes a transition from a fully-detailed
view of the unit to a more abstract view of the functionality delivered.

For integrating units to components, mocking of other components is relevant. To test whether
units combined can deliver the relevant functionality, their consumer (or user) needs to be em-
ulated. Also, the part of the system under test might require other components to produce the
expected results. Security-wise, penetration tests can start at this stage. As a form of neg-
ative testing, penetration tests attempt to circumvent security measures like access control or
gaining control over the target to steer its behaviour by using vulnerabilities that the test tar-
get bears. Automated vulnerability detection for single components of the system can assist
and complement manual testing. It is beneficial to include testing for known vulnerabilities of
implementations for the protocols and algorithms employed.

• STEP 6: ACCEPTANCE At the end of the development process, the entire system is ex-
posed to testing. Instead of considering singular components (or units), their interactions are

1http://www.prqa.com/static-analysis-software/qac-qacpp-static-analyzers/

SAFURE D6.7 Page 4 of 46

http://www.prqa.com/static-analysis-software/qac-qacpp-static-analyzers/

D6.7- Final Specifications of the SAFURE Framework and Methodology

tested. Security-wise, penetration tests are again an effective means to close the attack sur-
face. The methodology—besides accommodating the growing complexity of matching inter-
dependencies—does not differ substantially from that in the previous phase. It now seeks to
defeat complex interactions to obtain control over parts of, or, the entire system. The rule of
thumb holds that the more complex a system is, the more attack paths are available. As a
consequence, penetration tests at this stage aim to reduce the number of attack paths resulting
from the interactions of components and sub-systems.

In this section, a software development process capable to consider mixed-criticalities has been
presented. In the next section, we show how this process can be augmented with requirements
traceability, which enables to increase the confidentiality that all steps defined in the development
process are carried out correctly.

1.1.2 Requirements Traceability

According to [15], Requirements Traceability is ”the ability to describe and follow the life of a require-
ment in both a forwards and backwards direction (i.e., from its origins, through its development and
specification, to its subsequent deployment and use, and through periods of ongoing refinement and
iteration in any of these phases)”.

Figure 1.4: Tracing according to the V-Model

Specifically, the following items should be covered:

• the identified requirements from the assessment in step 1 (see gray boxes in figure 1.4),

• the architecture and design derived from the concept in step 2 (see red boxes), and

• all implemented code units from step 3 (see green and white boxes, here a distinction between
SW Detailed Design and the Source Code is made).

Traceability also increases the confidence in the product, because it shows that

• all requirements can be traced to the implementation (functional completeness, see arrows from
SW Requirements Specification down to Source Code in figure 1.4),

SAFURE D6.7 Page 5 of 46

D6.7- Final Specifications of the SAFURE Framework and Methodology

• the source code can be traced back to the requirements (backwards requirement coverage, see
arrows from Source Code up to SW Requirements Specification),

• there are tests for all requirements (test derivation, see arrows from left side of ”V” to the right
side), and

• the tests cover the specification, the architecture, and the implementation (full test coverage,
see arrows from the right side of the ”V” to the left side). Specifically,

– the software requirements are verified by qualification tests,

– the software architecture is verified by integration tests,

– the software detailed design is verified by unit tests, and

– the source code is verified using code reviews and static code analysis.

To summarize, figure 1.4 shows how the requirements traceability can be realized for software
developed using the V-model.

In SAFURE, the requirements were collected and categorized in deliverable D1.2. For the demon-
strators, the requirements coverage is shown in chapter 4.3 of deliverable D6.4 and chapter 5 of
deliverable D6.5. However, the SAFURE requirements are defined in a rather high-level fashion,
because SAFURE does not aim at one particular product.

In general, and especially for product development, the requirements should be as precise and
specific as possible in order to facilitate a thorough development process that achieves a full require-
ments traceability.

1.2 Deliverable Outline

As already mentioned, the structure of the document is based on that of figure 1.1. Each chapter
stands on its own and cannot always be integrated into an overall context of the following chapters.
They each offer a collection of findings from partners from the most diverse areas and are therefore
sometimes too different to create transitions.

The chapters 2, 3 and 4 deal with the basic design of embedded systems. They point out suitable
strategies and approaches which are necessary for a successful design of such systems with regard
to safety and security.

Chapters 5 and 6 describe mechanisms to ensure various aspects, such as temperature or timing,
within already designed embedded systems. These mechanisms make it possible for the system
engineer to adapt his system accordingly.

SAFURE D6.7 Page 6 of 46

D6.7- Final Specifications of the SAFURE Framework and Methodology

Chapter 2 Design: Modeling

In order to perform the assessment of all the system communications and computations that are
sensitive with respect to security and safety threats and to adequately represent the design and
implementation provisions that must be put in place in order to address them, it is important that a
suitable abstraction of the system is available as a model. A model of the system and its components
shall be made available to address the needs of the assessment and concept phases and to provide
support for the implementation and analysis phases.

In the context of the project framework outlined in Figure 1.1, the definition of the modeling exten-
sions and the patterns fit within the general scope of the support to the design stages (as opposed
to the execution) by providing adequate abstractions for the representation of the safety and security
properties of mixed-critical systems.

In the context of the development process, outlined in Section 1.1, the modeling extensions and the
modeling patterns are meant to be used in the first two stages (assessment and concept) to possibly
drive the analysis and implementation.

In SAFURE, the analysis and development of models for safety and security sensitive systems has
been performed by identifying two different sets of activities. First, there is clearly the need to extend
existing commercial and standard modeling languages and frameworks to allow the definition of the
attributes and constraints that characterize mixed-critical systems.

These extensions, however, are not sufficient. The definition of a language and a set of modeling
elements shall be complemented by the identification of a set of patterns that describe common de-
sign solutions and features and illustrate how the modeling features should be used for the definition
of subsystems of interest.

2.1 Modeling Extensions

The modeling extensions of SAFURE are defined with several objectives in mind. They should:

• Satisfy the needs of the requirements from the case studies and the analysis performed in WP1.

• Be produced according to the results of a gap analysis that considers multiple sources: past
(EU) projects, scientific literature, analysis methods and techniques, existing standards.

• Be implementable as extensions on commercial or standard modeling languages and on com-
mercial or open source tools so that they can be actually tested and be used.

• Be validated by application to a selected number of design, analysis and synthesis cases, in-
cluding the case studies of WP6.

The modeling extensions can be used in the development process to drive not only the design,
but also the analysis and synthesis stages. As outlined in Figure 2.1, the modeling extensions can
be applied to a modeling tool (Rhapsody [17] has been used among other tools in the context of
SAFURE) and the annotated designs can be exported from the tool in any standard format (or through
its API) to be then processes for the purpose of analysis and synthesis.

SAFURE D6.7 Page 7 of 46

D6.7- Final Specifications of the SAFURE Framework and Methodology

Figure 2.1: Tool flow from modeling to analysis and synthesis

2.1.1 Modelling Extensions for the Specification and Analysis of Safety and Security
Properties

A precondition for the integration of analysis techniques for the evaluation of safety (timing) and
security properties is the availability of modeling features at the right level of abstraction to provide
the expressive means for the definition of the application requirements and the properties of the
mechanisms and policies that can be employed to satisfy the requirements and validate them.

In SAFURE, the need for modeling features that can support the analysis and validation of compo-
nents has been addressed in WP2 with a study that provided the definition of the required abstract
features, followed by a concrete mapping and implementation is standard or commercial languages
and tools.

The associated results have been presented in D2.2 and are used as a starting framework for the
application of analysis and synthesis techniques and tools. As a general concept, the metamodels de-
fined for the abstract concepts have been implemneted as far as possible using tools and languages
that allow a validation using the methods and tools in the SAFURE framework.

In detail, we provided modeling features for the representation of application-level security require-
ments. These have been described as UML stereotypes and applied to AUTOSAR examples. These
models have been used to validate the synthesis of security mechanisms, as described in the project
Deliverables and several research papers.

The modeling concepts for the description of timing constraints, including constraints for robust
systems with occasional misses, as in the m-k model, have been used as input for analysis techniques
described and implemented in WP3 and published in the IEEE EMSOFT conference [25].

Also, the modeling features for the description of criticality levels are used for the automatic gen-
eration of code using the timing protection features of the AUTOSAR [7] automotive standard. This
process has been described in WP4 and implemented as part of the case study analysis in WP6.

Figure 2.2 shows the process connections of the modeling extensions with the analysis and synthe-
sis activities performed in the context of the project. Of course, in principle, the modeling extensions
could be used throughout the project for several other analysis activities.

2.1.2 Modelling Extensions for the Compositional Performance Analysis

In the scope of the SAFURE project, we utilised the Compositional Performance Analysis (CPA) [16]
to provide a formal worst-case analysis for real-time communication systems, with a focus on real-
time Ethernet. To be able to cover the upcoming standards in the Time-Sensitive Networking (TSN)
group, the existing CPA models required extensions. These standars include the time-aware, burst-
limiting and peristaltic shaper and frame-preemption. A detailled description of these standards and
their implications have been given in D5.2 and D5.3. These standards, however, can only be applied

SAFURE D6.7 Page 8 of 46

D6.7- Final Specifications of the SAFURE Framework and Methodology

Figure 2.2: Modeling extensions as an input to analysis and synthesis

to static systems and are not suitable for dynamics, including topology, traffic or mode changes. With
the trend towards fail-operational systems or simply a need for more efficient network utilisation, this
is a highly desired feature. The software defined networking (SDN) paradigm is evaluated in the
context of can be used to handle dynamics.

A general description of the CPA approach has been published in [16] in the context of SAFURE.
CPA in the context of real-time Ethernet has been described in [27] The modelling extensions to CPA
are described in detail in D3.2.

2.2 Design Patterns

The definition of modeling language extensions and the availability of modeling features for the defin-
tion of constraints and (architecture) design elements that relate to safety and security is typically not
sufficient for supporting the design stages of coplex embedded/CPS systems.

In the design of a feature-rich system, the architects are often faced with the problem of baing able
to leverage at best the opportunities offered by the (new) modeling language and also on how to
optimize the design and provide for better reusability and extensibility. The definition of architecture
patterns addresses both issues. A pattern is a template of an architecture-level solution (or a set
of possible solution, made parametric for better reuse) that addresses a common problem in an
efficient way. Patterns are defined based on best practices, designers’ experience or even the work of
standardization bodies. In SAFURE, we provide a limited set of patters as demonstrators to show the
possibility of using the provided modeling extensions in a practical design process, but also to support
the definition of architecture models that are fundamental to the design of safety and security-critical
systems.

SAFURE D6.7 Page 9 of 46

D6.7- Final Specifications of the SAFURE Framework and Methodology

2.2.1 Architecture Patterns for Safe and Secure Systems

Complementing the definition of the modeling extensions for the specification and analysis of safety
and security properties, we analyzed the definition of architecture patterms for the development of
mechanisms, libraries and systems aimed at providing or guaranteeing properties of satefy and se-
curity.

Among the analyzed and developed patterns, we provided for the definition of:

• Hardware Security Modules or HSMs

• Protection Kernels

The protection kernel pattern (the metamodel from D2.2 is shown in Figure 2.3) includes also the
definition of all the typical features of an OS for mixed-critical systems.

Figure 2.3: Pattern for a protection kernel

The metamodel diagrams like the one in Figure 2.3 formally describe the elements that are required
for these critical architecture subsets or composites and the relationships among them. For protection
kernels, of particular importance are the identification of elements like partitions and access control
policies, that enable the application of the fundamental concepts of safety and security.

2.3 Conclusion

The modeling extensions and the architecture patterns defined in SAFURE are meant to be used
as a guideline or support for the future definition of standards or for the definition of domain-specific
modeling languages.

The value of the proposed models is partly in the capability of describing constraints and features
of interest for mixed-critical systems, but especially, because of the fact that these modeling features
have been used for different stages of Analysis and Synthesis, as belonging the the design and
implmentation activities outlined in Chapter 1, and described in more details in the following chapters.

The application to analysis and implementation is a partial but convincing validation of the applica-
bility and usefulness in the context of an actual development process of the introduced extensions.

SAFURE D6.7 Page 10 of 46

D6.7- Final Specifications of the SAFURE Framework and Methodology

Chapter 3 Design: Application Development

In this chapter, hints and best practices for the application development of mixed-critical systems are
given. According to figure 1.1, the application development in SAFURE only contains the box ”Data
Integrity Methodology”, which is described in the next section. The idea is that the integerity of data
(e.g., the communication between applications) is crucial for the security of the overall system.

3.1 Data Integrity Methodology

We have presented different methods to preserve data integrity in Deliverables D3.1 and D3.2. Ta-
ble 3.1 summarizes the algorithms that were implemented and examined within SAFURE. The algo-
rithm type is either Message Authentication Code (MAC), Authenticated Encryption (AE), or Digital
Signature (DS). MAC and AE are symmetric algorithm families and DS is asymmetric cryptography.

Algorithm Type Key lengths Tag/Signature length Performance
HMAC-SHA256 MAC variable 256 bits very fast
KMAC-128 MAC variable variable fast
AES-CCM AE 128, 192, 256 bits variable fast
AES-GCM AE 128, 192, 256 bits variable fast
Poly1305-ChaCha20 MAC 256 bits variable fast
RSASSA-PSS Sig Gen DS 1024 to 4096 bits same as key length very slow
RSASSA-PSS Sig Ver DS 1024 to 4096 bits same as key length quite fast
ECDSA DS 192, 224, 256, 384, 521 bits double the key length moderate
EdDSA DS 256 bits 512 bits moderate

Table 3.1: Data Integrity Methods

As a conclusion, the symmetric algorithms are the fastest, with HMAC-SHA256 and AES-GCM
being the recommended algorithms in this class. For the asymmetic algorithms, we recommend
RSASSA-PSS for applications with only few signature generations and many verifications. For all
other applications, we recommend to use EdDSA.

3.1.1 Key Length Recommendations

The length of the used key has an impact on the security level, but also on the performance of the
algorithm. Also, as noted in table 3.1, for some algorithms the chosen key length also determines
the length of the authentication tag (for symmetric algorithms) or signature (for asymmetric algo-
rithms). Table 3.2 summarizes the recommendations of different institutions on key lengths to be
used medium- to long-term protection. In the DSA column, p represents the length of the key and q
defines the group size.

We recommend 128 bits for symmetric algorithms, 256 bits for elliptic curve algorithms and at least
2048 bits for RSA and DSA.

SAFURE D6.7 Page 11 of 46

D6.7- Final Specifications of the SAFURE Framework and Methodology

Institution Year Symmetric RSA DSA ECDSA
ECRYPT II [11] 2012 128 bits 3248 bits q >=256 bits, p >=3248 bits 256 bits
NSA [22] 2015 256 bits 3072 bits - 384 bits
NIST [9] 2016 128 bits 3072 bits q >=256 bits, p >=3072 bits 256-383 bits
ANSSI [3] 2014 128 bits 2048 bits q >=200 bits, p >=2048 bits 256 bits
BSI [10] 2017 128 bits 2000 bits q >=250 bits, p >=2000 bits 250 bits

Table 3.2: Key Length Recommendations

3.1.2 Choice of Data Integrity Algorithm

In this section, some guidelines for the choice of data integrity algorithms in the domain of cyber-
physical systems are given. The choice of the data integrity algorithm has an impact on the perfor-
mance, key management, and overall security of the system.

1. Symmetric vs. asymmetric: Symmetric algorithms are much faster than their asymmetric
counterparts. Therefore, it should be carefully evaluated whether it is necessary to use asym-
metric cryptography. In cases where key distribution is a problem, asymmetric algorithms should
be chosen. In most other cases, symmetric algorithms are the better choice.

2. Space requirements: If there is only little ROM space left on the device or if stack space
(RAM) is very limited, symmetric algorithms usually better fit to these limitations. Also, it should
be considered to use a space-efficient implementation of the respective algorithm.

3. Speed: Most speed optimizations come at the expense of a larger code size. When several
algorithms are used in combination (e.g., hybrid encryption using AES with a key distributed
using RSA), only the algorithms used for bulk data (AES in this case) should be optimized for
speed.

4. Key length: The choice of key length influences the amount of (secure) storage and network
traffic (for key distribution), but it also affects the run-time of algorithms. Therefore, the key
length should be selected in order to offer good performance (speed, ROM and RAM usage)
while still being secure enough for the application.

3.2 Conclusion

In this chapter, different methods for data integerity have been shown. The tables allow an application
developer to decide which method and key length is best suited. Furthermore, the most important
design choices are summarized.

SAFURE D6.7 Page 12 of 46

D6.7- Final Specifications of the SAFURE Framework and Methodology

Chapter 4 Design: Deployment

The Safure tools and methods for the analysis and synthesis of safe and secure components operate
from descriptions of components and HW/SW architectures provided according to standard formats
(examples are UML and AUTOSAR). These models are extended by including the modeling elements
and features described in the previous section and in WP2 for the definition of safety and security
features for mixed-critical systems.

As outlined in Chapter 1 (and illustrated in Figure 1.1), the deployment stage fo the design fol-
lows the Modeling and Application Development stages. It consists in the analysis of the models
defined for the system and possibly in the synthesis of implementations, bridging the modeling stage
of Figure 1.1 to the implementation stages in the following sections. The automatic synthesis of im-
plementations has several advantages. It is cost-efficient, by relieving developers from the need to
code the elements described in the design, but especially, has the advantage of providing provably
correct and efficient implementations of the design model, in a flow that should ideally move towards
correct-by-construction deployments.

The tools for the synthesis of implementations receive as input the models from WP2 and operate
on the modeling extensions for security and safety to provide two different sets of code implementa-
tions as documented in WP2 and WP4.

• the synthesis of components or RTE code for the implementation of encryption according to the
user specifications in an AUTOSAR flow

• the synthesis of an RTE implementation that makes use of the standard AUTOSAR OS features
for timing isolation and protection to provide an implementation to a user request for preserving
the criticality levels of components in a mixed-critical application

The tools and methods for the analysis of the safety and security properties of components include
the following:

• Synthesis of mechanisms for the implementation of secure communication among components
in an automotive environment

• Automatic generation of basic software (RTE) for the implementation of timing protection among
components and tasks at different criticality levels.

• Analysis of the timing properties of networks

• Analysis of systems with temporary timing overloads

4.1 Synthesis

The synthesis tools are demonstrators that operate following a model-based design flow in which the
system architecture is defined according to a standard modeling language, analysed for correctness,
and then used to automatically generate system components (basic software and communication
functions) that provide provably correct implementation of some functionality to the application com-
ponents.

SAFURE D6.7 Page 13 of 46

D6.7- Final Specifications of the SAFURE Framework and Methodology

Two main examples of synthesis mechanisms have been developed. Both are based on the mod-
eling extensions and the development flow that is typical of automotive applications, in accordance
with the AUTOSAR standard.

4.1.1 Automatic generation of encryption components and code

This process (detailed in D2.2) starts from an AUTOSAR model in which selected communications
have been annotated with security requirements. In a standard AUTOSAR process, components bear
the responsibility of selecting the encryption mechanism and calling it before sending the data. In our
flow, the user only needs to specify the security requirements associated with each communication,
using the modeling tools of the standard AUTOSAR process, with the extensions described in D2.2
(as shown in Figure 4.1).

Figure 4.1: Specification of security requirements on communications

Next, the model with the security requirements information is exported using the standard AU-
TOSAR ARXML format and a parser with python processing scripts (purposely developed in Safure
as a technology demonstrator) can be invoked to process the model and alternatively:

• Automatically generate a filter component that provides for the encryption of the data before
communication (as shown in Figure 4.2).

• Customize the generation of the RTE code in such a way that encryption is performed before
transmission.

When a filter component is generated, the code implementing the calls to the encryption functions
is also automatically generated (right side of Figure 4.3). When an RTE implementation is gener-
ated, the RTE generator needs to be customized and the encryption is directly encoded in the code
implementation of the communication API functions (left side of FIgure 4.3).

SAFURE D6.7 Page 14 of 46

D6.7- Final Specifications of the SAFURE Framework and Methodology

Figure 4.2: A security component performs the encryption automatically

Figure 4.3: Generated code for the RTE implementation and the security component

To support our experiments, we implemented a CSM library compliant with the AUTOSAR standard.
The library is implemented in C-language and relies on OpenSSL. The services implemented are
symmetrical encryption/decryption and MAC generation/verication, to test confidentiality and integrity
levels. The results have been presented in workshops, conferences and journal papers.

4.1.2 Automatic generation of OS calls for timing protection (isolation) in mixed-
critical applications

This automatic generation process is described in detail in D6.5 and D6.6. The flow is outlined in
Figure 4.4

The first step consists in the definition of a model with the extensions provided in WP2 for the
specification of criticality levels assigned to the application runnables (functions). Next, the model is
exported in the ARXML standard format, complemented by annotations for the modeling extensions.
The model is imported in the open tool ARTOP, based on eclipse. In Artop, the model is completed
by defining the model of the tasks and the mapping of the runnables, with their execution times into
the tasks. The AUTOSAR model in Artop is processed by an RTE generation tool (a code generator)
based on the open tool Acceleo. The generated code analyzes the criticality level of the tasks and the
timing budgets and automatically adds to the task code the calls to the OS API for enforcing timing
protection, by checking that the task execution never exceeds the maximum budget assigned to it.
The generated code is compiled with the application code to produce the application that is targeted,
for our case study on the multicore TC277 platform. If a timing fault occurs, the RTE code instructs
the OS to automatically invoke a callback function, protecting other tasks from a time interference.

SAFURE D6.7 Page 15 of 46

D6.7- Final Specifications of the SAFURE Framework and Methodology

Figure 4.4: Flow for RTE generation for timing protection

4.2 Analysis

The formal worst-case timing analysis for real-time Ethernet standards have been partially imple-
mented in the academic tool pyCPA, as well as in the commercial tool SymTA/S. While both tools
have partially overlapping functionalities, they serve different purposes in academic research and
industrual application. The pyCPA tool and its setup and usage for real-time Ethernet networks, in-
cluding different TSN standards [18], has been described in detail in Deliverable D5.1. As for the
deployment a commercial tool is required, we focus on the commercial tool SymTA/S here.

4.2.1 Timing Analysis of Tasks in overload conditions

Among the analysis methods of interest for systems with timing constraints, we explored methods
for the analysis of systems with temporary overloads, or systems m-K, in which at most m deadline
misses can occur for every K instances.

In WP2, we provided modeling features for the expression of such constraints in mixed-critical
systems. The constraints can then be processed by a novel analysis method, described in detail
in D3.2, and presented at the 2017 EMSOFT conference and the ACM Transactions on Embedded
Systems. The analysis method is based on an MILP formulation of the constraints and allows to
obtain an exact formulation for many cases of practical interest.

SAFURE D6.7 Page 16 of 46

D6.7- Final Specifications of the SAFURE Framework and Methodology

4.2.2 Timing Analysis of Ethernet Networks

In this subsection, we present design-time analysis approach that analyzes the deployment of an
application on an Ethernet network. It employs a model-based worst-case analysis which computes
worst-possible timing effects for a given network configuration in order to verify that a certain network
configuration meets the timing requirements under all circumstances. By systematically modeling
possible error scenarios, the analysis can also verify that timing is met under error conditions (like
babbling idiots, i.e. faulty nodes sending unexpectedly). It utilizes the worst-case timing analysis for
Ethernet networks developed in WP3 and implemented in WP5.

Figure 4.5 shows the overview of the timing analysis workflow.

Figure 4.5: Overview of the SAFURE Framework

4.2.2.1 Analyzable Network Model

The proposed timing integrity methodology for networks relies on a model-based analysis of the
network. The model consists of

• Topology model (switches, links, ECUs/nodes)

• Traffic model (messages, sizes, activation patterns, priorities)

• Constraints (message deadlines, buffer sizes)

The model of topology and traffic can be created manually in SymTA/S or imported from existing
descriptions resulting from the network design process using industry standard formats (e.g. DBC,
FIBEX, AUTOSAR), see Figure 4.6.

4.2.2.2 Design Rules for Constraint Specification

To avoid time consuming specification of constraints for individual model elements (e.g. deadline for
each individual message), they can be generated according to design rules.

Suggested design rules:

• Worst-case load of all switch ports should be below 80%. This allows some headroom for
uncertainties and avoids congestions in case of non-constant loads.

SAFURE D6.7 Page 17 of 46

D6.7- Final Specifications of the SAFURE Framework and Methodology

Figure 4.6: Symtavision Tool Suite integrated in automotive developing workflow

• Worst-case load of transmitting ECU ports should be below 50% in normal cases. This avoids
single ECUs of spamming the network. This rule can be violated in special situations (e.g.
100Mbit-ECU connecting to Gbit-switch)

• Worst-case latency of periodic messages of the highest priority should be less than their re-
spective periods.

• Worst-case latency of periodic messages of the medium priority should be less than two their
respective periods.

• Worst-case latency of periodic messages of the lowest priority should be less than ten their
respective periods.

• Worst-case buffer occupancy for all switch ports should be below the physical buffer capacity of
the port according to the specifications of the switch. This avoids frame drops for all messages.

• Alternatively (if supported by the switch), the worst-case buffer occupancy can be constrained
per priority, according to the priority-partitioning configured in the switch. The constraint should
only be specified for priorities transmitting critical messages (where frame-drops are not al-
lowed) or medium-critical messages where no end-to-end protection against frame drops is
used (e.g. UDP protocol).

• Worst-case buffer occupancy for all ECU ports should be below the physical buffer capacity of
the port according to the available TX memory of the ECU. This avoids frame drops/congestion
for all messages.

• Alternatively (if supported by the ECU), the worst-case buffer occupancy can be constrained per
priority, according to the priority-partitioning configured in the ECU. The constraint should only
be specified for priorities transmitting critical messages (where frame-drops are not allowed)
or medium-critical messages where no end-to-end protection against frame drops is used (e.g.
UDP protocol).

SAFURE D6.7 Page 18 of 46

D6.7- Final Specifications of the SAFURE Framework and Methodology

4.2.2.3 Timing Analysis in Faultless Case

The first step of the analysis methodology is to ensure the timing requirements are met in the error-
free case. For this, the worst-case timing analysis algorithm developed in WP3 is used on an unmod-
ified model of the network. It computes upper bounds for the Ethernet port loads, message latencies
and switch buffer occupancies that include the worst possible behavior according to the specified
system. The computed bounds are compared to specified constraints.

In case all constraints are met, the network timing integrity in the error-free case is guaranteed.
If some constraints are violated, the system configuration has to be adapted before evaluating error
scenarios. This involves architectural changes and/or changes in the traffic model (which has to be
communicated with function owners to ensure system functionality with reduced traffic requirements).

Design guidelines for handling constraint violations:

• Load violation: Optimize topology to avoid bottlenecks; Re-route parts of traffic using static
routes (if possible); Reduce traffic by adjusting traffic model (e.g. increase period for periodic
messages, if possible); increase transmission speed; use traffic shaping to avoid temporary
overloads.

• Latency violation: increase constraint (if tolerable by functionality); reduce frequency of mes-
sage transfer (if tolerable); increase message priority; optimize topology to reduce distance to
receiver and/or reduce bottlenecks; increase transmission speed; implement traffic shaping for
same- and higher-priority traffic to reduce long bursts of interference.

• Buffer occupancy violation: Implement traffic shaping to avoid bursts; re-partition buffer alloca-
tions; optimize topology; increase transmission speed of outflowing port.

The specific guidelines can be supported by analysis results (e.g. identification of bottlenecks,
identification of bursts, ...).

4.2.2.4 Timing Analysis in Error Case of Babbling Idiots

The previous analysis only assured that there are no violations of timing in case all traffic (and compo-
nents) are behaving as specified. In particular, this means that for instance a low-criticality message
is sending only according to the specified message size and activation pattern.

To evaluate the network’s integrity against a babbling idiot (e.g. due to a faulty ECU), the babbling
traffic needs to be added to the traffic model. This is done by adding messages with very high payload
and/or high activation frequency to each ECU that can potentially be a babbling idiot. The priority of
these messages should be set to the highest value allowed by the corresponding ECU (assuming
priority enforcement is available, e.g. by ingress policing at the switches).

Running the analysis on the modified system will show how critical messages behave under the
presence of a babbling idiot. In case no constraint violations (of critical messages) are present,
the system is robust against this type of error. If violations occur, they must be addressed by the
guidelines above or (possibly in addition) by implementing more/better timing isolation mechanisms
(e.g. traffic shaping implemented according to high criticality, switch-level traffic policing).

4.2.2.5 Interactions of Different Design Phases

There are two different points in time in the development phase, where SymTA/S plays a big role
to ensure a correct timing behavior within an Ethernet network. At the one hand this is the very
early development phase, where the system is conceptionally created and is still not implemented.
In this case the customer can take his concept, model it in SymTA/S and can specify his timing for
his conceptional system, to fulfill his requirements regarding timing, which he already knows. Or he
can just ”play around” with some configurations to find bottle necks and weak points in his conecpt.
On the other hand this is the verification phase, where the customer uses SymTA/S to ensure that

SAFURE D6.7 Page 19 of 46

D6.7- Final Specifications of the SAFURE Framework and Methodology

his already built system does not violate any timing constraints. The needed input parameters for
SymTA/S is taken from measurements of his system then, like e.g. activation patterns or transmitted
data lengths (Ethernet message sizes). Once the engineer has discovered a violation, he can go
through the points from section 4.2.2.2 to optimize his system.

4.2.3 Thermal Security Analysis

Modern devices on the one hand show increased power density, while on the other hand wanting
to minimize energy consumption for cost reduction or lifetime extension. To achieve this energy
minimization, management systems are deployed in devices which monitor performance needs, tem-
perature, power dissipation or energy consumption and control the device accordingly. These man-
agement systems introduce usage dependent dynamics in the device temperature and other related
factors, as for example power dissipation or energy consumption. In the course of this project we
identified security implications connected to the dynamics in the device characteristics. We analysed
possible covert channels, as defined in D1.3, and side channels, as possible security issues.

4.2.3.1 Covert Channel Evaluation

In order to assess the security threat emanating from a covert channel, the channel capacity can
be used as a key factor. Additionally, a threat scenario has to be defined (see use case definition
in D6.1) to be able to make a qualitative evaluation of the channel capacity and do an experimental
evaluation. This experimental evaluation has to not only contain experiments under controlled lab-
oratory conditions, but also show the robustness of the channel and its performance under realistic
conditions.

In D3.1, D3.2 and D3.3 we show the evaluation of the Thermal Covert Channel, a covert channel
based on device temperature measurements. The capacity of the channel, reported in D3.1, can
reach up to 1481 bps or 414 bps, using different derivation methods. The transmission rates under
controlled laboratory conditions can reach up to 90 bps for less than 1% error probability. As outlined
in D3.2, many of the environmental influence factors on the covert channel can be compensated using
advanced encoding strategies. This was shown in an experiment where a SSH key was successfully
leaked from a virtual machine. Similarly, we also analysed the power dissipation of a device, as a
characteristic that is related to temperature. The analysis of this Power Covert Channel as defined in
D1.3, reported in the dissemination material, showed that this channel yields higher capacity bounds
in the order of 2 to 4 kbps. However, the Power Covert Channel showed to be less robust against
external influence factors and only works under controlled conditions. In addition, in D3.2 and D3.3,
the existence of a Frequency Covert Channel was shown. This covert channel yields capacities of
less than 1 bps and higher error rates than the Thermal or Power Covert Channel. Yet, in contrast
to the Thermal and Power Covert Channel, the Frequency Covert Channel does not rely on sensor
measurements provided by the device but can be established only using timing information which
makes mitigation harder.

4.2.3.2 Side Channel Data Leak

In D3.2 we briefly show the possibility for a side channel attack using thermal information, the ther-
mal task inference. Using thermal information it is possible to distinguish different videos that are
displayed on a mobile platform. This might allow an attacker to gather sensitive usage patterns to
generate a user profile.

4.2.3.3 Considerations for Thermal Security

The thermal security analysis has shown that the threat level is highly dependent on the application
scenario and the used devices. Therefore, it is not possible to provide quantitative rules but only give
qualitative guidelines. In general, information on thermal characteristics are necessary to employ

SAFURE D6.7 Page 20 of 46

D6.7- Final Specifications of the SAFURE Framework and Methodology

the management systems for minimizing the energy consumption and guarantee thermal safety of
the devices. However, the access to thermal information and related parameters should be subject
to more strict access restrictions. This would eliminate most of the thermal security concerns for
modern devices. Further, interferences to which the channels are highly susceptible (see D3.2 and
D3.3) can be used to make the data leakage infeasible.

4.2.4 Vulnerability Detection for Multi-Cores

Specific algorithms for vulnerability detection for multicores due to resource clogging have been re-
ported in D3.3, adapted to specific architectures in D4.2 and D4.3, and integrated on the automotive
multicore use case in D6.5 and D6.6. In this section we provide details of the strategy followed for
their integration on the corresponding hardware platforms and on the corresponding use case, and
how these steps should be extrapolated to other platforms and use cases.

4.2.4.1 Integration on SAFURE hardware platforms

Vulnerability detection for multicores builds upon contention models for the access to (on-chip) shared
hardware resources. The overall idea of this approach consists of devising tight upper-bounds to
the impact on execution time that tasks running simultaneously can have on each other. To obtain
those upper-bounds, we build on the Performance Monitoring Unit (PMU) so that, during operation,
interference can be monitored interfacing the PMU to detect whether timing violations may occur.

We attempted to integrate this technology on the Qualcomm SnapDragon 810 processor, and
integrated it successfully on the ARM Juno SoC and the Infineon AURIX TC27x processor family.
The steps followed in the three platforms are as follows (see summary and flow in Figure 4.7):

• STEP 1. Reviewing the processor specifications to identify the major on-chip shared hardware
resources that may have an impact on execution time if clogged. This basically includes those
components in the memory path, which typically correspond to shared interconnects, shared
cache memories, shared memory controllers and shared memories. For instance, in the case of
the ARM big.LITTLE architecture implementations (the Juno SoC and the SnapDragon 810) this
includes the interconnect between cores and shared second level (L2) caches, the L2 caches
themselves, the bus connecting L2 caches with memory controllers and the memory controllers.
In the case of the AURIX processor this includes the crossbar interconnect, and the shared data
and code flash memories.

• STEP 2. Identifying those hardware configurations where contention can be controlled and/or
upper-bounded, so that appropriate contention models can be built on top.

• STEP 3. Also building on processor specifications, we identified the events that can be moni-
tored with the PMU that provide information about the shared hardware resources. Typically, this
includes access counters, which may be further broken down into different types of accesses
(e.g. hits/misses, read/write operations), as well as stall cycles counters.

• STEP 4. Test whether the corresponding events in the PMU can be effectively accessed and
understood. This required developing small microbenchmarks with known expected behavior,
so that values to be read are known (with high precision) beforehand. Then, by running those
microbenchmarks and comparing the readings of those events through the PMU with expected
values, we understood whether the behavior of the PMU was as expected.

• STEP 5. Test whether those configurations identified in STEP 2 can be properly set. This re-
quired reusing some microbenchmarks and creating others to test whether problematic behavior
for contention modelling, which should have been disabled with the appropriate configuration,
was effectively disabled.

SAFURE D6.7 Page 21 of 46

D6.7- Final Specifications of the SAFURE Framework and Methodology

Figure 4.7: Steps for the integration of the contention model on a hardware platform.

• STEP 6. Once the configuration and PMU have been mastered, the final step consisted on
developing appropriate stressing microbenchmarks allowing to use shared hardware resources
intensively to quantify the impact on execution time that contention in each resource may have.
This information – in the form of contention cycles per resource and access type – is later used
to upper-bound the impact that contention may have in the execution time of any given task
under analysis when executed jointly with other tasks.

During this process, we experienced a series of difficulties related to the specific characteristics of
each hardware platform. They are described in the following paragraphs.

Qualcomm SnapDragon 810. During STEP 3, we realized that specifications only included in-
formation about a limited subset of events, which challenges devising precise contention models for
some platform uses. In particular, events that can be monitored span from the core to the shared L2,
but events in the memory bus and memory controller are not publicly documented. Thus, if execution
time is sensitive to the use of those resources, the contention model may provide overly pessimistic
contention bounds due to lack of detailed information.

During STEP 5, we discovered that the appropriate configuration for contention modelling – where
prefetchers are disabled – did not work, which became a roadblock for the integration of our technol-
ogy on this platform. Further experiments during STEP 6 on the default configuration corroborated
this fact, which led to dismissing this hardware platform for this technology.

ARM Juno SoC. While this platform is very similar to the SnapDragon 810, thus bringing the same
limitations for STEP 3, STEP 5 was executed successfully. This allowed configuring this platform so
that contention is tightly modelled if data fit in L1 caches. Hence, although results could be better with
more complete documentation, they already allowed providing upper-bounds to contention in some
shared resources and hence, enable the use of this platform (with caution) for critical real-time tasks.

Infineon AURIX TC27x. The application of the steps above on this platform revealed, during STEP
4, that PMU events identified during STEP 3 had a different behavior than expected. In particular,
specifications provide little detail on the events monitored and, differently to most architectures, the
AURIX processor typically counts stall cycles instead of accesses to the shared hardware resources.
However, once we adapted our model to the type of events available in the AURIX PMU, the assess-
ment of all the steps was successful and an accurate and reliable contention model was developed.

SAFURE D6.7 Page 22 of 46

D6.7- Final Specifications of the SAFURE Framework and Methodology

4.2.4.2 Integration on SAFURE use cases

While originally the contention model was intended to be used on the SnapDragon 810 processor
and the telecom use case, the failure to use this platform (also for other SAFURE technologies) led to
a platform shift. Hence, we integrated this technology on the AURIX platform used for the automotive
multicore use case.

For that purpose, we prepared a software test so that end users (Magneti Marelli) could verify
that their hardware platform behaved as expected. This required preparing those tests carried out
in STEPS 4, 5 and 6, together with a brief set of instructions for their use. Few iterations allowed to
pass this one-time test.

Once the platform was verified, we provided the end user with an instrumentation software package
so that they could collect measurements of their application easily, as well as with instructions on
how to use it and what results to collect. Again, after few iterations, relevant excerpts of the use case
were evaluated and results, as reported in D6.5, prove that contention can be properly modelled and
results are tight and low. Hence, this technology provides end users with evidence on the contention
that their use case can experience when executed on a multicore, which is needed for scheduling
purposes and for overrun detection.

The application of this technology to other parts of the use case was, after that, carried out by the
end user on its own, since test and integration steps need to be carried out just once.

4.2.4.3 Beyond SAFURE platforms and use cases

The result of this process is a set of tools and strategies that allow using this technology beyond
SAFURE use cases and for other hardware platforms. In particular, the same process followed for
the specific hardware platforms considered and use case evaluated can be carried out again as they
are on other platforms and use cases. However, in order to ease the process and due to the value
of this technology, we have reached an agreement with a commercial tool vendor (Rapita Systems
Ltd.) to integrate this software technology on their toolset (Rapita Verification Suite) for its commercial
exploitation. This work, which was not part of SAFURE DoW, is currently ongoing and expected to
complete in the timeframe of 1 year, as described in D7.5.

Some relevant observations regarding such an automation of the integration process are as follows:

• The integration on other use cases for already analyzed platforms is a low risk activity, since
challenges risking the applicatibility of this technology mostly relate to hardware platforms, not
to use cases. Moreover, the software package will be commercialized together with consultancy
services for its proper integration and verification.

• The porting of this technology to other similar hardware platforms (e.g. AURIX TC29x and
TC3xx families) is also a low risk activity since differences across processor families of the
same vendor typically neither compromise configurability nor PMU available events.

• The porting of this technology to different hardware platforms is an intrinsically risky activity,
since the particular characteristics of the platform or documentation available can easily deter-
mine whether the porting will be successful or a failure. In general, the higher the openness
of the platform, the easiest the porting, since information related to configurability and PMU
utilization will be more detailed. Whenever information is limited, those hardware platforms
that intrinsically favor controllability and predictability (e.g. processors from vendors targetting
critical real-time systems) are also good candidates.

4.2.5 Timing Interference Analysis

In previous Deliverables, we pointed out that the recent shift of the safety-critical and time-critical
industries toward multi-core COTS processors for size, weight and power (SWaP) [8] as well as

SAFURE D6.7 Page 23 of 46

D6.7- Final Specifications of the SAFURE Framework and Methodology

efficiency reasons, introduced some major concerns with regards to the time predictability require-
ments imposed by the regulation standards [19, 20, 24].

core L1
cache

core L1
cache

core L1
cache

core L1
cache

L
2
sh
ar
ed

ca
ch

e
L
2
sh
ar
ed

ca
ch

e

in
te
rc
o
n
n
ec
t

DDR
Memory

I/O

x

x

x

Figure 4.8: Timing Interference in multi-core architectures

At hardware level, as shown in Figure 4.8, concurrent accesses on shared hardware resources
are arbitrated, introducing jitter at application level defined as timing interference [12]. Such inter-
ference, caused by electronic competition on shared hardware resources, are breaking the timing
isolation principles required by the industry standards. Therefore the certification authorities has
required the industry to analyze and characterize timing interference.

4.2.5.1 Tools Developed as part of SAFURE

As part of the SAFURE project, we developed different tools related to timing interference character-
ization and regulation:

• METrICS: Measurement Environment for Multi-Core Time Critical Systems, detailed in Section
3.3 of Deliverable D4.2.

• xTRACT Visualizer: expert Timing and Resource Access Counting Trace Visualizer, detailed in
Section 3.7 of Deliverable D4.2.

• BB-RTE: Budget-Based RunTime Engine, detailed in Chapter 4 of Deliverable D4.3.

4.2.5.2 Measurement Environment for Multi-Core Time Critical Systems (METrICS)

METrICS [14], partly developed in the context of the SAFURE project, is a toolsuite dedicated at
performing fine-grain time and resource access measurements in safety critical systems, allowing us
to actually measure timing interferences and search for the causes of these interferences.

Performing such kind of profiling in a time-critical context is challenging, as the monitoring technol-
ogy involved should have a minimal impact on timing. Therefore, classical profiling tools relying on
interrupts, system calls, kernel modules and so on could not be used due to their timing intrusivity
level. Also sampling techniques are prohibited as safety-critical systems are focusing on the worst
case runtime.

The METrICS environment allows us to collect various measurements during the execution of safety
critical applications, including full execution time distribution as well as shared hardware access in-
formation.

METrICS consists of several components appearing in Figure 4.9, and fully detailed in Section
3.3 of Deliverable D4.2. It is built on top of PikeOS, the Real-Time Operating System provided by
SYSGO.

SAFURE D6.7 Page 24 of 46

D6.7- Final Specifications of the SAFURE Framework and Methodology

Time-critical
application

Time-critical
application

Collector

Instrumented System-Call Layer

PikeOS µKernel
Hardware
Monitor
Driver

Hardware-Specific PSP

Target Hardware Board
M
E
T
rI
C
S
li
b

M
E
T
rI
C
S
li
b

Figure 4.9: Architecture of the METrICS measurement tool

METrICS have been developped with minimizing the timing impact of the environment in mind.
Time intrusiveness results, presented in Section 3.4 of Deliverable D4.2, have shown a probing time
of less than 110ns in 98% of the cases.

4.2.5.3 expert Timing and Resource Access Counting Trace Visualizer (xTRACT)

With METrICS, we collect large distribution of traces with collected timing and resource access infor-
mation. Such traces could be very large, with over 110GB of data being collected every two weeks.

Fully automating the data mining to analyze the collected results would be great, but some degree
of expertise is necessary to properly filter out the results. We therefore provided xTRACT, a GUI
providing the expert with different ways to visualize the collected data, observe the impact of timing
interference, and study the correlations between timing and shared hardware resource contention.

xTRACT is coupling statistical filtering tools developped around the open-source pandas module in
python, together with statistical vizualization technology based on matplotlib (for scalable rendering)
or d3.js (for interactive rendering).

A portfolio of the vizualization available as part of xTRACT is presented in Section 3.7 of Deliverable
D4.2.

4.2.5.4 Budget-Based RunTime Engine (BB-RTE)

Within the SAFURE project, we developed the Budget-Based RunTime Engine [13]: a regulation
solution relying on budgeting the number of shared hardware accesses to guarantee time properties.

The principles, fully described in Chapter 4 of Deliverable D4.3 consist of determining, through
analysis, a maximum budget in terms of shared hardware resource access for the low-critical tasks,
such that when respecting this budget, high-critical tasks deadlines are guaranteed.

The BB-RTE process, depicted in Figure 4.10, involves two major steps: First, an offline char-
acterization and analysis step during which all the budgets are determined. Second, an online
regulation step, performed by the runtime engine presented in Section 5.2.

The platform characterization step analyses the target hardware platform, relying on a set of low-
level (assembly code) Stressing Benchmarks. Each of these benchmarks is responsible for stressing
a particular hardware resource with various load levels. Collecting, thanks to METrICS, both the
Performance Monitor Counters allowing us to count the number of accesses to the hardware resource
as well as the ones corresponding to the observed runtimes allows us to to determine the maximum
available bandwidth in terms of accesses to this particular resource.

The critical application characterization step analyses the usage made by high-critical applications
of the shared hardware resources. We also, thanks again to the stressing benchmarks, analyse the

SAFURE D6.7 Page 25 of 46

D6.7- Final Specifications of the SAFURE Framework and Methodology

Platform
Characterization

Critical Applications
Characterization

Non-Critical
Applications Monitoring

Budget-based
Regulation Engine

offline phase determining budgets online phase performing regulation

Hardware
Platform

Critical
Applications

Non Critical
Applications

Stressing
Benchmarks

Total Avail-
able Budget

Required
Budget

Supported
Extra Budget

Monitored
Load

Figure 4.10: Timing integrity process for mixed time-critical systems

level of extra resource access supported by our high-critical applications before being significantly
slowed down.

Furthermore details on how the different budgets are determined are provided in Section 4.3 of
Deliverable D4.3. We relied on the xTRACT Visualizer tool to observe the corresponding pareto
optimum values.

4.3 System Configuration Tools for PikeOS

In Chapter 3.2 ”Network Integrity” of Deliverable D3.3 we have introduced an implementation of VPN
on PikeOS to provide a secure communication channel outside the target. We also have described
there how PikeOS time partition separation can be used to mitigate threats like timing covert channels
due to the sharing of resources such as L2 cache and interconnects. In this section we describe the
concrete PikeOS configuration applied for the VPN implementation for mitigating the timing covert
channels.

4.3.1 Time Partition Configuration

As it has been described in delivery D3.3 timing covert channels can be eliminated by using a time
scheme where trusted and untrusted partitions are not executing concurrently at the same time. This
implies using of not only resource partitioning but also time partitioning. Additional L2 cache and TLB
covert channels can be complexly eliminated by adding an additional sandwich partition between the
trusted and untrusted partitions.

Lets assume that a user application execution time is more critical for us than a network communi-
cation performance. Then we decide to have a user application and vpn fp ration like 15:3 and also
to have a one schedule unit for the sandwich partition.

PikeOS CODEO configuration tool allows to flexibly setup time windows where each time partition is
active. Figure 4.11 shows integration project implementing the chosen schedule scheme.

The scheme is represented in two ways.

• Graphical
Here time windows are placed in a sequential order.

• Numerical
Here a system integrator can specify parameters like start and offsest ans also Time Partition
ID.

SAFURE D6.7 Page 26 of 46

D6.7- Final Specifications of the SAFURE Framework and Methodology

Figure 4.11: Time Partition Scheduling Scheme

A set of time windows creates a scheduling period which can be understood as a repeatable schedule
pattern. By variating of number time windows and their length it is possible to create a schedule
patterns suites a particular requirement.

Lets focus on three following resource partition:

• textbfuser app part

• textbfvpn fp part

• textbfsandwich part

As it can bee seeing at the picture, a time partition and a resource partition assigned are highlighted
by the same color.

The assignation can be done by setting a partition attribute Time Partition ID to the ID number of
the corresponding Time Partition. Table 4.1 shows the resource partitions with their attributes. Time
Partition ID of each partition contains ID of the corresponding Time Partition.

In the deliverable D4.3 Section 3.2, we have described the timing covert channels for the PikeOS
VPN implementation and the mitigation measures that can be applied to counter these threats. In
this section we have presented the concrete configuration using the PikeOS configuration tool that
implements the mitigation mechanism described in Section 3.2.2.2 of deliverable D4.3. By applying
the configuration described above for the VPN implementation, we can remove the timing covert
channels that exist due to the sharing of hardware resources such as L2 cache and interconnects.

SAFURE D6.7 Page 27 of 46

D6.7- Final Specifications of the SAFURE Framework and Methodology

Table 4.1: Resource Partition attributes

4.4 Conclusion

In this chapter, deployment methodologies were presented during the design phase to help devel-
opers to better design mixed-critical systems in terms of safety and security. In essence that were
analyses that can be anchored in development processes, configuration tools that can be used by
such developers or a support for the synthesis of such systems. A special emphasis was placed
on analyses, as they are an essential part of the design phase of a development process. These
includes timing, or thermal analyses, for example.

SAFURE D6.7 Page 28 of 46

D6.7- Final Specifications of the SAFURE Framework and Methodology

Chapter 5 Execution: OS & Microarchitecture

In Deliverable D3.1, we stated that SAFURE was aiming at ensuring integrity of Safe and Secure
systems, especially focusing on the Data Integrity, Timining and Resource Sharing Integrirty and
Temperature Integrity aspects.

Previous chapters were dealing with these aspects at design time, this chapter focuses on runtime
especially on the requirements at operating system and microarchitecture level. Especailly, the anal-
ysis phases performed at design time and presented in Chapter 4 enable us to monitor Integrity at
runtime and implement protection mechanisms that will avoid safety or security issues.

The SAFURE framework, previously presented in Figure 1.1, couples measurement techniques
(runtime monitoring) with protection mechanisms and some runtime decision engines, impacting on-
line scheduling. These mechanisms are presented in this chapter highlting, for each of these, which
aspects of the integrity is focused.

5.1 Ensuring Data Integrity: Protection Mechanisms

Data Integrity refers to assuring and maintaining the accuracy of data. As a consequence protection
techniques aim at preventing unintentional changes to information.

At operative system level the AUTOSAR standard introduces the concept of OS-Application as a
way to enforce memory protection and the concept of timing monitors to enforce timing protection.
The presence and usage of these protection schemes inside automotive systems is mandatory to
target high-level ASIL applications[20].

For the SAFURE Automotive Use Case, it was decided to realize protection mechanisms that are
OS-independent, so they have been realized as part of the microcontroller firmware architecture.
These mechanisms are still strictly related to the OS functionalities, but simply they will not be part
of the OS itself. In this way we can apply memory protection and timing protection also on legacy
systems to guarantee safety requirements.

5.1.1 Memory Protection Unit

The memory protection unit (MPU) allows the creation of SW partitions and it has been built upon the
Memory Protection Unit of the Aurix Microcontroller. The Figure 5.1 shows the Memory Protection
Unit of the Tricore Aurix microcontroller.

Figure 5.1: Memory protection Unit

SAFURE D6.7 Page 29 of 46

D6.7- Final Specifications of the SAFURE Framework and Methodology

The main characteristics are summarized in these points:

• The user can configure one or more partitions IDs.

• Each partition ID must be mapped on a configurable protection set.

• These protection sets will be mapped on the MPU of the microcontroller.

• The MPU will physically create the memory regions specified by the protection sets. An access
to a memory region from another un-authorized partition will generate a Memory Protection
Error.

5.1.2 Timing Protection driver

The Timing Protection driver (TPROT) implements the Autosar Timing Protection Model upon the OS
Hook Routines and upon the OS APIs . The Figure 5.2 shows the OS-Independent Timing Protection
Model.

Figure 5.2: OS-Independent Timing Protection Model

The red-colored notes in the above figure represent the interaction points between OS and TPROT.
Upon these interfaces, the TPROT functions must be called to realize the three protection schemes
according to AUTOSAR OS:

• Execution Time Protection

• Locking Time Protection

• Inter-Arrival Time Protection

Please refer to the Deliverables D4.1 and D4.3 for other information on Freedom of Interferences
for mixed-critical system and specifically for other details on memory protection and timing protection.

5.2 Ensuring Shared Resource and Timing Integrity

In Section 4.2.5.4, we presented the Budget-Based RunTime Engine (BB-RTE) [13], that aims at
determining a maximum budget in terms of shared hardware resource access for the low-critical
tasks, so that high-critical tasks have their deadlines respected.

SAFURE D6.7 Page 30 of 46

D6.7- Final Specifications of the SAFURE Framework and Methodology

As depicted in Figure 4.10, BB-RTE also involves an online application monitoring phase, as
well as the associated online regulation runtime engine, ensuring the resource sharing and timing
integrity.

5.2.1 Run-Time Monitoring

The run-time monitoring performed by BB-RTE on the low-critical applications is very similar to the
one used offline to perform the high-critical application characterization: Thanks to METrICS [14],
we gather the number of per-resource accesses performed by the low-critical applications on each
shared hardware resource.

When, during a timeslot, the number of shared hardware resource accesses reach the available
budget computed during the offline characterization phases (see Section 4.2.5.4), we trigger the run-
time engine for it to deal with the risk of a high-critical deadline miss.

5.2.2 Real-Time Scheduling

The expected Run-Time Engine behavior, from a scheduling point of view, is shown in the example
of Figure 5.3: During the first timeslot, the low-critical task consumes all its access budget prior
to terminating its workload. We therefore expect the run-time engine to suspend the task until the
next timeslot; during the second timelsot, however, the low-critical task is able to terminate without
consuming all the budget. As a consequence, the run-time engine should not interfere with the task.

timefirst timeslot second timeslot

Hi-Critical

guaranteed
deadline

Hi-Critical

guaranteed
deadline

Lo-Critical Lo-Critical%
suspended after spending

maximum budget

!
completed below
maximum budget

budget

time

cu
m

u
la

ti
ve

a
cc

es
se

s budget

time

cu
m

u
la

ti
ve

a
cc

es
se

s

Figure 5.3: BB-RTE: Monitored Information VS Expected Run-Time Engine behavior

Proceeding this way allows us to guarantee, for each timeslot, that the timing requirements of the
high-critical task will be met, whatever the behavior of the low-critical task is. Also, the only scheduling
action exepected from the run-time engine is to suspend some currently running tasks.

5.2.3 Run-Time Engine

We have build the BB-RTE run-time engine on top of our METrICS characterization environment. The
original METrICS architecture, previously presented in Figure 4.9, has been updated to add both the
required online monitoring and scheduling action features.

The new architecture appears in Figure 5.4, the most notable change being the METrICS collector
replaced by the BB-RTE run-time engine.

Within METrICS, the collector was a PikeOS native partition in charge of 1) defining the shared
memory space where each instrumented application will save its collected measurements; 2) con-
figuring specific measurement scenarios (selecting which resource accesses will be counted); 3)

SAFURE D6.7 Page 31 of 46

D6.7- Final Specifications of the SAFURE Framework and Methodology

Realtime
application

Realtime
application

Realtime
application

Realtime
application

...
RunTime
Engine
(RTE)

PikeOS scheduler
Hardware
Monitor
Driver

ARM64 v8 PSP

ARM Juno board

Figure 5.4: METrICS infrastructure in the context of SAFURE BB-RTE

launching the measurement campaign (relying on PikeOS scheduling schemes); 4) transfering the
content of the shared memory to the host computer at the end of the measurement to postprocess
the collected results

The collector took a particular care not to interfere with the target application operational schedul-
ing, not being schedulable at all when the application is effectively running, and therfore not altering
its real-time behavior.

Within the SAFURE project, as we expect the run-time engine to take some scheduling decisions,
and therefore to have an impact on the timing, it was no more critical for the collector not to interfere
with the application schedule. Also, instead of gathering the collected information into a shared
memory for it to be dumped at the end of the execution for an offline postprocessing stage, our run-
time engine needs to process the gathered results online, compare them to the budget and optionally
suspends some tasks. As a consequence, the BB-RTE native partition now runs as a background
process in time partition 0 of PikeOS.

As comparing the collected metrics to a pre-determined budget is performed in just a few com-
parisons, the timing impact of the BB-RTE while not performing any regulation remains acceptable.
When some regulations are required, a budget being spent by non-critical tasks the BB-RTE partiton
relies on PikeOS scheduling features to temporarily suspend the non-critical tasks.

An evaluation of the BB-RTE run-time engine has been realized in Section 4.5 of Deliverable D4.3,
showing some limitations of the approach with regards to aperiodic tasks whose timing behaviors are
poorly captured by the budgeting technique.

5.3 Ensuring Temperature Integrity

Temperature can also cause interference between criticalities. For-instance, a Lo-Critical application
can heat up the platform causing Dynamic Thermal Management (DTM) to be triggered. A subse-
quent Hi-Critical application may get lower service due to this DTM trigger and may even miss its
deadline. This violates the certification requirement of isolation between criticalities and therefore,
the effects of such thermal interference must be mitigated to ensure temperature integrity.

This section covers the steps taken to add thermal protection to the avionics prototype. The avion-
ics prototype detailed in Deliverable D4.2. Deliverable D3.2 covered the theoretical basis of this
scheme and Deliverable D3.3 covered the application of the scheme on a synthetic mixed-critical
taskset based on the avionics prototype, running on an x86 platform. The thermal protection scheme,
called Thermal Isolation Servers, is also explained in [2].

In this document we first explain how temperature measurement functionality was enabled in Sec-
tion 5.3.1. As explained in the section, adding temperature measurement functionality required more
effort than initially anticipated. Therefore, the integration of thermal protection could not be com-
pleted. In Section 5.3.2, we outline the steps necessary to the adapt the thermal protection scheme
for the avionics prototype. This section also presents the results of the initial thermal calibration tests.

SAFURE D6.7 Page 32 of 46

D6.7- Final Specifications of the SAFURE Framework and Methodology

5.3.1 Measuring Power & Temperature as part of the Run-Time Engine

As described in Sections 4.2.5.2 and 5.2.3, METrICS relies on the ISA-level timebase to collect pre-
cise timing information, and on Performance Monitor Counters to count down the number of shared
hardware resource accesses.

Despite both these features being architecture-dependent, mostly all architectures support these
features one way or another. This allowed us to make sure that METrICS could easily be portable to
different architecture with a limited cost. Nowadays, METrICS successfully runs on top of PikeOS for
ARM-v8, PowerPC-e500 and PowerPC-e6500 architectures.

When it comes to measuring current, power or temperature with hardware probes however, every
manufacturor has is own implementation approach, and portability can hardly being ensured.

We evaluated the feasibility of gathering such information on the WP4 avionic prototype based on
PikeOS 4.1 running on top of the ARM-v8 Juno Board from ARM. In this section, we will present the
alternative way the platform allows us to access such information, as well as the difficulties encoun-
tered. Finally we will conclude with an assessment on how it could be ported to other architectures.

5.3.1.1 Probing power and temperature on the Juno board

Figure 5.5 represents the ARM Juno motherboard. Beyond the two multi-core clusters of Cortex A53,
and Cortex A72 ARM-v8 cores and the Mali GPU, the Juno motherboard embbeds some additional
processors, not directly programmable by the user: The System Control Processor (SCP) that is part
of the SoC, and the Motherboard Configuration Controller that is off-chip on the motherboard.

Gen 2 PCIe
switch

PCI
Express

slots

Configuration

Motherboard
Configuration Controller

(MCC)
System
LEDs

IOFPGA

SMC

x4x4

x8

x16

PCIe

x1

x1

x4

x4

x4

x1

DMC-400

DDR3L DDR3L

32-bit 32-bit

Clock
generators

UART 1

UART 0

UART

HDLCD 0/1

SCC

UART SEL

Keyboard

Mouse

SPI

UART
SEL

Reset
push

buttons

User
microSD

NOR flash

User LEDs

10/100 Eth
LAN
9118

HDMI
0/1

CCI-400

Juno r2 SoC

Dual
ARM-A72
cluster

Quad
ARM-A53
cluster

System
Control

Processor

NIC-400

Gigabit
Ethernet

SATA 0/1

x1

Versatile Express Motherboard

Mali
GPU

MHU
Unit

Figure 5.5: Versatile Express Juno Board

Unfortunately, accessing power and temperature information is not directly doable from the com-
putation cores, and we had to rely on these not-directly programmable extra cores and other mother-
board peripherals.

During the Juno board boot sequence, the MCC processor of the motherboard is powering up the
SoC SCC processor, which is in charge of pursuing the boot process at SoC-level and starting the
applicative cores. Therefore, power usage of the applicative cores are controlled by the SCP, itself
being controlled by the MCC.

Focusing on power and temperature probing features, two components have access to different
sets of information: The SCP processor of the SoC, and the IOFPGA component of the motherboard.

SAFURE D6.7 Page 33 of 46

D6.7- Final Specifications of the SAFURE Framework and Methodology

Information about the versatile motherboard and the IOFPGA component can be found in [6],
whereas the information on the SoC and the SCP can be found in [5].

5.3.1.2 Motherboard IOFPGA Component

The IOFPGA component of the Juno motherboard is in charge of providing access to low-bandwidth
peripherals that the Juno SoC does not directly control through an SMC interface.

The IOFPGA also provides energy registers that measure the instantaneous current consump-
tion, instantaneous voltage suppliedevelopedaneous power consumption, and cumulative energy
consumption, for different parts of accessibleJuno SoC and the Juno Motherboard, through memory-
mapped APB energy meter registers.

As these registers were memory-mapped, we developed straightforwardly an ad’hoc driver to map
this memory region to a virtual address accessible to the application, so that METrICS timing and
PMC information could be extended with power information. The results of the execution of an exam-
ple application with these features turned on is shown below:

1 Starting PowerTemp

2 - Getting access to IOFPGA memory regions

3 - Physical address: 1c010000

4 - Mapping IOFPGA memory region to local address space

5 - Virtual address: 503eb000

6 Probing IOFPGA power information

7 IOFPGA monitors:

8 A72: 0.062992 A 0.909988 V 0.054948 W 0.294994 J

9 A53: 0.115637 A 0.911837 V 0.104135 W 0.644928 J

10 SYS: 0.869908 A 0.908755 V 0.787316 W 6.832029 J

11 GPU: 0.044619 A 0.913687 V 0.038380 W 0.359071 J

12 IOFPGA monitors:

13 A72: 0.062992 A 0.910604 V 0.054985 W 0.351152 J

14 A53: 0.052562 A 0.911837 V 0.046681 W 0.693915 J

15 SYS: 0.781866 A 0.908755 V 0.707872 W 7.556856 J

16 GPU: 0.044619 A 0.913687 V 0.038380 W 0.397166 J

17 IOFPGA monitors:

18 A72: 0.065617 A 0.909988 V 0.054948 W 0.407165 J

19 A53: 0.052562 A 0.911837 V 0.046681 W 0.742580 J

20 SYS: 0.784494 A 0.908755 V 0.710970 W 8.282830 J

21 GPU: 0.044619 A 0.913687 V 0.035981 W 0.435525 J

The trace above shows three successive collections of the power information, for the different parts
of the ARM-v8 architecture: A72 correspond to the values related to the high-performance 2-core
cluster, A53 to the values related to the low-power 4-core cluster, GPU to the Mali graphical unit, and
SYS to the versatile motherboard.

The columns correspond respectively to the current in Ampere, the voltage in Volt, the power in
Watt and the energy (accumulated power) in Joules. However, there is no temperature information.
Motherboard-level temperature was used to be available in Juno revision 0 and 1, but is no more
available with revision 2. Anyhow, mother-level temperature is not precise enough to observe covert
temperature channel attacks.

Despite being easy to implement, the access to the IOFPGA is not sufficient to observe proper
temperature measurements.

SAFURE D6.7 Page 34 of 46

D6.7- Final Specifications of the SAFURE Framework and Methodology

5.3.1.3 SoC System Control Processor (SCP)

As its name suggests, the System Control Processor is in charge of controlling the whole System on
Chip. In addition to configuration and booting, the SCP is also in charge of power related features
such as the DVFS and the DTM. As a consequence, the SCP has access to a wide scope of power
and temperature related probes, but it is not programmable.

To access SCP information from the applicative cores (A72 & A53), it is needed to pass through
the MHU Unit (Message Handling Unit), that implements a proprietary communication protocol.

The specification of this protocol through the MHU unit is defined in [4]. It encompasses the con-
cepts of both physical and virtual channels, that are used together to support data transfer and re-
quest signaling for the messaging interfaces. The whole system relies on unidirectional memory-
mapped channels, each composed of three registers (STAT, SET & CLEAR) as well as an interrupt
line to the receiver. The communication data flow passes through another set of dedicated memory-
mapped buffers.

This protocol has therefore being implemented on top of PikeOS, defining all the associated un-
cachable physically mapped memory regions, and the results of the execution of an example appli-
cation with these alternative features turned on is shown below:

Starting PowerTemp

- Getting access to MHU (Interface) memory regions

- Physical address: 2e000000

- Mapping MHU interface memory region to local address space

- addresses: scp_to_ap=0x503fb200 ap_to_scp=0x503fb300

- Getting access to MHU (Registers) memory regions

- Physical address: 2b1f0000

- Mapping MHU registers memory region to local address space

- Virtual address: 503fc000

Probing SCP/MHU power information

SCP monitors:

A72: 0.073000 A 0.905000 V 0.004239 W 29.173000 C

A53: 0.126000 A 0.907000 V 0.000124 W 29.616000 C

SYS: 0.898000 A 0.904000 V 0.000839 W 29.111000 C

GPU: 0.060000 A 0.912000 V 0.006438 W 28.505000 C

SCP monitors:

A72: 0.073000 A 0.904000 V 0.004193 W 29.000000 C

A53: 0.122000 A 0.907000 V 0.001209 W 29.383000 C

SYS: 0.809000 A 0.903000 V 0.003388 W 29.107000 C

GPU: 0.060000 A 0.912000 V 0.006438 W 28.501000 C

SCP monitors:

A72: 0.073000 A 0.905000 V 0.004239 W 28.770000 C

A53: 0.122000 A 0.907000 V 0.001209 W 29.598000 C

SYS: 0.808000 A 0.903000 V 0.002811 W 29.177000 C

GPU: 0.060000 A 0.912000 V 0.004041 W 28.634000 C

Again, the trace above shows three successive collections of the power information, for the different
parts of the ARM-v8 architecture: A72 correspond to the values related to the high-performance 2-
core cluster, A53 to the values related to the low-power 4-core cluster, GPU to the Mali graphical unit,
and SYS to the versatile motherboard.

This time, the columns correspond respectively to the current in Ampere, the voltage in Volt, the
power in Watt and the temperature in Degree Celcius. The temperature is provided with a 3-digit
precision (actually in millidegree), that is sufficient to observe temperature variation for temperature
covert attacks.

SAFURE D6.7 Page 35 of 46

D6.7- Final Specifications of the SAFURE Framework and Methodology

The implementation however was much more complex than for IOFGA, requiring months of devel-
opment and debugging, espcially as the documentation was really sparse, the MHU protocol quite
complex, and the documentation on the physical addresses was incorrect.

5.3.1.4 Conclusion

In this section, we presented two alternative ways the Juno board can assess power and tempera-
ture. Unfortunately, the more core-specific the probing feature is, the more accurate the temperature
information is, whereas for current and power consumption, the generic versatile-level in enough.

From the METrICS point of view, that focuses on portability, this is clearly an issue as it requires
some implementation effort to target even another ARM-v8 architecture. Portability is also very tied
to the level (and accuracy) of the documentation to access the temperature / power information. If the
access to the memory-mapped information of the IOFPGA was quite straightforward, with just a MMU
tweak to provide access to the memory range, the access to the SCP via the MHU protocol tooks
several months of development, especially debugging as the documentation was 1) unclear without
any example, 2) incorrect on one physical address value compromising the whole collection.

As a consequence, assessing the effort required to port the power / temperature colleciton features
to another architecture is tricky, from one or two weeks (memory mapped information) to up to 3-6
monthes (for poorly documented protocol information).

5.3.2 Thermal Protection

The thermal protection scheme has two primary components:

1. Building the thermal model based on thermal calibration tests.

2. Based on the model, determine a temperature threshold for throttling the execution for Lo-
Critical application.

Note that component 2 is different from the baseline scheme of Thermal Isolation Server (TIS)
detailed in Deliverable D3.2. In this section, we will first provide brief overview of TIS scheme and
the calibration tests for its integration. We will then overview the adaptions necessary for integration
of this scheme on the avionics prototype. Lastly we will provide first results of the initial thermal
calibration tests.

5.3.2.1 Thermal Isolation Servers Overview

TISs statically scheduled periodic resources with an associated thermal budget which encapsulates
the maximum temperature increase caused by tasks executed by the server. The thermal budget
is a function of the server period, utilization and the core the server is running on. For detailed
explanation, please refer to Deliverable D3.2 or the corresponding publication [2].

In the mixed-critical context (avionics application), the basic idea of thermal protection is the follow-
ing:

1. Run the Hi-Critical application without any thermal control/throttling.

2. Determine the maximum additional temperature increase such that DTM is not triggered. We
call this ΛLo.

3. Mapping the Lo-Critical application to TISs such that deadline constraints are met and the
aggregate thermal budget of all servers does not exceed ΛLo.

To enable these individual components, the following thermal calibration tests are required:

SAFURE D6.7 Page 36 of 46

D6.7- Final Specifications of the SAFURE Framework and Methodology

Figure 5.6: Thermal throttling observed on the Dragonboard 810 which has big.LITTLE architecture
similar to the JUNO Board. Thermal throttling triggers when the maximum temperature across all
cores/sensors reaches 87◦ C.

Determine DTM trigger temperature:
This is straightforward if it is documented in the SoC reference manual. If not, it can be de-
termined by conducting the following calibration test: Execute a loada application on all cores
without any preemption or idle time. During execution, monitor both operating frequency and
temperature by reading the corresponding on-chip thermal sensors. Observe the temperature
when there is a sharp drop in operating frequency. This temperature is the point where DTM is
triggered. This temperature is called T∆

aFor an x86 platform, an infinite loop with floating point operations was sufficient to cause DTM trigger

Determine the maximum temperature caused by Hi-Critical application:
Execute the Hi-Critical application on one of the cores and leave the remaining cores idle. This
calibration test should be run over several hyperperiods such that the temperature at the start
and end of the hyperperiod approaches the same value (thermal steady state). Furthermore,
the frequency of temperature measurements should be high such that temperature peaks are
not missed between measurements. The frequency required depends on the power density of
the platform. As a general recommendation, based on the power density of modern computing
platforms, a sense frequency of 10ms should be used. The temperature profile of this calibration
test is called THi(t).

Figure 5.3.2.1 shows thermal throttling observed on the Dragonboard 810 platform. From these
two calibration tests, we can determine the maximum allowed temperature increase for Lo-Critical

SAFURE D6.7 Page 37 of 46

D6.7- Final Specifications of the SAFURE Framework and Methodology

application. This can be computed using:

ΛLo
i = THi −max

t
THi
i (t) ∀i ∈ {1, 2, . . .m} (5.1)

where m is the number of cores and Xi represents the ith element of a vector. For component 3,
we need to determine the thermal model of the platform. This includes the thermal models of the
self-core (the core executing the tasks) and the thermal effect on the neighboring cores. Details on
developing and applying these models are given in SAFURE Deliverable D3.3. However, they are
summarized here for completeness.

Transient Model:
load application executed periodically with a period of 10s and computation time of 5s running
on core i ∈ {1, 2, . . .m}. All other cores idle. Test duration 60s. Temperature measurements are
taken after every 10ms.

Steady-state Model:
Core i executing load application for 40 minutes where i ∈ {1, 2, . . .m}. All other cores idle. This
is followed by all cores idle for 20 minutes. Temperature measurements are taken after every
minute.

Inter-core Model:
Cores (i, j) active for 40 minutes where i, j ∈ {i 6= j : 1, 2 . . .m}. All other cores idle. This
is followed by all cores idle for 20 minutes. Temperature measurements are taken after every
minute.

Using the Transient, Steady-state and Inter-core model, a given server configuration can be sim-
ulated to determine its resultant temperature increase; and it can be verified that the temperature
increase does not exceed ΛLo.

5.3.2.2 Adaption for the Avionics Prototype

This section proposes adaptions to the thermal protection scheme to fit the avionics prototype. Note
that only a proposal for a given scheme is presented here. As indicated in the start of this section,
the scheme has not been implemented. Two assumptions that held for the implementation of TIS on
the x-86 platform (D3.3) do not hold for the avionics prototype. They are:

1. Instead of having a single load application, the individual Lo-Critical tasks are different and will
likely have different thermal behaviors. This thermal heterogeneity of tasks has to be consid-
ered in the designed thermal protection scheme.

2. Instead of having a per-core thermal sensor, the JUNO board has one thermal sensor in the
A53 cluster. This is a significant limitation and does not fulfill the requirement of a per-core
thermal sensor (D1.2 S1-NF-031).

To adapt to these limitations, it is necessary to make the thermal protection scheme reactive rather
than proactive. Each time partition is assigned a maximum temperature budget. During the execution
of a partition, the temperature is monitored. If the assigned budget is exceeded, the Lo-Critical
application is suspended.

To formally state this, we need to define the following cooling function:
cooling(Tinit, u): Upper-bound of Temperature u idle cycles after an initial temperature of Tinit. This
function can be determined using thermal calibration tests.

SAFURE D6.7 Page 38 of 46

D6.7- Final Specifications of the SAFURE Framework and Methodology

0.0 0.5 1.0 1.5 2.0
Time(s)

30.0

30.5

31.0

31.5

32.0

32.5

33.0

Te
m

pe
ra

tu
re

(
C)

-FMS-NOT-NOT-NOT
-FMS-NOT-NOT-SB
-FMS-NOT-SB-NOT
-FMS-SB-NOT-NOT
-FMS-SB-SB-SB

Figure 5.7: Temperature of the A53 cluster in JUNO board for different execution configurations

Using the determined cooling function, we can compute the platform temperature at time t when
the initial temperature at time l < t is T (l) and only the Hi-Critical application executes between
(l, t]. It is assumed that the HI-Critical application starts execution at time 0. The hyperperiod of the
Hi-Critical application is represented by L.

THi(t, l, Tl) = cooling(Tl − THi(l mod L), t− l) + THi(t mod L) (5.2)

Now, let us suppose that there are n time partitions within the hyperperiod of a Hi-Critical applica-
tion. The starting time of the ith partition is represented by si. The maximum feasible temperature at
the start of a partition i is represented using Tmax

i . This can be computed as:

Tmax
i = max{Tsi : max

si≤t≤si+L
{THi(t, si, Tsi)} < T∆} (5.3)

Once Tmax
i ∀i ∈ {1, 2, . . . n} are determined, the following thermal protection scheme can be im-

plemented:

Run-Time Protection scheme:
In frame i, execute the Lo-Critical application as long as temperature does not exceed Tmax

(i mod n)+1.
If this threshold is exceeded, suspend the execution of the Lo-Critical application until the tem-
perature at the start of a future frame j is less than Tmax

j .

5.3.2.3 Initial Thermal Calibration Test Results

To determine the thermal model, several calibration tests were run with different settings of the stress-
ing benchmark application. In this section, we show results of the tests run with the following stressing
benchmark setting:
Buffersize = 221 Bytes , Stride = 64 Bytes, NOPs per load = 16.
Following tests were conducted:

1. FMS-NOT-NOT-NOT: Core 0 executing FMS. All other cores idle.

2. FMS-NOT-NOT-SB: Core 0 executing FMS. Core 3 executing stressing benchmark. All other
cores idle.

SAFURE D6.7 Page 39 of 46

D6.7- Final Specifications of the SAFURE Framework and Methodology

3. FMS-NOT-SB-NOT: Core 0 executing FMS. Core 2 executing stressing benchmark. All other
cores idle.

4. FMS-SB-NOT-NOT: Core 0 executing FMS. Core 1 executing stressing benchmark. All other
cores idle.

5. FMS-SB-SB-SB: Core 0 executing FMS. All other cores executing stressing benchmark.

Figure 5.3.2.3 shows the temperature of the JUNO board for the different execution configurations.
The tests were not sufficient to determine the thermal model, as the temperature steady state is not
characterized. However, they do give us insights into the thermal characteristics of the JUNO board.
It appears that the execution of the stressing benchmark on core 3 does not significantly increase
temperature. However, the execution on core 1 or core 2 increases temperature. Furthermore, core
0 and 1 appear to have similar thermal characteristics. As expected, the execution of the stressing
benchmark on cores 1, 2, and 3 simultaneously causes the highest increase in temperature.

5.4 Conclusion

This chapter focused on mechnisms to ensure system integrity at the operating system and micro-
architecture level, dealing both with direct aspects (data protection and timing considerations), as well
as possible side-channel attacks using temperature as a source of threat.

The next chapter will more particularly focus on safety and securty aspects tied to the network
infrastructure, and especially related to data integrity and time integrity.

SAFURE D6.7 Page 40 of 46

D6.7- Final Specifications of the SAFURE Framework and Methodology

Chapter 6 Execution: Network

In this chapter we give an overview of the work performed for the network aspects of the SAFURE
framework, for both the safety and security. In addition to the work performed, we give an outlook for
potential future work and recommendations.

As shown in figure 1.1, the network element consists of deterministic networks, protocol extensions,
and anti-counterfeiting measures.

6.1 Deterministic Networks

For open discussion on security threats and mitigation strategies (in particular for automotive indus-
try), we suggest using Common Criteria (CC) [1] as a tool to structure such a discussion. The CC
have various benefits: they provide a generic framework that can be tailored towards automotive use,
they have been applied to numerous projects in various industries, including safety-critical applica-
tions, and, finally, they provide a thorough catalogue of security functions and security assurance
methods that target completeness and correctness of a security solution with scalable assurance lev-
els. CC have even been argued for applicability to automotive systems before and even set in context
to ASIL. The common criteria allow for the following workflow:

• An organization seeking to acquire a particular type of security product develops their security
needs into a protection profile, then has this evaluated and publishes it.

• A developer takes this protection profile, writes a security target, that claims conformance to the
protection profile and has this secutiry target evaluated.

• The developer then builds a target of evaluation (or uses an existing one) and has this evaluated
against the security target.

For our particular case, the target of evaluation is a deterministic network consisting of Ethernet
switches and the wire harness that connects the switches to each other as well as the wire harness
connecting the user to the target of evaluation.

6.2 Protocol Extensions

The Time-Sensitive Networking (TSN) group is still in the process of desigining new standards. These
standards require a careful analysis in order to be evaluated for their integration into the real-time
domain. Within this project we have taken first steps towards providing formal analysis methods
for existing and developing standards. For some of these standards, complete analyses are now
available within the pyCPA framework, while others can be simulated in the OMNeT++ framework.
Furthermore, we extended existing standards, such as the IEEE802.1CB-2017 by allowing temporal
reduncancy, either as an alternative to spatial reduncancy or in combination with it.

In addition to evaluating existing standards of the TSN group, we have been working on researching
alternative ways of enforcing traffic shaping. The preliminary results are currently under submission.
Further details, as well as the venue, are omitted due to the double-blind revision process.

SAFURE D6.7 Page 41 of 46

D6.7- Final Specifications of the SAFURE Framework and Methodology

6.3 Anti-Counterfeiting Measures

In a network environment, attackers have an incentive to manipulate the network configuration and
the application binaries. As security is a moving target with new vulnerabilities and sometimes even
new attack methods coming up, it is desirable for the OEM to be able to update the firmware of the
network devices. A Secure Update mechanism can effectively prevent manipulated firmware.

Another entry for attackers is the communication between network devices, which is often unpro-
tected. With Secure Communication, the confidentiality as well as the integrity of messages can be
preserved.

For details, refer to chapter 2 in Deliverable D5.2. Furthermore, section 3.2 in Deliverable D3.2
gives an overview of cryptographic algorithms and their performance (ROM size, RAM usage, execu-
tion time).

6.3.1 Secure Updates

In order to create a secure update system, the update data (i.e., firmware binaries and/or config-
uration files) need to be protected either by an authentication tag (when using a symmetric MAC
algorithm) or a digital signature (when using asymmetric signatures), which is attached. Optionally
(e.g. if the firmware contains intellectual property), the data can also be encrypted. On the receiver
side, the authentication tag or signature is then decrypted and verified. The new firmware is flashed
into memory only if the verification returns no error.

6.3.2 Secure Communication

To protect the communication between different network nodes, the same cryptographic algorithms
as for secure updates can be deployed. Integrity protection can be realized by MACs or digital sig-
natures, and confidentiality can be preserved using block or stream ciphers Due to different require-
ments, the exact selection of algorithms, key sizes, and key handling depends heavily on the use
case. For safety-critical mesages, it should be considered that each crypto algorithm inherently adds
some latency to the message. In general, symmetric algorithms have much smaller latencies (and
also less complexity) than asymmetric algorithms. For some use cases, it might be necessary to use
special hardware (e.g. cryptographic coprocessors) in order to meet the required data latency and/or
throughput.

6.4 Conclusion

Future networks will have to be able to cover safety and security aspects, as both have an increasing
significance. While some parts of the SAFURE framework focused on one of these aspects, we
managed to include both safety and security simultanioulsy, e.g. in the combined automotive use-
case, covering both end-to-end encryption and integrity protection, as well as deterministic network
scheduling. With this work we laid the foundation for future systems to build on the SAFURE results,
which can be used to guide the research into a direction of entwined safety and security for networks.

SAFURE D6.7 Page 42 of 46

D6.7- Final Specifications of the SAFURE Framework and Methodology

Chapter 7 Summary

This document presented a framework for various methods and developed concepts to help system
developers ensure safety and security in the design and verification phases of their embedded sys-
tems. These concepts ranged from development strategies to tools that can be used in the various
phases of mixed critical system development.

The individual SAFURE partners validated their respective results using demonstrators from vari-
ous industrial sectors (telecommunications and automotive) and presented their results in the Deliv-
erables D6.3 to D6.6. The findings derived from these results were compiled in this report and used
to design a framework. This framework should serve as a basis for future and similar projects from
industry and research.

Figure 7.1 concludes with an overview of the SAFURE partners and to what extent their cooperation
and expertise have been incorporated into the framework. Due to their expertise they were decisive
to develop the Deliverables and to draw adequate conclusions for the framework from collaboration
with other partners in SAFURE.

Figure 7.1: Overview of the SAFURE Framework and SAFURE Partners

SAFURE D6.7 Page 43 of 46

D6.7- Final Specifications of the SAFURE Framework and Methodology

Chapter 8 List of Abbreviations

AE Authenticated Encryption

BB-RTE Budget-Based RunTime Engine

CC Common Criteria

CPA Compositional Performance Analysis

CPS Cyber Physical System

DS Digital Signature

EC European Commission

DVFS Dynamic Volatage and Frequency Scaling

DTM Dynamic Thermal Management

ISA Instruction Set Architecture

GPU Graphics Processing Unit

MAC Message Authentication Code

METrICS Measurement Environment for Multi-Core Time Critical Systems

MHU Message Handling Unit (component of the Juno SoC)

MMC Motherboard Configuration Controller (part of the Juno motherboard)

MPU Memory Protection Unit

PMC Performance Monitor Counters

SCP System Control Processor (part of the Juno SoC)

SoC System on Chip

TSN Time-Sensitive Networking

xTRACT expert Timing and Resource Access Counting Trace Visualizer

SAFURE D6.7 Page 44 of 46

D6.7- Final Specifications of the SAFURE Framework and Methodology

Bibliography

[1] Common Criteria (ISO/IEC 15408): Information technology – Security techniques – Evaluation
criteria for IT security, 2009.

[2] Rehan Ahmed, Pengcheng Huang, Max Millen, and Lothar Thiele. On the design and application
of thermal isolation servers. ACM Transactions on Embedded Computing Systems (TECS),
16(5s):165, 2017.

[3] ANSSI. Mécanismes cryptographiques - Règles et recommandations, Rev. 2.03. Technical
report, Agence nationale de la sécurité des systèmes d’information, February 2014.

[4] ARM Limited. ARM Compute Subsystem SCP, Version: 1.1, Message Interface Protocols, Aug
2016.

[5] ARM Limited. Juno r2 ARM Development Platform SoC, Revision: r2p0, Technical Reference
Manual, Aug 2016.

[6] ARM Limited. ARM VersatileTM Express Juno r2 Development Platform (V2M-Juno r2) - Tech-
nical Reference Manual, Nov 2017.

[7] AUTOSAR Consortium. Autosar classic platform 4.3.1 standard, May 2018.

[8] Thomas G. Baker. Lessons learned integrating COTS into systems. In Proceedings of the First
International Conference on COTS-Based Software Systems, ICCBSS ’02, pages 21–30, 2002.

[9] Elaine Barker. SP800-57: Recommendation for Key Management – Part I. Technical report,
National Institute of Standards and Technology (NIST), January 2016.

[10] BSI. TR-02102-1: Kryptographische Verfahren: Empfehlungen und Schlüssellängen. Technical
report, Bundesamt für Sicherheit in der Informationstechnik, February 2017.

[11] ECRYPT II. ECRYPT II Yearly Report on Algorithms and Keysizes (2011-2012). Technical
report, European Network of Excellence in Cryptology II, September 2012.

[12] Sylvain Girbal, Daniel Gracia Pérez, Jimmy Le Rhun, Madeleine Faugère, Claire Pagetti, and
Guy Durrieu. A complete toolchain for an interference-free deployment of avionic applica-
tions on multi-core systems. In Proceedings of the 34th Digital Avionics Systems Conference,
DASC’2015, 2015.

[13] Sylvain Girbal and Jimmy Le Rhun. BB-RTE: a budget-based runtime engine for mixed and
time critical systems. In Embedded Real Time Software and Systems (under review), ERTS ’18,
2018.

[14] Sylvain Girbal, Jimmy Le Rhun, and Hadi Saoud. METrICS: a measurement environment for
multi-core time critical systems. In Embedded Real Time Software and Systems (under review),
ERTS ’18, 2018.

SAFURE D6.7 Page 45 of 46

D6.7- Final Specifications of the SAFURE Framework and Methodology

[15] Orlena C. Z. Gotel and Anthony C. W. Finkelstein. An analysis of the requirements traceability
problem. In Proceedings of the First International Conference on Requirements Engineering,
1994.

[16] Robin Hofmann, Leonie Ahrendts, and Rolf Ernst. Cpa compositional performance analysis.
In Jürgen Ha, Soonhoi; Teich, editor, Handbook of Hardware/Software Codesign, pages 1–31.
Springer, Dordrecht, 2017.

[17] IBM. Rational rhapsody overview page, May 2018.

[18] IEEE Time-Sensitive Networking Task Group. IEEE Time-Sensitive Networking Task Group.
http://www.ieee802.org/1/pages/tsn.html.

[19] International Electrotechnical Commission. IEC 61508: Functional safety of electrical, electronic,
or programmable electronic safety-related systems, 2011.

[20] International Organization for Standardization (ISO). ISO 26262: Road Vehicles – Functional
Safety, 2011.

[21] International Organization for Standardization (ISO). ISO/IEC 33001: Information Technology –
Process Assessment – Concepts and Terminology, 2015.

[22] NSA. Fact sheet suite b cryptography, August 2015.

[23] National Institute of Standards and Technology (NIST). FIPS PUB 140-2: Security Requirements
for Cryptographic Modules, 2001.

[24] Radio Technical Commission for Aeronautics (RTCA) and EURopean Organisation for Civil Avi-
ation Equipment (EUROCAE). DO-297: Software, electronic, integrated modular avionics (IMA)
development guidance and certification considerations.

[25] Youcheng Sun and Marco Di Natale. Weakly hard schedulability analysis for fixed priority
scheduling of periodic real-time tasks. ACM Transactions on Embedded Computing Systems
(TECS), 16(5s), 2017.

[26] VDA QMC Working Group 13 / Automotive SIG. Automotive SPICE R© – Process Reference
Model, Process Assessment Model, 2015.

[27] Haibo ZENG, Prachi JOSHI, Daniel THIELE, Jonas DIEMER, Philip AXER, and Rolf ERNST.
24.4 Packet-Switched Networks: Ethernet, page 2540. SPRINGER, Apr 2017.

SAFURE D6.7 Page 46 of 46

	Introduction
	Development Process
	Process description
	Requirements Traceability

	Deliverable Outline

	Design: Modeling
	Modeling Extensions
	Modelling Extensions for the Specification and Analysis of Safety and Security Properties
	Modelling Extensions for the Compositional Performance Analysis

	Design Patterns
	Architecture Patterns for Safe and Secure Systems

	Conclusion

	Design: Application Development
	Data Integrity Methodology
	Key Length Recommendations
	Choice of Data Integrity Algorithm

	Conclusion

	Design: Deployment
	Synthesis
	Automatic generation of encryption components and code
	Automatic generation of OS calls for timing protection (isolation) in mixed-critical applications

	Analysis
	Timing Analysis of Tasks in overload conditions
	Timing Analysis of Ethernet Networks
	Analyzable Network Model
	Design Rules for Constraint Specification
	Timing Analysis in Faultless Case
	Timing Analysis in Error Case of Babbling Idiots
	Interactions of Different Design Phases

	Thermal Security Analysis
	Covert Channel Evaluation
	Side Channel Data Leak
	Considerations for Thermal Security

	Vulnerability Detection for Multi-Cores
	Integration on SAFURE hardware platforms
	Integration on SAFURE use cases
	Beyond SAFURE platforms and use cases

	Timing Interference Analysis
	Tools Developed as part of SAFURE
	Measurement Environment for Multi-Core Time Critical Systems (METrICS)
	expert Timing and Resource Access Counting Trace Visualizer (xTRACT)
	Budget-Based RunTime Engine (BB-RTE)

	System Configuration Tools for PikeOS
	Time Partition Configuration

	Conclusion

	Execution: OS & Microarchitecture
	Ensuring Data Integrity: Protection Mechanisms
	Memory Protection Unit
	Timing Protection driver

	Ensuring Shared Resource and Timing Integrity
	Run-Time Monitoring
	Real-Time Scheduling
	Run-Time Engine

	Ensuring Temperature Integrity
	Measuring Power & Temperature as part of the Run-Time Engine
	Probing power and temperature on the Juno board
	Motherboard IOFPGA Component
	SoC System Control Processor (SCP)
	Conclusion

	Thermal Protection
	Thermal Isolation Servers Overview
	Adaption for the Avionics Prototype
	Initial Thermal Calibration Test Results

	Conclusion

	Execution: Network
	Deterministic Networks
	Protocol Extensions
	Anti-Counterfeiting Measures
	Secure Updates
	Secure Communication

	Conclusion

	Summary
	List of Abbreviations
	Bibliography

